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Preface

Interplay between matrix theory and matroid theory is the main theme of
this book, which offers a matroid-theoretic approach to linear algebra and,
reciprocally, a linear-algebraic approach to matroid theory. The book serves
also as the first comprehensive presentation of the theory and application of
mixed matrices and mixed polynomial matrices.

A matroid is an abstract mathematical structure that captures combi-
natorial properties of matrices, and combinatorial properties of matrices, in
turn, can be stated and analyzed successfully with the aid of matroid the-
ory. The most important result in matroid theory, deepest in mathematical
content and most useful in application, is the intersection theorem, a duality
theorem for a pair of matroids. Similarly, combinatorial properties of polyno-
mial matrices can be formulated in the language of valuated matroids, and
moreover, the intersection theorem can be generalized for a pair of valuated
matroids.

The concept of a mixed matrix was formulated in the early eighties as a
mathematical tool for systems analysis by means of matroid-theoretic com-
binatorial methods. A matrix is called a mixed matrix if it is expressed as
the sum of a “constant” matrix and a “generic” matrix having algebraically
independent nonzero entries. This concept is motivated by the physical ob-
servation that two different kinds of numbers, fixed constants and system
parameters, are to be distinguished in the description of engineering systems.
Mathematical analysis of a mixed matrix can be streamlined by the intersec-
tion theorem applied to the pair of matroids associated with the “constant”
and “generic” matrices. This approach can be extended further to a mixed
polynomial matrix on the basis of the intersection theorem for valuated ma-
troids.

The present volume grew out of an attempted revision of my previous
monograph, “Systems Analysis by Graphs and Matroids — Structural Solv-
ability and Controllability” (Algorithms and Combinatorics, Vol. 3, Springer-
Verlag, Berlin, 1987), which was an improved presentation of my doctoral
thesis written in 1983. It was realized, however, that the progress made in
the last decade was so remarkable that even a major revision was inadequate.
The present volume, sharing the same approach initiated in the above mono-
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graph, offers more advanced results obtained since then. For developments in
the neighboring areas the reader is encouraged to consult:

• A. Recski: “Matroid Theory and Its Applications in Electric Network
Theory and in Statics” (Algorithms and Combinatorics, Vol. 6, Springer-
Verlag, Berlin, 1989),

• R. A. Brualdi and H. J. Ryser: “Combinatorial Matrix Theory” (Encyclo-
pedia of Mathematics and Its Applications, Vol. 39, Cambridge University
Press, London, 1991),

• H. Narayanan: “Submodular Functions and Electrical Networks” (Annals
of Discrete Mathematics, Vol. 54, Elsevier, Amsterdam, 1997).

The present book is intended to be read profitably by graduate students in
engineering, mathematics, and computer science, and also by mathematics-
oriented engineers and application-oriented mathematicians. Self-contained
presentation is envisaged. In particular, no familiarity with matroid theory
is assumed. Instead, the book is written in the hope that the reader will
acquire familiarity with matroids through matrices, which should certainly
be more familiar to the majority of the readers. Abstract theory is always
accompanied by small examples of concrete matrices.

Chapter 1 is a brief introduction to the central ideas of our combinatorial
method for the structural analysis of engineering systems. Emphasis is laid
on relevant physical observations that are crucial to successful mathematical
modeling for structural analysis.

Chapter 2 explains fundamental facts about matrices, graphs, and ma-
troids. A decomposition principle based on submodularity is described and
the Dulmage–Mendelsohn decomposition is derived as its application.

Chapter 3 discusses the physical motivation of the concepts of mixed
matrix and mixed polynomial matrix. The dual viewpoint from structural
analysis and dimensional analysis is explained by way of examples.

Chapter 4 develops the theory of mixed matrices. Particular emphasis is
put on the combinatorial canonical form (CCF) of layered mixed matrices
and related decompositions, which generalize the Dulmage–Mendelsohn de-
composition. Applications to the structural solvability of systems of equations
are also discussed.

