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FOREWORD 

This IMA Volume in Mathematics and its Apphcations 

COMPATIBLE SPATIAL DISCRETIZATIONS 

contains papers presented at a highly successful IMA Hot Topics Work­
shop: Compatible Spatial Discretizations for Partial Differential Equations. 
The event which was held on May 11-15, 2004 was organized by Douglas 
N. Arnold (IMA, University of Minnesota), Pavel B. Bochev (Computa­
tional Mathematics and Algorithms Department, Sandia National Labora­
tories), Richard B. Lehoucq (Computational Mathematics and Algorithms 
Department, Sandia National Laboratories), Roy A. Nicolaides (Depart­
ment of Mathematical Sciences, Carnegie-Mellon University), and Mikhail 
Shashkov (MS-B284, Group T-7, Theoretical Division, Los Alamos Na­
tional Laboratory). We are grateful to all participants and organizers for 
making this a very productive and stimulating meeting, and we would like 
to thank the organizers for their role in editing this proceeding. 

We take this opportunity to thank the National Science Foundation 
for its support of the IMA and the Department of Energy for providing 
additional funds to support this workshop. 

Series Editors 

Douglas N. Arnold, Director of the IMA 

Arnd Scheel, Deputy Director of the IMA 



PREFACE 

In May 2004 over 80 mathematicians and engineers gathered in Min­
neapolis for a "hot topics" IMA workshop to talk, argue and conjecture 
about compatibility of spatial discretizations for Partial Differential Equa­
tions. We define compatible, or mimetic, spatial discretizations as those 
that inherit or mimic fundamental properties of the PDE such as topology, 
conservation, symmetries, and positivity structures and maximum princi­
ples. 

The timing and place for this workshop were not incidental. PDEs are 
one of the principal modeling tools in science and engineering and their 
numerical solution is the workhorse of computational science. However, 
historically, numerical methods for PDEs such as finite differences (FD), 
finite volumes (FV) and finite elements (FE) evolved separately and until 
recently, in relative isolation from each other. This situation started to 
change about two decades ago when researchers working in these areas 
began to realize that robust and accurate discrete models share more than 
just a passing resemblance to each other. While FD, FV and FE methods 
have all developed specific approaches to compatibility, their successful 
discrete models were found to operate in what essentially came down to 
a discrete vector calculus structure replete with algebraic versions of the 
vector calculus identities and theorems. 

Because of their more explicit reliance on grid topology, FD and FV 
methods recognized the role of geometry earlier than FE methods. For 
FEM compatibility criteria evolved from variational theories and assumed 
the form of powerful, but non-constructive inf-sup conditions. This changed 
in the 80s with the pioneering work of Bossavit who brought to light fun­
damental connections between the DeRham complex and compatible FEs 
for the Maxwell's equations. Consequently, research in applications of dif­
ferential geometry, exterior calculus and algebraic topology to numerical 
PDEs intensified. This research led to important advances in understand­
ing of spatial compatibility and connections between different compatible 
discrete models. Among the payoffs from this work were development of 
new stable FE models for linear elasticity and rigorous convergence analysis 
of mimetic FD by variational tools. 

Thus, the organizers felt that the time was ripe for the researchers 
working in this field to get together and compare notes. The relevance 
of the topic and its impact on computational sciences helped to attract 
attendees from a broad cross-section of the community. The stature of 
IMA, its tradition and experience in organizing small focused workshops 
and its dedicated staff made the Institute a natural venue for this gathering. 
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This volume, co-edited by the workshop organizers, is representa­
tive of the topics discussed during the meeting. The papers, based on 
a subset of the plenary talks, offer the reader a snapshot of the current 
trends and developments in compatible and mimetic spatial discretizations. 
Abstracts and presentation slides from the workshop can be accessed at 
http://www.ima.umn.edu/talks/workshops/5-11-15.2004/. 

While many of the contributions in this volume address questions re­
garding spatial compatibility, each paper offers a unique perspective and 
insight into specific techniques and approaches. Arnold et al focus on a 
homological approach to stabihty of mixed FE which, in the recent years, 
has greatly contributed to the understanding of mixed methods and the 
development of stable methods for previously intractable problems. The 
first part of their contribution deals with two polynomial versions of the 
DeRham complex. One complex involves homogeneous polynomial spaces 
of decreasing degree and the second is obtained with the help of the Koz-
sul differential. The two polynomial complexes contain generalizations of 
well-known finite element pairs such as Raviart-Thomas, BDM and Ned-
elec elements of first and second kinds. Then, they proceed to show how to 
use polynomial sub-complexes and commuting diagrams to obtain stability 
of mixed methods. The second part of Arnold et al deals with application 
of the homological approach to mixed linear elasticity. They show that 
a differential complex relevant to mixed linear elasticity can be obtained 
from the DeRham complex. An analogous construction is used to develop a 
discrete elasticity complex from a polynomial DeRham complex and results 
in new stable finite element spaces for mixed linear elasticity. 

