Óptica geométrica clínica

Óptica geométrica clínica

Elkin Alexánder Sánchez Montenegro

Sánchez Montenegro, Elkin Alexánder

Óptica geométrica clínica / Elkin Alexánder Sánchez Montenegro. -Primera edición. - Bogotá: Ediciones Unisalle, 2020.

232 páginas : ilustraciones, gráficas ; 23 cm.

Incluye índice de figuras Incluye referencias bibliográficas. ISBN 978-958-5486-75-1 (impreso) ISBN 978-958-5486 -76-8 (digital)

1. Optometría 2. Óptica geométrica 3. Reflexión (óptica) 4. Refracción 5. Absorción de la luz I. Título

CDD: 617.7 ed.22

CEP-Universidad de La Salle, Dirección de Bibliotecas

ISBN: 978-958-5486-75-1 e-ISBN: 978-958-5486-76-8

Primera edición: Bogotá, D. C., enero del 2020

© Universidad de La Salle

© Elkin Alexánder Sánchez Montenegro

Edición

Ediciones Unisalle

Cra. 5 n.° 59A-44, Edificio Administrativo, 3.er piso PBX: (571) 348 8000. Extensiones: 1224 y 1226

edicionesunisalle@lasalle.edu.co https://ediciones.lasalle.edu.co

Dirección editorial

Alfredo Morales Roa

Coordinación editorial

Andrea del Pilar Sierra Gómez

Corrección de estilo

Sabina Ojeda

Diagramación y diseño de carátula

William Yesid Naizaque Ospina

Impresión

DGP Editores

Queda prohibida la reproducción total o parcial de este libro por cualquier procedimiento, conforme a lo dispuesto por la ley. Impreso y hecho en Colombia.

A mis padres por su bondad.

A Telmito y tío Germán.

A mis queridos estudiantes.

A Baruch Spinoza, eminente tallador de lentes.

Y, por supuesto, a Jannis y Juan Pablo.

Agradecimientos –

Deseo expresar mis más sinceros agradecimientos al hermano Alberto Prada Sanmiguel, por la confianza que tuvo conmigo en el Decanato de la Facultad de Ciencias de la Salud, al hermano Fabio Humberto Coronado Padilla, por su animación con este servidor lasallista y por ser columna en mi camino académico, a la doctora Carmen Amalia Camacho, porque compartimos retos académicos, y a la familia Chajín Gómez por todo su apoyo.

Prólogo

Todo lo que viene del doctor Elkin Alexánder Sánchez Montenegro es importante, lo cual no sorprende, dada su trayectoria como profesional serio y consagrado tanto en el ejercicio de su labor como en su paso por la academia en varias oportunidades. Recibí su honrosa petición de escribir el prólogo de su libro $\acute{O}ptica$ geom'etrica clínica y sobra decir que lo hago con el mayor gusto.

La impresión que tuve después de leerlo fue haberme encontrado con un formidable tratado de óptica que merece ser un texto obligatorio en la carrera de Optometría. No es uno más, sino un libro dirigido a los optómetras.

El quehacer de estos especialistas en sus actividades clínicas de consultorio tiene una estrecha relación con la óptica y los fundamentos ópticos de los distintos test clínicos habituales en el examen de refracción: la medición de la agudeza visual, la exploración queratométrica, la retinoscopía y la medición y el control de la acomodación —técnicas subjetivas— están magistralmente tratados e ilustrados.

También se explican los fundamentos ópticos de los instrumentos necesarios para lograr un diagnóstico, como el oftalmoscopio, el retinoscopio, el queratómetro, los optotipos, etc. Otro tanto sucede con los aditamentos oftálmicos usados en la corrección de los defectos de la visión, trátese de anteojos esféricos, cilíndricos y asféricos o de lentes de contacto e intraoculares. La óptica detrás de estos elementos está expuesta de manera amplia y profusamente ilustrada.