Chapter 5 is mostly devoted to an exposition of the theory of valu-
ated matroids, preceded by a concise account of canonical forms of poly-
nomial/rational matrices.

Chapter 6 investigates mathematical properties of mixed polynomial ma-
trices using the CCF and valuated matroids as main tools of analysis. Control
theoretic problems are treated by means of mixed polynomial matrices.

Chapter 7 presents three supplementary topics: the combinatorial relax-
ation algorithm, combinatorial system theory, and mixed skew-symmetric
matrices.

Expressions are referred to by their numbers; for example, (2.1) desig-
nates the expression (2.1), which is the first numbered expression in Chap. 2.
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Similarly for figures and tables. Major symbols used in this book are listed
in Notation Table.

The ideas and results presented in this book have been developed with
the help, guidance, encouragement, support, and criticisms offered by many
people. My deepest gratitude is expressed to Professor Masao Iri, who in-
troduced me to the field of mathematical engineering and guided me as the
thesis supervisor. I appreciate the generous hospitality of Professor Bernhard
Korte during my repeated stays at the University of Bonn, where a consider-
able part of the theoretical development was done. I benefited substantially
from discussions and collaborations with Pawel Bujakiewicz, François Cellier,
Andreas Dress, Jim Geelen, András Frank, Hisashi Ito, Satoru Iwata, András
Recski, Mark Scharbrodt, András Sebő, Masaaki Sugihara, and Jacob van der
Woude. Several friends helped me in writing this book. Most notable among
these were Akiyoshi Shioura and Akihisa Tamura who went through all the
text and provided comments. I am also indebted to Daisuke Furihata, Koichi
Kubota, Tomomi Matsui, and Reiko Tanaka. Finally, I thank the editors of
Springer-Verlag, Joachim Heinze and Martin Peters, for their support in the
production of this book, and Erich Goldstein for English editing.

Kyoto, June 1999 Kazuo Murota
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Preface to the Softcover Edition

Since the appearance of the original edition in 2000 steady progress has been
made in the theory and application of mixed matrices. Geelen–Iwata [354]
gives a novel rank formula for mixed skew-symmetric matrices and derives
therefrom the Lovász min-max formula in Remark 7.3.2 for the linear matroid
parity problem. Harvey–Karger–Murota [355] and Harvey–Karger–Yekhanin
[356] exploit mixed matrices in the context of matrix completion; the former
discussing its application to network coding. Iwata [357] proposes a matroidal
abstraction of matrix pencils and gives an alternative proof for Theorem
7.2.11. Iwata–Shimizu [358] discusses a combinatorial characterization for the
singular part of the Kronecker form of generic matrix pencils, extending the
graph-theoretic characterization for regular pencils by Theorem 5.1.8. Iwata–
Takamatsu [359] gives an efficient algorithm for computing the degrees of all
cofactors of a mixed polynomial matrix, a nice combination of the algorithm
of Section 6.2 with the all-pair shortest path algorithm. Iwata–Takamatsu
[360] considers minimizing the DAE index, in the sense of Section 1.1.1, in
hybrid analysis for circuit simulation, giving an efficient solution algorithm
by making use of the algorithm [359] above.

In the softcover edition, updates and corrections are made in the refer-
ence list: [59], [62], [82], [91], [93], [139], [141], [142], [146], [189], [236], [299],
[327]. References [354] to [360] mentioned above are added. Typographical
errors in the original edition have been corrected: MQ is changed to M(Q)
in lines 26 and 34 of page 142, and ∂(M ∩CQ) is changed to ∂M ∩CQ in line
12 of page 143 and line 5 of page 144.