The paper by Boffi examines compatibility issues that arise in mixed 
finite element approximations to eigenvalue problems. A surprising coun­
terexample shows that the classical Brezzi theory, which provides sufficient 
compatibility conditions for mixed methods, is not enough to guarantee the 
absence of spurious modes in mixed approximations of eigenvalue problems. 
After theoretical explanation and practical demonstration of this behavior, 
Boffi proceeds to develop sufficient and necessary conditions for correct 
mixed eigenmode discretizations and then gives several examples for possi­
ble application of the eigenvalue compatibility theory. Among other things, 
Boffi shows that good approximation of evolution problems in mixed form 
is contingent upon spectral convergence of the related eigenvalue problem, 
that is, it is also a subject to compatibility conditions beyond that of the 
classical Brezzi theory. 

Application of algebraic topology to compatible discretizations is the 
central topic of Bochev and Hyman. They use two basic mappings be­
tween differential forms and cochains to define a framework that supports 
mutually consistent operations of differentiation and integration. This is 
accomplished by a set of natural operations that induce a set of derived 
discrete operations. The resulting framework has a combinatorial Stokes 
theorem and preserves the invariants of the De Rham cohomology groups. 
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The key concept of their approach is the natural inner product on cochains. 
This inner product is sufficient to generate a combinatorial Hodge theory on 
cochains but avoids complications attendant in the construction of efficient 
discrete Hodge-star operators. The framework provides an abstraction that 
includes examples of mixed FE, mimetic FD and FV methods. The paper 
also describes how these methods result from a choice of a reconstruction 
operator and explains when they are equivalent. 

An interesting perspective on compatibility and how it affects Dis­
continuous Galerkin (DG) methods is presented in the paper by Barth. 
Because of a number of valuable computational properties, DG methods 
are attracting significant attention. Their origins for elliptic problems can 
be traced to interior penalty methods and so they are not compatible in 
the sense of mixed finite element methods. Using the Maxwell's equa­
tions and ideal MHD, Barth draws attention to the different roles played 
by their involutions for the formulation of energy-stable DG methods. The 
Maxwell's equations are naturally expressed in symmetric form, while sym-
metrization of MHD utilizes the involution as a necessary ingredient. This 
leads to fundamental differences in energy stability of the associated DG 
methods. Barth shows that imposing continuity of the magnetic flux at 
interelement boundaries is beneficial for energy stabihty of DG for MHD, 
while, somewhat counterintuitively, this condition is not required for DG 
discretizations of the Maxwells equations. 

A co-volume approach to compatible discretizations is discussed by 
Trapp and Nicolaides. Building upon a solid body of work in classical FV 
methods, they use Voronoi-Delaunay grids to discretize differential forms. 
Their approach exploits the Voronoi-Delaunay grid complex to obtain a 
primal and a dual set of discrete forms connected by a local discrete Hodge 
operator. This leads to algebraic PDE models with particularly simple 
and attractive structure and a discrete setting where both the primal and 
the dual discrete differential operators have local stencils. In addition, the 
primal and dual operators are adjoint with respect to a co-volume inner 
product, which immediately gives rise to a discrete Hodge decomposition. 
To illustrate the co-volume approach, Trapp and Nicolaides develop com­
patible discretizations for two instances of the Hodge Laplacian in three-
dimensions. 

The two contributions by Wheeler and Yotov, and by Aavatsmark et 
al examine compatible methods for problems arising in reservoir simula­
tion and porous media flows. The task of devising compatible methods for 
these applications is greatly complicated by the need to reconcile mathe­
matical compatibility conditions with grid structure imposed by geological 
features such as layering, faults and crossbeddings. As a result, methods 
for geophysical applications have traditionally favored quadrilateral and 
hexahedral grids, which can cause some problems in the reconstruction 
of vector fields from normal components. In addition, permeability ten­
sor in reservoir models often has strong anisotropy and/or discontinuities 
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along geological features. The two papers offer two alternative approaches 
that lead to cell-centered, locally conservative schemes. Aavatsmark et al 
adopt a Finite Volume approach based on the concept of multipoint flux 
approximation (MPFA). In this approach, fluxes are defined by using lin­
ear reconstruction of the potential subject to specific flux and potential 
continuity conditions. In contrast, Wheeler and Yotov start from a mixed 
variational formulation and then design a quadrature rule that allows for 
a local elimination of the velocities and results in a symmetric and pos­
itive definite cell-centered potential matrix. The result is a method that 
is related to MPFA and has a variational formulation. This allows them 
to leverage approximation theory from mixed methods and prove second 
order convergence of the scalar at the cell-centers. 

A hallmark of many compatible discretizations, such as Raviart-
Thomas elements, Nedelec elements or mimetic Finite Differences, is the 
use of normal or tangential vector components. This enables discrete ver­
sions of the divergence and the Stokes theorems but poses problems when 
vector fields are needed to compute vector derived quantities such as kinetic 
energy or advective terms. The reconstructed fields may fail to provide lo­
cal conservation of the kinetic energy and the momentum. Reconstruction 
of vector fields from dispersed data is the subject of the contribution by 
Perot et al. Their paper discusses relationship between three low order 
reconstruction operators. Two of these operators are related to mimetic 
finite difference and finite element methods, respectively. The third one is 
a new reconstruction approach proposed by the authors. Perot et al dis­
cuss how explicit reconstruction can be used to define discrete Hodge star 
operators. The paper then focuses on reconstruction approaches that can 
provide local conservation for vector derived quantities such as momentum 
and kinetic energy. 