El estudiante y el optómetra en ejercicio deben explorar con juicio este magnífico libro o utilizarlo como texto de consulta para comprender en profundidad los principios y fenómenos de la óptica que rigen sus habilidades y competencias frente a la salud visual.

Gabriel Merchán De Mendoza, doctor en Optometría (O. D.)

-----Contenido -----

Prólogo	9
Introducción	19
Capítulo 1. De la naturaleza de la luz	21
Óptica geométrica y óptica física	22
La luz: la razón del ser	22
Los múltiples usos de la luz	28
Elementos que fundamentan la óptica geométrica	30
El sistema óptico	30
Capítulo 2. La refracción y la reflexión	41
La refracción	42
Las leyes de la refracción	42
Refracción en una lámina con superficies planas paralelas entre sí	48
Refracción en un prisma	52
Los lentes	62
La reflexión	113
El espejo plano	114
El espejo esférico	116
Capítulo 3. Aberraciones y diafragmas	133
Las aberraciones	134
Tipos de aberraciones	134
Los diafragmas	140
Diafragma de abertura	140
Diafragma de campo	140
Pupilas de entrada y de salida	141

Capítulo 4. Las vergencias	143
¿Qué es la vergencia óptica?	144
Vergencias y superficies esféricas refractoras	147
Los lentes delgados	152
Los lentes gruesos	155
Capítulo 5. Las superficies asféricas	157
Algunas consideraciones preliminares	159
Las coordenadas cartesianas y el plano cartesiano	159
Distancia entre dos puntos en un plano cartesiano	160
Ecuación y pendiente de una recta	160
Ángulo que forman dos rectas con pendientes diferentes	161
Las secciones cónicas	162
Estudio unificado de las secciones cónicas	178
Recta tangente a una curva	179
Óptica en superficies asféricas	179
Superficies asféricas reflectoras	180
Superficies asféricas refractoras	199
El lente elíptico esférico	209
El lente plano hiperbólico	216
El concepto de asfericidad	218
Las superficies asféricas en la práctica	222
Conclusiones	227
Referencias	229

-Índice de figuras —————

Cap	itulo i		
	Figura 1.1.	Longitud de onda versus sensibilidad relativa	23
	Figura 1.2.	Componentes de una onda	24
	Figura 1.3.	Comparación entre 2 ondas que viajan en medios	
		con diferentes densidades	26
	Figura 1.4.	Percepción falsa de los colores	28
	Figura 1.5.	Descripción del eje óptico	31
	Figura 1.6.	Tipos de rayos luminosos	32
	Figura 1.7.	Clases de rayos luminosos	32
	Figura 1.8.	Rayos paraxiales y marginales	33
	Figura 1.9.	Características del objeto	35
	Figura 1.10.	Características de la imagen	36
Cap	oítulo 2		
ď	Figura 2.1.	Leyes de la refracción	43
	Figura 2.2.	Refracción en una superficie plana	45
	Figura 2.3.	El ángulo crítico	45
	Figura 2.4.	La dispersión escleral	47
	Figura 2.5.	Método para medir el índice de refracción	
		de los medios oculares	47
	Figura 2.6.	Superficies de caras planas paralelas	49
	Figura 2.7.	Experiencia de Erasmus Bartholinus con un romboedro	
		de calcita	51
	Figura 2.8.	Partes de un prisma	52
	Figura 2.9.	Marcha de un rayo de luz a través de un prisma	54
	Figura 2.10.	Desviación mínima de un prisma	57
	Figura 2.11.	Primera condición de emergencia	58