Tokyo, July 2009 Kazuo Murota
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1. Introduction to Structural Approach —
Overview of the Book

This chapter is a brief introduction to the central ideas of the combinatorial
method of this book for the structural analysis of engineering systems. We
explain the motivations and the general framework by referring, as a specific
example, to the problem of computing the index of a system of differential-
algebraic equations (DAEs). In this approach, engineering systems are de-
scribed by mixed polynomial matrices. A kind of dimensional analysis is also
invoked. It is emphasized that relevant physical observations are crucial to
successful mathematical modeling for structural analysis. Though the DAE-
index problem is considered as an example, the methodology introduced here
is more general in scope and is applied to other problems in subsequent chap-
ters.

1.1 Structural Approach to Index of DAE

1.1.1 Index of Differential-algebraic Equations

Let us start with a simple electrical network1 of Fig. 1.1 to introduce the
concept of an index of a system of differential-algebraic equations (DAEs)
and to explain a graph-theoretic method.

The network consists of a voltage source V (branch 1), two ohmic resistors
R1 and R2 (branch 2 and branch 3), an inductor L (branch 4), and a capacitor
C (branch 5). A state of this network is described by a 10 dimensional vector
x = (ξ1, · · · , ξ5, η1, · · · , η5)T representing currents ξi in and the voltage ηi

across branch i (i = 1, · · · , 5) with reference to the directions indicated in
Fig. 1.1. The governing equations in the frequency domain are given by a
system of equations A(1)x = b, where b = (0, 0, 0, 0, 0;V, 0, 0, 0, 0)T is another
10 dimensional vector representing the source, and A(1) is a 10 × 10 matrix
defined by
1 This example, described in Cellier [28, §3.7], was communicated to the author

by P. Bujakiewicz, F. Cellier, and R. Huber.

K. Murota, Matrices and Matroids for Systems Analysis,
Algorithms and Combinatorics 20, DOI 10.1007/978-3-642-03994-2 1,
c© Springer-Verlag Berlin Heidelberg 2010
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A(1) =

ξ1 ξ2 ξ3 ξ4 ξ5 η1 η2 η3 η4 η5
1 −1 0 0 −1
−1 0 1 1 1

−1 0 0 0 −1
0 1 1 0 −1
0 0 −1 1 0

0 0 0 0 0 −1 0 0 0 0
0 R1 0 0 0 0 −1 0 0 0
0 0 R2 0 0 0 0 −1 0 0
0 0 0 sL 0 0 0 0 −1 0
0 0 0 0 −1 0 0 0 0 sC

. (1.1)

As usual, s is the variable for the Laplace transformation that corresponds
to d/dt, the differentiation with respect to time (see Remark 1.1.1 for the
Laplace transformation). The first two equations, corresponding to the 1st
and 2nd rows of A(1), represent Kirchhoff’s current law (KCL), while the
following three equations Kirchhoff’s voltage law (KVL). The last five equa-
tions express the element characteristics (constitutive equations). The system
of equations, A(1)x = b, represents a mixture of differential equations and
algebraic equations (i.e., a linear time-invariant DAE), since the coefficient
matrix A(1) contains the variable s.

V

L

R1

R

C

2

2
5

3

1

4
Fig. 1.1. An electrical network

For a linear time-invariant DAE in general, say Ax = b with A = A(s)
being a nonsingular polynomial matrix in s, the index is defined (see Remark
1.1.2) by

ν(A) = max
i,j

degs(A
−1)ji + 1. (1.2)

Here it should be clear that each entry (A−1)ji of A−1 is a rational function in
s and the degree of a rational function p/q (with p and q being polynomials)
is defined by degs(p/q) = degs p− degs q. An alternative expression for ν(A)
is
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ν(A) = max
i,j

degs((i, j)-cofactor of A) − degs detA+ 1. (1.3)

For the matrix A(1) of (1.1), we see

max
i,j

degs((i, j)-cofactor of A(1)) = degs((6, 5)-cofactor of A(1)) = 2,

detA(1) = R1R2 + sL ·R1 + sL ·R2 (1.4)

by direct calculation and therefore ν(A(1)) = 2 − 1 + 1 = 2 by the formula
(1.3).