Software frameworks and computational experiments for compatible 
methods are communicated in the papers by Demkowicz and Kurtz, and 
by White et al. Both papers consider compatible methods for the Maxwell's 
equations. White et al describe an extensible, object-oriented C+-t- frame­
work that closely mimics the structure of differential form calculus. The 
emphasis is on high-order finite element basis functions that form a discrete 
De Rham complex and have the relevant commuting diagram properties. 
As a result, any electromagnetics problem that can be cast in the lan­
guage of differential forms can be easily modeled by their framework. The 
flexibility of the framework is illustrated by solving resonant cavity, wave 
propagation and eddy current problems. Demkowicz and Kurtz develop 
an /ip-adaptive implementation of a coupled finite element/infinite element 
approximation for exterior wave propagation problems. The novel aspect 
of the paper is a family of infinite elements that satisfies an exact sequence 
property. The elements in the new sequence are obtained by multiplying 
basis functions from a standard polynomial De Rham complex by an expo­
nential factor that comes from the far-field pattern. The exactness is with 
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respect to similarly modified differential operators. A series of experiments 
confirms stability of the coupling and exponential rate of convergence ob­
tained by automatic ftp-adaptivity. 

In closing, the editors want to thank the authors for contributing to 
this volume and their cooperation in the editorial process. Special thanks 
are also due to Patricia V. Brick and Dzung N. Nguyen for the excellent 
coordination of the production schedule and assistance in the final prepa­
ration of the papers for the publisher. Dr. C. Romine, formerly of the 
DOE'S MICS Applied Mathematics Research program, offered enthusias­
tic support and encouragement during the preparation of the workshop. 
His help is greatly appreciated. Funding for the workshop was provided 
by the DOE Office of Science's Advanced Scientific Computing Research 
(ASCR) Applied Mathematics Research Program. 
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NUMERICAL CONVERGENCE OF THE MPFA O-METHOD 
FOR GENERAL QUADRILATERAL GRIDS IN 

TWO A N D THREE DIMENSIONS 

IVAR AAVATSMARK*, GEIR TERJE EIGESTADt, AND 

RUNHILD AAE KLAUSEN* 

Abstract . This paper presents the MPFA O-method for quadrilateral grids, and 
gives convergence rates for the potential and the normal velocities. The convergence rates 
are estimated from numerical experiments. If the potential is in fl"l+", Q > 0, the found 
L^ convergence order on rough grids in physical space is min{2, 2a} for the potential 
and min{l, a} for the normal velocities. For smooth grids the convergence order for the 
normal velocities increases to min{2, a}. The O-method is exact for uniform flow on 
rough grids. This also holds in three dimensions, where the cells may have nonplanar 
surfaces. 

K e y words. Control-volume discretization, anisotropy, inhomogeneity, conver­
gence. 

A M S ( M O S ) subject classifications. 65M06, 76S05, 35R05. 

1. Introduction. We consider a control-volume discretization of the 
model equation 

div q = Q, q — -KgTa,du (1.1) 

on a quadrilateral grid. The conductivity K is required to be symmetric 
and positive definite. 

Our applications are solutions of multiphase flow equations in reser­
voir simulation. These equations contain an elliptic operator similar to 
the left-hand side of (1.1), and this motivates our study. The multiphase 
flow equations in reservoir simulation have properties which constrain the 
choice of grid and discretization technique used for the elliptic operator. 
By reformulation of the flow equations, a coupled set of parabolic equa­
tions appear. However, one of these equations (the pressure equation) has 
an elliptic character, while the other equations (the saturation equations) 
have hyperbolic character with a strongly nonlinear convective term. Phase 
transitions which are strongly pressure dependent, may occur. 

Due to the hyperbolicity and the strong nonlinearity of the satura­
tion equations, we require that the discretization scheme should be locally 
conservative. Also, since the phase transitions are pressure dependent, we 
require that the pressure is evaluated at the same point as the saturations. 

* Center for Integrated Petroleum Research, University of Bergen, NO-5020 Bergen, 
Norway (iveLr.aavatsmark8cipr.uib.no). 

t( ge i r teSmi .u ib .no) . 
t ( runhi ldkSif i . u io .no ) . 
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2 IVAR AAVATSMARK, GEIR T. EIGESTAD, AND RUNHILD A. KLAUSEN 

This motivates the use of a control-volume scheme for (1.1), with evaluation 
of the dependent variable u at the center of the cells. 

Stability for nonlinear hyperbolic equations is normally achieved by 
requiring that the chosen scheme is monotone. In reservoir simulation, 
stability is accomplished by upstream weighting of the phase flow. In a 
fully implicit scheme for the flow equations, a simple upstream weighting 
can only be done if the method for the elliptic operator in (1.1) yields 
the flux at the edges as an explicit function of the potential u at some 
neighboring cell centers. 

The grids used in reservoir simulation are normally quadrilateral grids 
with an aspect ratio which strongly deviates from unity. To avoid the 
difficulties of upscaling, the grid layering is normally determined by the 
geological layering. This often yields almost rectangular grids with homo­
geneous cell properties. At faults or in near-well regions, grids with a more 
complex geometry may be preferred. 