Figura 2.12.	Segunda condición de emergencia	. 60
Figura 2.13.	Dioptría prismática	.60
Figura 2.14.	Descripción de una superficie esférica refractora	. 63
Figura 2.15.	Método del rayo auxiliar oblicuo y paralelo al rayo incidente	
	en una superficie esférica refractora	. 66
Figura 2.16.	Método de los rayos notables para una superficie	
	esférica refractora	. 68
Figura 2.17.	Método del rayo oblicuo en una superficie esférica refractora	
	para hallar la imagen de un objeto puntual virtual	. 68
Figura 2.18.	Método del rayo oblicuo para superficies esféricas	
	refractoras negativas	. 69
Figura 2.19.	Método de los rayos notables para encontrar la imagen de	
	un objeto lineal virtual en una superficie esférica refractora	. 69
Figura 2.20.	Método de los rayos notables para encontrar la imagen de un	
	objeto lineal real en una superficie esférica refractora cóncava .	. 70
Figura 2.21.	Poder dióptrico del ojo y ubicación de la fóvea considerada	
	objeto virtual	
	Puntos focales (objeto e imagen) de un lente grueso	
	Resolución de un problema sobre lentes gruesos I	
Figura 2.24.	Resolución de un problema sobre lentes gruesos II	.77
Figura 2.25.	Descripción óptica del lente de Goldmann	. 79
Figura 2.26.	Problema con el lente de Goldmann	.81
Figura 2.27.	Planos principales de un lente grueso	. 82
Figura 2.28.	Planos principales de varias clases de lentes gruesos	. 82
Figura 2.29.	Distancias focales verdaderas y distancias frontales	. 83
Figura 2.30.	Ejemplo para hallar la posición del plano principal imagen	
	en un lente grueso	. 86
Figura 2.31.	Ejemplo para hallar la posición del plano principal objeto	
	en un lente grueso	. 86
Figura 2.32.	Puntos nodales y centro óptico de un lente grueso	.87
Figura 2.33.	Centro óptico de varias clases de lentes	. 88

Figura 2.34.	Reemplazo de un lente grueso por uno delgado colocado	89
T. 00=	en el plano principal imagen	85
Figura 2.35.	Reemplazo de un lente grueso por uno delgado colocado en el plano principal objeto	90
Eiguna 2 26		90
rigura 2.36.	Método para encontrar la posición de la imagen de un objeto puntual con el plano principal imagen de un lente grueso	01
Figura 2 27	Método para encontrar la posición de la imagen de un objeto	
rigura 2.57.	lineal con los planos principales de un lente grueso	93
Figura 2.38.	Deducción de la fórmula de Gauss	
	Ejemplo para lentes delgados en el que un objeto puntual	
g	se encuentra a 2f del vértice	100
Figura 2.40.	Primer caso de los lentes delgados $(0 \rightarrow \infty)$	101
	Segundo caso de los lentes delgados (0 entre ∞ y f)	
Figura 2.42.	Tercer caso de los lentes delgados (O = f)	102
Figura 2.43.	Cuarto caso de los lentes delgados (O entre f y V)	102
Figura 2.44.	Quinto caso de los lentes delgados (O = V)	103
Figura 2.45.	Lente delgado divergente con un objeto puntual real	103
Figura 2.46.	Lente delgado divergente con un objeto puntual virtual	104
Figura 2.47.	Objeto lineal colocado a una distancia 2f del vértice	
	de un lente delgado	104
Figura 2.48.	Sistema compuesto por dos lentes delgados convergentes	107
Figura 2.49.	Punto y distancia focal imagen de un sistema compuesto	111
Figura 2.50.	Punto y distancia focal objeto de un sistema compuesto	112
Figura 2.51.	Método para hallar la imagen de un objeto lineal con	
	los planos principales de un sistema compuesto	112
Figura 2.52.	Reflexión difusa (A) y especular (B)	113
Figura 2.53.	Las leyes de la reflexión	114
Figura 2.54.	Reflexión en un espejo plano	115
Figura 2.55.	El espejo esférico	118
Figura 2.56.	Primer caso del espejo cóncavo $(0 \to \infty)$	119
Figura 2.57.	Segundo caso del espejo cóncavo (O entre ∞ y C)	119