The solution to Ax = b is of course given by x = A−1b, and therefore
ν(A) − 1 equals the highest order of the derivatives of the input b that can
possibly appear in the solution x. As such, a high index indicates difficulty
in the numerical solution of the DAE, and sometimes even inadequacy in
the mathematical modeling. Note that the index is equal to one for a system
of purely algebraic equations (where A(s) is free from s), and to zero for a
system of ordinary differential equations in the normal form (dx/dt = A0x
with a constant matrix A0, represented by A(s) = sI −A0).

Remark 1.1.1. For a function x(t), t ∈ [0,∞), the Laplace transform is
defined by x̂(s) =

∫∞
0
x(t)e−stdt, s ∈ C. The Laplace transform of dx(t)/dt

is given by sx̂(s) if x(0) = 0. See Doetsch [49] and Widder [341] for precise
mathematical accounts and Chen [33], Kailath [152] and Zadeh–Desoer [350]
for system theoretic aspects of the Laplace transformation. �

Remark 1.1.2. The definition of the index given in (1.2) applies only to
linear time-invariant DAE systems. An index can be defined for more general
systems and two kinds are distinguished in the literature, a differential index
and a perturbation index, which coincide with each other for linear time-
invariant DAE systems. See Brenan–Campbell–Petzold [21], Hairer–Lubich–
Roche [100], and Hairer–Wanner [101] for details. �

Remark 1.1.3. Extensive study has been made recently on the DAE in-
dex in the literature of numerical computation and system modeling. See,
e.g., Brenan–Campbell–Petzold [21], Bujakiewicz [26], Bujakiewicz–van den
Bosch [27], Cellier–Elmqvist [29], Duff–Gear [60], Elmqvist–Otter–Cellier
[72], Gani–Cameron [86], Gear [88, 89], Günther–Feldmann [98], Günther–
Rentrop [99], Hairer–Wanner [101], Mattsson–Söderlind [188], Pantelides
[264], Ponton–Gawthrop [272], and Ungar–Kröner–Marquardt [324]. �

1.1.2 Graph-theoretic Structural Approach

Structural considerations turn out to be useful in computing the index of
DAE. This section describes the basic idea of the graph-theoretic structural
methods.

In the graph-theoretic structural approach we extract the information
about the degree of the entries of the matrix, ignoring the numerical values
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of the coefficients. Associated with the matrix A(1) of (1.1), for example, we
consider

A
(1)
str =

ξ1 ξ2 ξ3 ξ4 ξ5 η1 η2 η3 η4 η5
t1 t2 0 0 t3
t4 0 t5 t6 t7

t8 0 0 0 t9
0 t10 t11 0 t12
0 0 t13 t14 0

0 0 0 0 0 t15 0 0 0 0
0 t16 0 0 0 0 t17 0 0 0
0 0 t18 0 0 0 0 t19 0 0
0 0 0 s t20 0 0 0 0 t21 0
0 0 0 0 t22 0 0 0 0 s t23

where t1, · · · , t23 are assumed to be independent parameters.
For a polynomial matrix A = A(s) = (Aij) in general, we consider a

matrix Astr = Astr(s), called the structured matrix associated with A, in
a similar manner. For a nonzero entry Aij , let αijs

wij be its leading term,
where αij ∈ R \ {0} and wij = degsAij . Then (Astr)ij is defined to be
equal to swij multiplied by an independent parameter tij . Note that the
numerical information about the leading coefficient αij is discarded with the
replacement by tij . Namely, we define the (i, j) entry of Astr by

(Astr)ij =
{
tijs

degs Aij (if Aij �= 0)
0 (if Aij = 0) (1.5)

where tij is an independent parameter. We refer to the index of Astr in the
sense of (1.2) or (1.3) as the structural index of A and denote it by νstr(A),
namely,