In reservoir simulation the conductivity K of (1.1) is given by the 
absolute permeability. It is a tensor which often has a strong anisotropy. 
Because of the symmetry of the tensor, the principal directions are orthog­
onal. The principal directions are often aligned with, and normal to, the 
grid layering. For layers with varying thickness, this is only approximately 
fulfilled. If the layers contain crossbeddings, the principal directions of the 
tensor may be arbitrary. 

The absolute permeability may vary strongly in reservoir simulation. 
Since the potential node should be located at the cell centers, it is therefore 
important that the discrete resistance between two nodes honors the strong 
heterogeneity. This means that for one-dimensional flow, the method 
should give a conductance equal to a harmonic average of the cell con­
ductances. 

In summary, we will describe a control-volume method for equation 
(1.1) which yields the flux at the edges as an exphcit function of the poten­
tial at the cell centers. The conductivity should be symmetric and positive 
definite, but its principal directions may be arbitrary compared to the grid 
directions. The discrete resistance between cell nodes must honor the het­
erogeneity. We will confine ourselves to quadrilateral grids. 

One method with the above properties is the MPFA (Multipoint Flux 
Approximation) method. It can be applied to quadrilateral grids [1, 2, 4, 
8, 18] and to unstructured grids [3, 5, 6, 7, 17], see [1] for a more complete 
bibliography. 

In this paper we introduce the method in a new way which emphasizes 
the connection between anisotropy and grid skewness. Then we present 
convergence results for the method. These supplement the results of [9]. 

There are many variants of the MPFA method; in this paper we only 
discuss the method known as the 0-method. 
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0:3 p2 X4 
1 

1x4 

Xl X2 I 

F I G . 1. Interaction volume (bounded by the dashed lines). 

2. The MPFA O-method. In this section we derive the equations 
for the MPFA O-method in two dimensions. Consider the four quadrilateral 
cells with a common vertex in Fig. 1. The cells have cell centers Xk, and 
the edges have midpoints Xi. The points are enumerated locally as shown 
in the figure. Between the cell centers and the midpoints of the edges we 
draw lines (shown as dashed lines in the figure). These lines bound an area 
around each vertex which is called an interaction volume (also referred to 
as an interaction region in previous papers). Hence, the interaction volume 
in the figure is the polygon with corners XiXiX2X4X4X2X2,x^. 

Within the interaction volume there are four half edges. Below, we 
will show how to determine the flux through these half edges from the 
interaction between the four cells. When the fluxes through the four half 
edges in an interaction volume around a vertex are determined, we may 
repeat the procedure for the interaction volumes of the other vertices. In 
this way, the flux through all the half edges in a grid will be determined. 
When the fluxes through the two half edges of an entire edge are known, 
we may add them to get an expression for the flux through the entire edge. 
An assembly procedure may then be performed to construct a system of 
difference equations corresponding to Eq. (1.1). 

This procedure also holds for the half edges at the boundary of a 
domain, if the boundary conditions are given as homogeneous Neumann 
conditions. Outside the real cells we can put a strip of artificial cells with 
vanishing conductivity. The same procedure as described above for the 
interaction volumes around the vertices at the boundary then gives the flux 
through the half edges separating the real boundary cells. More general 
boundary conditions are discussed in [9]. 

We now show how the fluxes through the four half edges in an interac­
tion volume may be determined. In each of the four cells of the interaction 
volume, the potential u is expressed as a linear function. The value of the 
potential in each cell center determines one of the coefficients in each cell for 
these linear functions. The linear function determines the flux through the 
half edges of the cell and the potential at the half edges. We require that 
the fluxes through the half edges in an interaction volume are continuous, 
and that the potentials at the midpoints of the edges are continuous. This 
yields eight equations for the determination of the unknown coefficients of 
the linear functions in the cells. 
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1/1 W 

» - n i 

F I G . 2. Triangle with edge normals Vi F I G . 3. Normal vect ors m ce Ilk. 

Every linear function is decribed by three coefficients, but one of them 
is already determined throught the potential value at the cell center. All 
together there are therefore eight unknown coefficients for the linear func­
tions. They are determined through the eight continuity equations. Note 
that the continuity principles used here, are exactly the same as the prin­
ciples used to derive the classical two-point flux formula [1]. 

Every cell is shared among four interaction volumes. The linear func­
tions for the potential in a cell, may vary from interaction volume to interac­
tion volume. This does not cause any difficulties, since the linear functions 
are only used to determine an expression for the flux. In the resulting 
difference equations, only the potential at the cell centers appears. 