Figura 2.58.	Tercer caso del espejo cóncavo (0 = C)	120
Figura 2.59.	Cuarto caso del espejo cóncavo (O entre C y F)	120
Figura 2.60.	Quinto caso del espejo cóncavo (0 = f)	121
Figura 2.61.	Sexto caso del espejo cóncavo (O entre F y V)	122
Figura 2.62.	Objeto puntual virtual y espejo cóncavo	122
Figura 2.63.	Plano focal imagen de un espejo cóncavo	124
Figura 2.64.	Plano focal objeto de un espejo cóncavo	124
Figura 2.65.	Método del rayo auxiliar oblicuo para encontrar la imagen	
	de un objeto puntual en un espejo cóncavo	125
Figura 2.66.	Método de los rayos notables para encontrar la imagen de un objeto lineal en un espejo cóncavo	125
Figura 2.67.	Ecuación de la magnificación	126
Figura 2.68.	Seudoefecto del espejo cóncavo del retinoscopio	128
Figura 2.69.	Foco objeto de un espejo convexo	129
Figura 2.70.	Objeto puntual real frente a un espejo convexo	129
Figura 2.71.	Objeto puntual virtual frente a un espejo convexo	130
Figura 2.72.	Plano focal imagen de un espejo convexo	130
Figura 2.73.	Plano focal objeto de un espejo convexo	131
Figura 2.74.	Principio óptico fundamental del queratómetro de Helmholtz	132
Capítulo 3		
Figura 3.1.	Aberración de esfericidad	135
Figura 3.2.	Aberración comática	136
Figura 3.3.	Astigmatismo	137
Figura 3.4.	Curvatura de campo	138
Figura 3.5.	Distorsión	138
Figura 3.6.	Aberración cromática	139
Figura 3.7.	Diafragmas de abertura y de campo	141
Figura 3.8.	Pupilas de entrada y de salida	142
Capítulo 4		
Figura 4.1.	De cómo encontrar el valor de una vergencia óptica	147

Capítulo 5

Figura 5.1.	Cono segmentado por tres planos para hallar
	las secciones cónicas
Figura 5.2.	Ángulo que equivale a la pendiente de una recta y ángulo
	que forman dos rectas con pendientes diferentes161
Figura 5.3.	Partes de la parábola
Figura 5.4.	Cómo deducir la ecuación de la parábola
Figura 5.5.	Partes de una elipse
Figura 5.6.	Cómo deducir la ecuación de la elipse
Figura 5.7.	Longitud de los ejes de una elipse
Figura 5.8.	Determinación por coordenadas de un punto sobre una elipse 167
Figura 5.9.	Cómo hallar la constante 2a en una elipse
Figura 5.10	. Cómo se puede obtener la cantidad b en una elipse 172
Figura 5.11	. Partes de la hipérbola
Figura 5.12	. Cómo deducir la ecuación de la hipérbola
Figura 5.13	. Determinación por coordenadas de un punto
	sobre la hipérbola
Figura 5.14	. Cómo obtener la definición unificada de las secciones cónicas . 178
Figura 5.15	. Recta tangente a una elipse
Figura 5.16	Espejo parabólico
Figura 5.17	. Retinoscopio con espejo parabólico
Figura 5.18	. Primera función del lente retinoscópico
Figura 5.19	Segunda función del lente retinoscópico
Figura 5.20	. Posibles percepciones del examinador al observar los rayos
	en un retinoscopio con espejo parabólico
Figura 5.21	Espejo elíptico cóncavo
Figura 5.22	Espejo elíptico convexo
Figura 5.23	. Campímetro elíptico
Figura 5.24	Espejo cóncavo hiperbólico
Figura 5.25	Espejo hiperbólico convexo
Figura 5.26	Aberración esférica200