νstr(A) = ν(Astr). (1.6)

Two different matrices, say A and A′, are associated with the same struc-
tured matrix, Astr = A′

str, if degsAij = degsA
′
ij for all (i, j). In other words,

a structured matrix is associated with a family of matrices that have a com-
mon structure with respect to the degrees of the entries. Though there is
no guarantee that the structural index νstr(A) coincides with the true in-
dex ν(A) for a particular (numerically specified) matrix A, it is true that
νstr(A′) = ν(A′) for “almost all” matrices A′ that have the same structure
as A in the sense of A′

str = Astr. That is, the equality νstr(A′) = ν(A′) holds
true for “almost all” values of tij ’s, or, in mathematical terms, “generically”
with respect to the parameter set {tij | Aij �= 0}. (The precise definition of
“generically” is given in §2.1.)

The structural index has the advantage that it can be computed by an
efficient combinatorial algorithm free from numerical difficulties. This is based
on a close relationship between subdeterminants of a structured matrix and
matchings in a bipartite graph.
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Specifically, we consider a bipartite graph G(A) = (Row(A),Col(A);E)
with the left vertex set corresponding to the row set Row(A) of the matrix
A, the right vertex set corresponding to the column set Col(A), and the edge
set corresponding to the set of nonzero entries of A = (Aij), i.e.,

E = {(i, j) | i ∈ Row(A), j ∈ Col(A), Aij �= 0}.

Each edge (i, j) ∈ E is given a weight wij = degsAij .
For instance, the bipartite graph G(A(1)) associated with our example

matrix A(1) of (1.1) is given in Fig. 1.2(a). The thin lines indicate edges
(i, j) of weight wij = 0 and the thick lines designate two edges, (i, j) =
(9, 4), (10, 10), of weight wij = 1.

A matching M in G(A) is, by definition, a set of edges (i.e. M ⊆ E) such
that no two members of M have an end-vertex in common. The weight of
M , denoted w(M), is defined by

w(M) =
∑

(i,j)∈M

wij ,

while the size of M means |M |, the number of edges contained in M . We
denote by Mk the family of all the matchings of size k inG(A) for k = 1, 2, · · ·,
and by M the family of all the matchings of any size (i.e., M = ∪kMk).

For example, the thick lines in Fig. 1.2(b) show a matching M of weight
w(M) = 1 and of size |M | = 10, and M ′ = (M \{(3, 10), (10, 5)})∪{(10, 10)}
is a matching of weight w(M ′) = 2 and of size |M ′| = 9.

Assuming that Astr is an n×n matrix, we consider the defining expansion
of its determinant:

detAstr =
∑

π∈Sn

sgnπ ·
n∏

i=1

(Astr)iπ(i) =
∑

π∈Sn

sgnπ ·
n∏

i=1

tiπ(i) · s
∑n

i=1
wiπ(i) ,

where Sn denotes the set of all the permutations of order n, and sgnπ = ±1
is the signature of a permutation π. We observe the following facts:

1. Nonzero terms in this expansion correspond to matchings of size n in
G(A);

2. There is no cancellation among different nonzero terms in this expansion
by virtue of the independence among tij ’s.

These two facts imply the following:

1. The structured matrix Astr is nonsingular (i.e., detAstr �= 0) if and only
if there exists a matching of size n in G(A);

2. In the case of a nonsingular Astr, it holds that

degs detAstr = max
Mn∈Mn

w(Mn). (1.7)
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Fig. 1.2. Graph G(A(1)) and the maximum-weight matching

A similar argument applied to submatrices of Astr leads to more general
formulas:

rankAstr = max
M∈M

|M |,

max
|I|=|J|=k

degs detAstr[I, J ] = max
Mk∈Mk

w(Mk) (k = 1, · · · , rstr), (1.8)

where Astr[I, J ] means the submatrix of Astr having row set I and column
set J , and rstr = rankAstr. It should be clear that the left-hand side of (1.8)
designates the maximum degree of a minor (subdeterminant) of order k.
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A combination of the formulas (1.3) and (1.8) yields

νstr(A) = max
Mn−1∈Mn−1

w(Mn−1) − max
Mn∈Mn

w(Mn) + 1 (1.9)

for a nonsingular n × n polynomial matrix A. Thus we have arrived at a
combinatorial expression of the structural index.