For each interaction volume, the linear functions in each cell may be 
determined in the following way. On a triangle with corners Xi, i = 1, 2, 3, 
any linear function may be described by 

u{x) = 'Y^Ui(l)i{x). (2.1) 

Here, Uj is the value of u{x) at vertex i, and (j)i{x) is the linear basis 
function defined by (i>i(xj) = 5ij. The gradient is easily calculated to be 

gradi^ij = ——p;i (2.2) 
2F' 

where F is the area of the triangle. Here, Vi is the outer normal vector 
of the edge lying opposite to vertex i, see Fig. 2. The length of Vi equals 
the length of the edge to which it is normal. For these normal vectors the 
following relation holds 

E^* = o- (2.3) 

i= l 

Thus, the gradient expression of the potential in the triangle may be written 

3 

grad u 
2F ^ 2F 

[{U2 - Ui)l'2 + ("3 - -"1)1/3] . (2.4) 
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Now consider the grid cell in Fig. 3. The grid cell has index k and cell 
center Xk- Using local indices, the midpoints on the edges are denoted xi 
and X2, and the associated normals on the connection lines between the 

{k) ,ik) cell center and the midpoints of the edges are denoted t ' j ^^^ ^ i > see 
Fig. 3. Later, it will appear suitable to let the vectors u] point in the 
direction of increasing global cell indices. In this cell we therefore reverse 
the direction of these vectors. Other locations of the points Xi and X2 on 
the edges are also allowed [8], but tha t will not be considered in this paper. 
Using the formula (2.4) on the triangle a;fcSiS2 yields 

1 
g r a d u = - — [u\ '{ui - Uk) + v\ ' {u2 

^i'k 
Uk) (2.5) 

where Ui = u[Xi), i = 1,2, and u^ = u{xj.). Obviously, for Eq. (2.5) to be 
valid, the vectors v\ ' and t/j have to be hnearly independent. Each of the 
edges can be associated with a global direction, defined through the unit 
normal n^. We will also let rii point in the direction of increasing global 
cell indices. The flux through half edge i as seen form cell k is denoted /^ . 
The flux may now be determined from the gradient of the potential in the 
cell. For the fluxes in the cell in Fig. 3, the following expression appears 

Ak) 
_J2 

= -

(• 
1 T 

F 

K, 

T 

T 

Kk grad u 

Ku ik) „(fc) 
" 2 

Uk 

Uk 

(2.6) 

where Fj is the length of half edge i. By defining the matr ix 

Gk = 
1 

1 

FanJ Kk Ak) ,(k) 
'1 Uo 

ik) TmiKki^T' T^niKki^'^ 
(k) 

T2n'^KkV 

Eq. (2.6) may be writ ten in the form 

•fiky 

Ak) 
J2 

(k) 
1 r2n^Kkt^2 

(fc) 

(2.7) 

• U i 

U2 

•Uk 

•Uk 
(2.8) 

Now consider the interaction volume in Fig. 4. Through the normal vectors 
introduced here, the matr ix Gk is defined for all the four cells. Thus, 

(2.9) Ai) 
J3 
' Ai) 
J2 
A3) 

= - G l 

= -G3 

Ui — Ui 

M3 - Ui 

U2 -Uz 

Us - U3 

) 

5 

A-i) 

>(4)" 
J2 
f(4) 

= -G2 

= -G4 

U2 - Ui 

U4 — U2 

Ui — U2 

U\ — U4 
(2.10) 
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FIG. 4. Normal vectors with local numbering in an interaction volume. 

Here, as before, Uk = u{xk) and Uj = u{xi), see Fig. 4. Compared to cell 
1, we have reversed the directions of i^l', U2 \ I'l , and u^ (see Fig. 4). 
The differences u i — W2, U3 — U3, U2 — U4, and U4 — U4 therefore appear in 
the expressions (2.9) and (2.10) with opposite sign. 

The continuity conditions for the fluxes now yield 

/ I — J i — / i > 
f _ f(4) _ f(3) 
J2 — J2 — /2 ' 
f _ f(3) _ f(l) 
73 — Js — /3 I 

U — h — h • 

Using the expressions (2.9) and (2.10), these equations become 

J- ( 1 ) / - ^ ( 1 ) / - ^ ( 2 ) / - \ ( 2 ) / - \ 

/ l = -5 l , i (Wl -Wl ) -5 l , 2 (^ ' 3 -Wl ) = 3 j I ( M I - M 2 ) - 5 I , 2 ( " 4 - W 2 ) , 

/2 = 91^}{U2-U4) + g^^l{Ui-U4) = -g'^l{u2-U3) + 5^^^ (U3-U3), 

J- ( 3 ) / - \ , ( 3 ) / - X ( 1 ) / - \ ( 1 ) / - \ 

h = -52 , l (^ i2-W3)+P2,2("3-U3) = -52,1 ( " l - " l ) - 0 2 , 2 ( " 3 - " l ) , 
.c (2)/- \ (2)/- x (4)/_ s , (4)/_ -, 
74 =52 , l (Wl -"2 ) -52 ,2 ( ' "4 -M2) = 52,1 ("2--"4) + 52,2( '"4-"4)-

(2.11) 

(2.12) 

The Eqs. (2.12) contain the edge values u i , U2, M3, and M4. Tacitly we have 
here used the same expression for the edge value of the cells at each side 
of an edge, and thereby implicitly demanded continuity of the potential at 
the points Xi, X2, S3, and X4. 

If the matrix Gk is diagonal for all cell indices k, the grid is called 
K-orthogonal. The system of equations (2.12) is then no longer coupled, 
and the flux through the edges can be determined by eliminating the edge 
values Ui. This gives a two-point flux expression. If the grid is not K-
orthogonal, the edge values u, may still be eliminated in each interaction 
volume. We then proceed in the following way. 
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h 

- A 

FIG. 5. Flux stencil. FIG. 6. Flux through the cell edge 
of a cell. 