Figura 5.27.	Como obtener expresiones que definan de manera optica	
	una superficie elíptica	201
Figura 5.28.	Superficie elíptica refractora convexa	204
Figura 5.29.	Superficie elíptica refractora cóncava	204
Figura 5.30.	Diseño de un lente elíptico esférico	205
Figura 5.31.	Cómo obtener expresiones que definan de manera óptica	
	una superficie hiperbólica	206
Figura 5.32.	Superficie hiperbólica refractora cóncava en dos situaciones	208
Figura 5.33.	Superficie hiperbólica refractora convexa en dos situaciones	208
Figura 5.34.	Cómo se obtiene una expresión para encontrar la distancia	
	focal de un lente elíptico esférico	210
Figura 5.35.	Generador digital de superficies oftálmicas asféricas	.212
Figura 5.36.	Cómo hallar el diámetro máximo de un lente elíptico esférico	213
Figura 5.37.	Cómo hallar el diámetro máximo de un lente	
	plano hiperbólico	217
Figura 5.38.	Curvatura de la circunferencia tangente a la parábola $Y^2 = 8X$	
	en el punto (0,0)	221

Introducción

[...] Además, esto bastará a modo de introducción para aquellos lectores de inteligencia rápida y buen entendimiento que no estén versados en óptica, si bien quienes estén ya familiarizados con dicha ciencia y hayan manejado cristales captarán más fácilmente cuanto sigue [...].

Isaac Newton, Opticks (1704)

Casi todos los estudiantes de los primeros años de Optometría asisten a la clase de Óptica Geométrica más por deber que por devoción. Seguramente, una vez aprobada la asignatura, desechan todo el conocimiento en el último rincón de sus memorias junto a los recuerdos ingratos de la adolescencia o del primer desamor.

Muy pocos seguimos paso a paso y con entusiasmo el inmenso progreso que ofrece la óptica geométrica al explicar con claridad fenómenos causados en el acto visual; también somos pocos los que nos sorprendemos al advertir que el principio óptico que rige la retinoscopía (técnica que cuantifica el error refractivo) es muy parecido al que rige la oftalmoscopía (técnica que evalúa la anatomía de algunas estructuras intraoculares) y quienes, sin darnos cuenta, caemos en el reino de la óptica geométrica al realizar una exploración con el lente de tres espejos.

Con este trabajo busco eliminar el desdén que existe ante esta especialidad. Como es posible que la causa de esa incómoda sensación sea que sus principios, fórmulas y postulados no tienen, en apariencia, aplicación clínica en la optometría, diseñé el texto pensando en los lectores como optómetras, no como físicos. Lo escribí tratando de encontrar en las frases frías de la óptica geométrica un principio optométrico acogedor y transformé los torturadores problemas en divertidos acertijos clínicos. Así, invito a los lectores a "pensar" de manera clínica y a emplear los argumentos de la óptica geométrica; además, mediante el uso de un lenguaje coloquial —propio de los libros de texto—, los motivo para que no pierdan el deseo de avanzar de un capítulo a otro.

En cada página pretendo que los lectores sientan que el conocimiento que adquirieron en sus cursos de Óptica Geométrica les es útil para resolver problemas clínicos de rutina y que la especialidad no solo puede ser una buena alternativa teórica para su desarrollo integral como profesionales, sino también un horizonte para el progreso de su rol científico.

Los primeros apuntes que escribí sobre la óptica geométrica clínica se diseñaron con un buen soporte bibliográfico. Lo difícil comenzó cuando decidí crear ejemplos con aplicación clínica; pero lo logré de forma satisfactoria. Como un libro debe dejar un aporte valioso, me incliné por tratar las superficies asféricas.

El contenido está dividido en cinco capítulos, de modo que los lectores avanzarán de manera progresiva de temas sencillos a otros más complejos. No les deben temer a las matemáticas: tuve especial cuidado en explicar paso a paso sus desarrollos. Aunque da la sensación de que los lectores son "conducidos con la mano", la parte formal matemática se atiende. Por otra parte, el trabajo está profusamente ilustrado y cada figura se explica con detalle. Tuve la fortuna de escribir y realizar todas las figuras del libro. Definitivamente, eso dio muchas ventajas: siempre escribí y dibujé lo que deseé.