For the matrix A(1) we have (cf. Fig. 1.2)

max
M

(1)
n−1∈M(1)

n−1

w(M (1)
n−1) = 2, max

M
(1)
n ∈M(1)

n

w(M (1)
n ) = 1

and therefore νstr(A(1)) = 2 − 1 + 1 = 2, in agreement with ν(A(1)) = 2.
It is important from the computational point of view that efficient combi-

natorial algorithms are available for checking the existence of a matching of a
specified size and also for finding a maximum-weight matching of a specified
size. Thus the structural index νstr, with the expression (1.9), can be com-
puted efficiently by solving weighted bipartite matching problems utilizing
those efficient combinatorial algorithms.

A number of graph-theoretic techniques (which may be considered vari-
ants of the above idea) have been proposed as “structural algorithms” (Bu-
jakiewicz [26], Bujakiewicz–van den Bosch [27], Duff–Gear [60], Pantelides
[264], Ungar–Kröner–Marquardt [324]). It is accepted that structural consid-
erations should be useful and effective in practice for the DAE-index problem
and that the generic values computed by graph-theoretic “structural algo-
rithms” have practical significance.

1.1.3 An Embarrassing Phenomenon

While the structural approach is accepted fairly favorably, its limitation has
also been realized in the literature. A graph-theoretic structural algorithm, ig-
noring numerical data, may well fail to render the correct answer if numerical
cancellations do occur for some reason or other. So the failure of a graph-
theoretic algorithm itself should not be a surprise. The aim of this section is
to demonstrate a further embarrassing phenomenon that the structural index
of our electrical network varies with how KVL is described.

Recall first that the 3rd row of the matrix A(1) represents the conservation
of voltage along the loop 1–5 (V –C). In place of this we now take another
loop 1–2–4 (V –R1–L) to obtain a second description of the same electrical
network. The coefficient matrix of the second description is given by



8 1. Introduction to Structural Approach — Overview of the Book

A(2) =

ξ1 ξ2 ξ3 ξ4 ξ5 η1 η2 η3 η4 η5
1 −1 0 0 −1
−1 0 1 1 1

−1 −1 0 −1 0
0 1 1 0 −1
0 0 −1 1 0

0 0 0 0 0 −1 0 0 0 0
0 R1 0 0 0 0 −1 0 0 0
0 0 R2 0 0 0 0 −1 0 0
0 0 0 sL 0 0 0 0 −1 0
0 0 0 0 −1 0 0 0 0 sC

, (1.10)

which differs from A(1) in the 3rd row. The associated structured matrix A(2)
str

differs from A
(1)
str also in the 3rd row, and is given by

A
(2)
str =

ξ1 ξ2 ξ3 ξ4 ξ5 η1 η2 η3 η4 η5
t1 t2 0 0 t3
t4 0 t5 t6 t7

t24 t25 0 t26 0
0 t10 t11 0 t12
0 0 t13 t14 0

0 0 0 0 0 t15 0 0 0 0
0 t16 0 0 0 0 t17 0 0 0
0 0 t18 0 0 0 0 t19 0 0
0 0 0 s t20 0 0 0 0 t21 0
0 0 0 0 t22 0 0 0 0 s t23

,

where {ti | i = 1, · · · , 7, 10, · · · , 26} is the set of independent parameters.
Naturally, the index should remain invariant against this trivial change

in the description of KVL, and in fact we have

ν(A(1)) = ν(A(2)) = 2.