The fluxes of the system of equations (2.12) can be collected in the 
vector / defined by / = [/i, /a, /a, fii^- The system of equations further 
contains the potential values of the cell centers u = [ui, 1x2, W3, W4] and 
thepotentialvaluesat the midpoints of the cell edges t; = [ui, U2, O3, •1*4]'̂ . 
The expressions on each side of the left equality sign of (2.12) can therefore 
be written on the form 

f = Cv + Fu. (2.13) 

The expressions on each side of the right equality sign in the system of 
equations (2.12) may after a reorganization be written in the form 

Av = Bu. (2.14) 

Hence, v may be eliminated by solving Eq. (2.14) with respect to v and 
putting V = A~^Bu into (2.13). This gives the flux expression 

f = Tu, 

where 

T==CA-'B + F 

(2.15) 

(2.16) 

The entries of the matrix T are called transmissibility coefficients. Equation 
(2.15) gives the flux through the half edges expressed by the potential values 
at the cell centers of an interaction volume. 

Having determined the flux expression for all half edges, the two flux 
expressions of the two half edges which constitute an edge, can be added. 
This is shown in Fig. 5, where the cells 1, 2, 3, and 4 constitute one in­
teraction volume, and the cells 1, 2, 5, and 6 constitute another. The flux 
stencil of the edge between cell 1 and 2 will therefore consist of the six cells 
of the figure. When the flux expressions have been found, these may be 
used in a discrete variant of Eq. (1.1). For the cell shown in Fig. 6 this 
yields the equation 

h + f2-h-h = VQ, (2.17) 
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*-a 
(fc) 

F I G . 7. Normal vectors in parallelogram cells. 

where fi is the flux through the entire edge i, V is the volume of the cell, 
and the source term Q has been approximated by a constant in the cell. 
This is a difference equation with u at the cell centers as the unknowns. 

If two neighboring cells have vanishing conductivity, the corresponding 
row in the matrix A vanishes, and hence, the matrix A is singular. Because 
there is no need to determine the flux across the interfaces of cells with 
vanishing conductivity, the system may be reduced, and this will remove the 
singularity. However, it is more favorable to retain the system of unknowns 
and redefine the matrix A such that it becomes nonsingular. This is easiliy 
done by setting the diagonal elements of the vanishing rows in the matrix 
A equal to 1. The new system of equations has for the interfaces between 
cells with nonvanishing conductivity the same transmissibility coefficients 
as the reduced system. 

For homogeneous media, test runs indicate that the matrix A is well 
conditioned, also for geometrically distorted cells. On the tested rough 
grids, the condition number satisfied cond2 A < 50. 

If cell k in Fig. 3 is a parallelogram, the expression for the matrix Gk, 
Eq. (2.7), is simplified. For a parallelogram-shaped cell with index k, we 
denote the normal vectors of the edges with aj ' , i = 1,2. These have 
length equal to the length of the edges. The normal vectors are shown in 
Fig. 7. Obviuosly, T^rii = of' jl and i/f^ = af^jl. Further, Fk = Vfc/8, 
where V^ is the area of cell k. It follows that for a parallelogram-shaped 
cell. 

G h =̂  a 
(k) (k) 

i T 

O o Kk a 
(fc) „ W (2.18) 

Letting Jk = [a\ , a2 ] , one gets Vk = |det Jfc|, and Eq. (2.18) becomes 

1 
Gk 

idet Jfc Jk^kJk- (2.19) 
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Hence, for a parallelogram cell the tensor G^ is symmetric. Equation (2.19) 
is a congruence transformation. Thus, the tensor Gk, as given by (2.18), 
is symmetric and positive definite if and only if Kk has these properties. 
If the tensor Gk is diagonal for all cell indices fc, i.e., if 

af'jK.af^ 0, jy^ J, (2.20) 

then the grid is ii'-orthogonal. 
In the matrix Gk it is sometimes useful to perform a splitting, such 

that anisotropy and grid skewness appears in one matrix and the mesh 
distances in another. If Ar)k is the length of a\ and A /̂c is the length of 
02 , then for a parallelogram grid, 

1 
G, 

A f̂cAr?/c 
DkHkDk, (2.21) 

where 

Hk 
det[ni, 712] 

det[ni, 712] 

[ni 712] Kk [ni 712] 

njKkni njKkn2 
njKkTii n2Kkn2 

(2.22) 

and 

Dk = diag(A77fc, A^/c). (2.23) 

Here, TIJ is the unit normal vector which is parallel with a^ , see Fig. 7. 
If Hk is diagonal, the grid is /iC-orthogonal. 

2.1. Extension to three dimensions. The principles of the MPFA 
0-method carry over to three dimensions. In three dimensions, an inter­
action volume contains 8 subcells and 12 interfaces, see Fig. 8. The linear 
functions in the eight cells are described by 32 coefficients. Eight of these 
are determined by the potential values at the cell centers. The rest of them 
are determined by the two continuity conditions at each of the 12 interfaces: 
the flux is required to be continuous at the interfaces, and the potential is 
required to be continuous at the interface midpoints. 