Tiene en sus manos un texto exclusivo para optómetras, una nueva alternativa de consulta para el estudiante inquieto y un libro auxiliar para el profesional que quiera profundizar más en el tema.

Elkin Alexánder Sánchez Montenegro Decano de la Facultad de Ciencias de la Salud de la Universidad de La Salle Octubre del 2019

——— Capítulo 1——— De la naturaleza de la luz

[...] Dijo Dios: "haya luz"; y hubo luz. Y vio Dios ser buena la luz, y la separó de las tinieblas. Génesis 1.3-4

[...] Esta velocidad está tan cerca de la luz que parece que tenemos una fuerte razón para concluir que la luz es, en sí misma, una perturbación electromagnética en la forma de ondas propagadas a través del campo electromagnético, de acuerdo con leyes electromagnéticas [...].

James Clerk Maxwell, A treatise on electricity and magnetism (1873)

La luz es una onda electromagnética¹ de frecuencias situadas entre 4 x 10¹⁴ y 8 x 10¹⁴ hertz². Para entender la totalidad de los fenómenos que se presentan en la propagación, emisión y absorción de la luz es esencial recurrir a la mecánica cuántica³. Entonces, la luz está compuesta por partículas de energía electromagnética, llamadas fotones⁴. Si se quieren explicar los fenómenos de propagación de la luz, es preferible considerarla una onda; sin embargo, para describir la acción mutua entre la luz y la materia en los procesos de absorción y emisión, es mejor

¹ Una onda electromagnética es aquella que no requiere de un medio para propagarse. La luz se autosustenta en su propagación por el espacio.

² Un hertz equivale a un ciclo por segundo.

³ Esta teoría dice que toda onda lleva una partícula asociada y viceversa.

⁴ En 1926, el fisicoquímico estadounidense Gilbert Newton Lewis inventó la palabra "fotón". Él escribió: "en consecuencia me tomo la libertad de proponer el nombre de fotón a este nuevo átomo hipotético" (Lewis, 1926).

considerarla una partícula⁵. Al buscar una aplicación en el ojo y hacer un símil con el comentario precedente, resulta útil considerar la luz una onda para estudiar la óptica del ojo, la cual involucra: reflexión, refracción, difracción, polarización y dispersión de la luz, causada por los medios ópticos oculares; pero si se desea analizar los mecanismos de absorción de la luz por parte de la retina y valorar el umbral capaz de disparar una respuesta neural, es más apropiado considerar la luz un conjunto de partículas o fotones.

Óptica geométrica y óptica física

La óptica geométrica estudia la luz desde el concepto de "rayo luminoso", mientras que la física la describe como un fenómeno ondulatorio. Una tercera clasificación es la óptica cuántica —regida por la mecánica cuántica—, la cual interrelaciona la luz con partículas atómicas complementarias entre sí.

Este libro solo aborda la óptica geométrica porque esta tiene mejor aplicación clínica y describe con mayor precisión los principios fundamentales de la óptica ocular, la imagen retinal, los lentes y prismas que la corrigen y los sistemas ópticos especiales (por ejemplo, el telescopio empleado en la baja visión, que posee el mismo principio que el utilizado en la astronomía). Aunque ya se ha delimitado el recorrido de este trabajo, es indispensable hablar de la luz como ente físico responsable del estudio.

La luz: la razón del ser

Si no existiera luz, seguramente la evolución no hubiera creado los ojos y, por ende, no tendría razón de ser la optometría. Quizá la nariz cumpliría las funciones de los ojos y los rinólogos serían los especialistas en optometría. Pero, como sí existe,

Cuando Max Planck propuso que Albert Einstein fuera aceptado en la Sociedad de Física de Berlín, desaprobó su artículo sobre la teoría fotoeléctrica, publicado en 1905, diciendo que a un hombre tan importante se le podía perdonar un pequeño error. Planck fue el casi renuente descubridor de la cuantización. Einstein recibió el Premio Nobel de Física 1921 por su concepto del fotón, no por su teoría de la relatividad.

la luz es la piedra angular de toda la estructura científica y clínica de la optometría. Por esto, es necesario conocerla y saber aplicar sus ecuaciones.