It turns out, however, that the structural index does change, namely,

νstr(A(1)) = 2, νstr(A(2)) = 1,

where the latter is computed from the graph G(A(2)) in Fig. 1.3; we have

max
M

(2)
n−1∈M(2)

n−1

w(M (2)
n−1) = 2, max

M
(2)
n ∈M(2)

n

w(M (2)
n ) = 2

and therefore
νstr(A(2)) = ν(A(2)

str ) = 2 − 2 + 1 = 1

according to the expression (1.9).
The discrepancy between the structural index νstr(A(2)) and the true in-

dex ν(A(2)) is ascribed to the discrepancy between degs detA(2)
str = 2 and
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Fig. 1.3. Graph G(A(2)) and the maximum-weight matching

degs detA(2) = 1, which in turn is caused by a numerical cancellation in the
expansion of detA(2). A closer look at this phenomenon reveals that this can-
cellation is not an accidental cancellation, but a cancellation with good reason
which could be better called structural cancellation. In fact, we can identify
a 2 × 2 singular submatrix of the coefficient matrix for the KCL and a 3 × 3
singular submatrix of the coefficient matrix for the KVL:
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ξ1 ξ5

1 −1
−1 1

,

η2 η3 η4
−1 0 −1
1 1 0
0 −1 1

as the reason for this cancellation. More specifically, the expansion of detA(2)
str

contains four “spurious” quadratic terms

t1 · t7 · t25 · t11 · t14 · t15 · t16 · t18 · st20 · st23, (1.11)
t1 · t7 · t26 · t10 · t13 · t15 · t16 · t18 · st20 · st23, (1.12)
t3 · t4 · t25 · t11 · t14 · t15 · t16 · t18 · st20 · st23, (1.13)
t3 · t4 · t26 · t10 · t13 · t15 · t16 · t18 · st20 · st23, (1.14)

which cancel one another when the numerical values as well as the system
parameters are given to tij ’s (t1 = t7 = t10 = t11 = t14 = 1, t3 = t4 = t13 =
t15 = t25 = t26 = −1, t16 = R1, t18 = R2, t20 = L, t23 = C). In fact, detA(2),
which is equal to detA(1) = R1R2 + sL ·R1 + sL ·R2 given in (1.4), does not
contain those terms. Note that the term (1.11) corresponds to the matching
in Fig. 1.3(b), and recall that the system parameters R1, R2, L, C are treated
as mutually independent parameters, which cannot be cancelled out among
themselves.

This example demonstrates that the structural index is not determined
uniquely by a physical/engineering system, but it depends on its mathemat-
ical description. It is emphasized that both

η1 η2 η3 η4 η5
−1 0 0 0 −1

A(1) : 0 1 1 0 −1
0 0 −1 1 0

and

η1 η2 η3 η4 η5
−1 −1 0 −1 0

A(2) : 0 1 1 0 −1
0 0 −1 1 0

are equally a legitimate description of KVL and there is nothing inherent to
distinguish between the two. In this way the structural index is vulnerable to
our innocent choice. This makes us reconsider the meaning of the structural
index, which will be discussed in the next section.

Remark 1.1.4. The limitation of the graph-theoretic structural approach,
as explained above, is now widely understood. Already Pantelides [264] rec-
ognized this phenomenon and more recently Ungar–Kröner–Marquardt [324]
expounded this point with reference to an example problem arising from an
analysis of distillation columns in chemical engineering. �

1.2 What Is Combinatorial Structure?

In view of the “embarrassing phenomenon” above we have to question the
physical relevance of the structural index (1.6) and reconsider how we should
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recognize the combinatorial structure of physical systems. The objective of
this section is to discuss this issue and to introduce an advanced framework
of structural analysis that uses mixed (polynomial) matrices as the main
mathematical tool. The framework realizes a reasonable balance between
physical faith and mathematical convenience in mathematical modeling of
physical/engineering systems. As for physical faith, it is based on two differ-
ent observations; the one is the distinction between “accurate” numbers (fixed
constants) and “inaccurate” numbers (independent system parameters), and
the other is the consistency with respect to physical dimensions. As for math-
ematical convenience, the analysis of mixed (polynomial) matrices and the
design of efficient algorithms for them can be done successfully by means of
matroid theory. Hence the name of “matroid-theoretic approach” for the ad-
vanced framework based on mixed matrices, as opposed to the conventional
graph-theoretic approach to structural analysis.