The generalization of the equations of section 2 to three dimensions is 
straight forward. However, a three-dimensional cell described by its eight 
corners, generally does not have planar surfaces. The unit normal vector 
Tij of an interface is therefore not a constant across the interface. This can 
be accounted for by integrating the normal vector over the interface of the 
subcell in question. If a cell interface has corners x^, fe = 1 , . . . , 4, see Fig. 
9, the integrated normal vector over the interface of the subcell at vertex 
Xi is 
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.•••• 

-^ ̂  
^ 

<., 

^. 

; : » : * " 

t^ 1 

^K 

$ 

jj 

^ ^ 

^ 

^ 

\ ^ ^ 3 

Xi^ 

3 
X4 

Xi 

\^4 

\ 
:zl^ 

FIG. 8. Tree-dimensional interac­
tion volume (thin lines) with 8 subcells 
and 12 interfaces (thick lines). 

X-z 

FIG. 9. Replacing a quadrilateral 
(solid) by its associated parallelogram 
(dashed). 

n 64 
9(X2 - Xi) X (0:3 - Xi) + 3{X2 - Xi) X {X4 - X2) 

+ 3(034 - X3) X (0:3 - Xi) + (CC4 - X3) X {X4 - X2) 

(2.24) 

The vector n has length equal to the area of the subcell interface, see [1] 
for details. 

2.2. Symmetrization. The method described above yields a system 
of equations 

Mu = b. (2.25) 

This is the discrete approximation of Eq. (1.1). Since the differential oper­
ator of Eq. (1.1) is self adjoint, one would like the matrix M of Eq. (2.25) 
to be symmetric. Further, the matrix M should be positive definite, to 
ensure that (2.25) approximates an elhptic equation. 

Unfortunately, on a general quadrilateral grid the matrix M is not 
symmetric. However, if the matrices Gk, given in Eq. (2.7), are symmetric, 
one may show that the matrix of coefficients M is symmetric [4]. Therefore, 
if all the cells are parallelograms (parallelepipeds in 3D), then the matrix 
of coefficients M is symmetric. For general quadrilaterals, this can be 
accomplished by replacing each cell with its associated parallelogram cell. 
This is shown for two dimensions in Fig. 9. The associated parallelogram 
is constructed as follows. Let S^, k = 1,...,4, be the four midpoints 
of the edges of the quadrilateral, see Fig. 9. Draw the lines S1X2 and 
S3X4. Through each of the midpoints Xi and X2, lines parallel to 3:3^4 are 
drawn. Through each of the midpoints S3 and S4, lines parallel to X1X2 
are drawn. The resulting quadrilateral (shown with dashed lines in Fig. 9) 
is the associated parallelogram. 

Replacing each quadrilateral with its associated parallelogram yields 
a symmetric MPFA method. However, the order of convergence is gen­
erally lower, as shown in subsection 3.1. The described symmetric MPFA 
method is equivalent to the method which appears when each quadrilateral 
is transformed to a reference space with a bilinear mapping, and the flux 
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is calculated in the reference space, using the Jacobian matrix evaluated 
at the cell center [1]. For a parallelogram, the matrix J~ of Eq. (2.19) 
equals the Jacobian matrix dx/d$, of the bilinear mapping. 

3. Convergence. In this section we test the convergence properties of 
the MPFA 0-method on quadrilateral grids by numerical experiments. In 
the derivation of the method, we made use of the cell center, without defin­
ing the location of this center. We will first test which location is the best 
in terms of convergence. Further, we investigate different grids for the same 
reference solution (on homogeneous media). We also compare the solutions 
obtained by discretizing on the physical quadrilaterals and discretizing on 
the associated parallelograms. Finally, we discuss the convergence rates on 
physical quadrilaterals for solutions with different smoothness. Most of the 
test runs are in 2D, but at the end we supplement with 3D test runs. 

In this section, the potential u is termed the pressure as in reservoir 
simulation. Except for the test runs of subsection 3.2, the convergence rates 
are measured by the following discrete L^ norms for both the pressures and 
the edge normal velocities [9], 

/ \ 1/2 

| |w/ j -W|IL2 = ( X^^i( '" / i . , i - •" i )^] . (3-1) 

hh - g|L. = ( E W^+ + V3-){qKi - l^f) • (3-2) 

Here, q = q-n\& the edge normal velocity. Subscript h refers to the discrete 
solution. Further, Vi is the volume (area) of cell i, and V ±̂ are the volumes 
of the two cells separated by edge j . The total volume of the simulated 
domains is for all test cases equal to unity. 

3.1. 2D results in iP' norm. Figure 10 shows some of the grids 
used in the test runs. One grid is constructed such that the entire grid 
has to account for an internal 120° grid line (Fig. 10.a). Another grid is a 
uniform parallelogram grid with internal acute angles of 45° (not shown in 
the figure). A third grid is a zig-zag parallelogram grid (Fig. 10.c). 