La luz forma parte del espectro electromagnético⁶ con unos límites no muy bien definidos, debido a que la sensibilidad del ojo se acerca asintóticamente tanto a las longitudes de onda larga como a las cortas. Si de forma arbitraria se consideran límites del espectro visible las longitudes de onda para las cuales la sensibilidad del ojo es del 1% de su valor máximo, estos límites serían de 430 nm a 690 nm⁷, aproximadamente, lo cual constituiría un factor menor que 2 en la longitud de onda considerada de manera física (Halliday y Resnick, 1989) (figura 1.1).

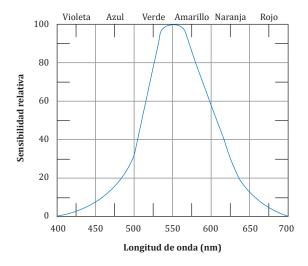


Figura 1.1. Longitud de onda versus sensibilidad relativa

Fuente: Halliday y Resnick (1989).

Del latín spectrum, que significa fantasma o aparición. El primero en utilizar este término fue Isaac Newton, en 1671, para describir la imagen tremolante, semejante a un arcoíris, que se formaba en la pared de un cuarto oscurecido cuando interponía un prisma en un haz de luz solar que penetraba por un orificio pequeño en la persiana de una ventana de su casa. De los descubrimientos de James Clerk Maxwell se dedujo que la luz era una onda electromagnética y Heinrich Rudolf Hertz probó que otras radiaciones electromagnéticas no eran visibles. Con rapidez, aparecieron grandes cantidades de diferentes ondas electromagnéticas de idéntica naturaleza, pero de distintas propiedades según su frecuencia. El conjunto de todas las ondas constituye el espectro electromagnético, el cual no tiene bien definidos sus límites, pero sí los de cada una de sus bandas.

Un nanómetro (nm) equivale a 10⁻⁹ metros, es decir, 0,00000001 metros.

Como la naturaleza de la luz también puede considerarse un conjunto de partículas llamadas fotones, se revisará cada unidad y su interacción con las ondas. Un fotón, la unidad más elemental de la cual se compone la luz, posee energía, que depende de la frecuencia de la onda electromagnética elegida. Así, al hablar de propiedades de partículas y de ondas, se habla de mecánica cuántica.

La longitud de onda depende de la frecuencia. Entonces, la fusión entre la partícula y la onda yace en la frecuencia. Los textos de física exponen que la luz se enlentece cuando atraviesa un medio ópticamente transmisor; también dicen que la longitud de onda se reduce dentro del medio, pero que la frecuencia siempre permanece constante. Se puede visualizar mejor esta situación con herramientas pedagógicas simples: sujete el extremo de un lazo e inicie un movimiento de arriba abajo, lo cual produce una oscilación del lazo (figura 1.2).

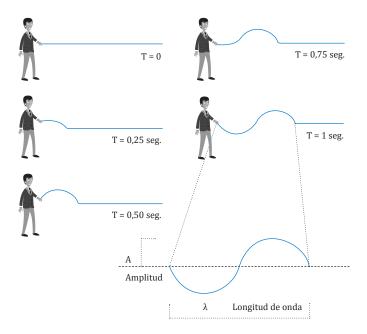


Figura 1.2. Componentes de una onda

Nota: aquí, un optómetra oscila un lazo. Observe el tiempo que transcurre para que se forme toda la onda (periodo). La frecuencia se refiere a las veces que el hombre debe "manotear" la cuerda para formar una onda completa. En el ejemplo, se "manoteó" solo una vez.

Fuente: elaboración propia.