A randomization may be performed for the grids [10, 11, 15]. By 
displacing the corners of the grid in Fig. 10.a by a random hP pertubation, 
a grid with an arbitrary roughness appears. Such a rough grid is shown 
in Fig. 10.b. Finally, the grid shown in Fig. 10.d will be applied for a test 
case found in [8]. 

The first test cases are performed with the solution 

u{x,y) = cosh(7ra;) cos(7ry) (3-3) 

of the problem (1.1) on an isotropic, homogeneous medium. The bound­
ary conditions are given by Dirichlet conditions, and are implemeted by 
interpolation [8, 9]. 



12 IVAR AAVATSMARK, GEIR T. EIGESTAD, AND RUNHILD A. KLAUSEN 

F I G . 10. Grids used for simulations. From left ro right: (a): Smooth grid, (b): 
Random h^ perturbution of the smooth grid, (c): Zig-zag parallelogram grid, (d): Grid 
used for simulation of (3.7). 

F I G . 11. Vertex center Xy and area center Xa of a quadrilateral. 

We begin by testing different cell center locations. For quadrilaterals, 
there are two "natural" cell centers. The first is the vertex center 

Xy = | ( x i +X2 + X3 + Xi), (3.4) 

where Xi, i = 1,.. 
the area center 

,, 4, are the vertices of the quadrilateral. The second is 

(3.5) 

where V is the quadrilateral. These centers are shown in Fig. 11. The 
area center is the barycenter of the area, whereas the vertex center is the 
barycenter of the vertices. 

The use of these two cell centers is tested on the grid shown in Fig. 
10.b for the solution (3.3) in a homogeneous medium. Since the grid is 
rough, the two different cell centers may deviate significantly. 

As seen in Fig. 12, the convergence order is the same for both cases, but 
the normal-velocity error is smaller when using the vertex center compared 
to the use of the area center. In the following we therefore use the vertex 
center in all test runs. 

Test runs on the different grids of Fig. 10 with the solution (3.3) are 
now performed. The convergence for the discretization in physical space 
is considered for these cases. As seen from Fig. 13.a, the convergence is 
second order for the pressure for the skew grid in Fig. 10.a, the uniform 
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Pressure Convergence Normal-velocity convergence 

FIG. 12. Test on cell center location with solution (3.3) on the grid in Fig. 10.h. 
Left (a): Pressure. Right (b): Edge normal velocities. 
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logJI/h) 

FIG. 13. Convergence behavior for the solution (3.3), Left (a): Pressure. Right 
(b): Edge normal velocities. 

parallelogram grid, and the zig-zag parallelogram grid in Fig. 10.c. The 
velocity convergence is second order for both the parallelogram grids and 
the skew grid. Note that the domain of the uniform parallelogram grid 
is different from the domain in the other test cases. Therefore, only the 
order, and not the magnitude of the error, may be compared. 

Figure 13 also shows the solutions on the rough grids shown in Fig. 
10.b. For a random h} perturbation, the pressure is still seen to converge 
as h?, whereas the convergence rate for the velocities gradually decreases 
to h^, although almost h^-^ is observed in the first refinement levels. If the 
perturbation is of order h? ̂  the velocity convergence is again of order h?. 
Various h^ perturbations have been tested for 1 < /3 < 2, and the specific 
case /3 = 1.5 is plotted in Fig. IS.b. Convergence of order h^-'^^ is observed 
in the latest refinement step here. 

Next, we compare the symmetrized version with the unsymmetric ver­
sion, i.e., we compare the use of associated parallelograms with the use of 
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F I G . 14. Convergence behavior of pressure and edge normal velocities for the piece-
wise quadratic solution (3.7) on the grid in Fig. 10.d. 

the physical quadrilaterals. Use of associated parallelograms may also be 
referred to as calculation in a reference space, since this method is identical 
to the method achieved by using the bilinear mapping of Sec. 2.2. 

The example uses a reference solution which is a piecewise quadratic 
pressure, taken from [8] for a case where the medium is layered. The domain 
is [0,1] X [0,1], and the discontinuity line follows x = 1/2. Conductivities 
of the medium are specified by 

K, 
50 0 
0 1 

Kr 
1 0 
0 10 

for which the following analytical solution holds 

u{x,y) 
ClX" diy'^, a ; < l / 2 . 

flj. + brX + CrX"^ + dr'lp', X > 1 /2. 

(3.6) 

(3.7) 

The coefficients of (3.7) are comprised of the defined conductivities [8]. 
This case is simulated on the grid in Fig. lO.d, and the results are 

shown in Fig. 14. The asymptotic order of convergence again seems to be 
h? for both the pressure and normal velocities in physical space (the nor­
mal velocities converge as h^-^ in the last refinement level). The order of 
convergence seems to be h? in the limit for both the pressure and normal 
velocities in computational space for an unperturbed grid, but initial er­
rors are larger for the computational space discretization. When /I'^-order 
perturbations are introduced for the corners of the grid, we see that the 
convergence of the normal velocities decreases to h^, whereas ft-^-order con­
vergence is retained for the pressure. The velocity convergence in physical 
space is still close to h?, and the curve will here almost coincide with the 
curve for the unperturbed grid. Increasing the perturbations to order h^, 
our tests show that the pressure may converge slower than h^, whereas the 
velocities may not even converge. For discretization in physical space, the 