1.2.1 Two Kinds of Numbers

Let us continue with our electrical network. The matrix A(2) of (1.10) can be
written as

A(2)(s) = A(2)
0 + sA(2)

1

with

A
(2)
0 =

1 −1 0 0 −1
−1 0 1 1 1

−1 −1 0 −1 0
0 1 1 0 −1
0 0 −1 1 0

0 0 0 0 0 −1 0 0 0 0
0 R1 0 0 0 0 −1 0 0 0
0 0 R2 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 −1 0 0 0 0 0

, A
(2)
1 =

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 L 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 C

.

(1.15)
We observe here that the nonzero entries of the coefficient matrices A(2)

k

(k = 0, 1) are classified into two groups: one group of fixed constants (±1)
and the other group of system parameters R1, R2, L and C. Accordingly, we
can split A(2)

k (k = 0, 1) into two parts:

A
(2)
k = Q(2)

k + T (2)
k (k = 0, 1)

with
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Q
(2)
0 =

1 −1 0 0 −1
−1 0 1 1 1

−1 −1 0 −1 0
0 1 1 0 −1
0 0 −1 1 0

0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 −1 0 0 0 0 0

, T
(2)
0 =

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 R1 0 0 0 0 0 0 0 0
0 0 R2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

,

Q
(2)
1 =

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

, T
(2)
1 =

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 L 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 C

.

It is assumed that the system parameters, R1, R2, L, C, are independent
parameters. Even when concrete numbers are given to R1, R2, L, C, those
numbers are not expected to be exactly equal to their nominal values, but
they lie in certain intervals of real numbers of engineering tolerance. Even in
the extreme case where both R1 and R2 are specified to be 1Ω, for example,
their actual values will be something like R1 = 1.02Ω and R2 = 0.99Ω.

Generally, when a physical system is described by a polynomial matrix

A(s) =
N∑

k=0

skAk, (1.16)

it is often justified (see §1.2.2) to assume that the nonzero entries of the coef-
ficient matrices Ak (k = 0, 1, · · · , N) are classified similarly into two groups.
In other words, we can distinguish the following two kinds of numbers, to-
gether characterizing a physical system. We may refer to the numbers of the
first kind as “fixed constants” and to those of the second kind as “system
parameters.”

Accurate numbers (fixed constants): Numbers accounting for various sorts of
conservation laws such as Kirchhoff’s laws which, stemming from topo-
logical incidence relations, are precise in value (often ±1), and therefore
cause no serious numerical difficulty in arithmetic operations on them.

Inaccurate numbers (system parameters): Numbers representing independent
system parameters such as resistances in electrical networks and masses
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in mechanical systems which, being contaminated with noise and other
errors, take values independent of one another, and therefore can be mod-
eled as algebraically independent numbers.2

Accurate numbers often appear in equations for conservation laws such as
Kirchhoff’s laws, the law of conservation of mass, energy, or momentum, and
the principle of action and reaction, where the nonvanishing coefficients are
either 1 or −1, representing the underlying topological incidence relations.
Integer coefficients in chemical reactions (stoichiometric coefficients), such as
“2” and “1” in 2 ·H2O = 2 ·H2 + 1 ·O2, are also accurate numbers. Another
example of accurate numbers appears in the defining relation dx/dt = 1 · v
between velocity v and position x. Typical accurate numbers are illustrated
in Fig. 1.4.

The above observation leads to the assumption that the coefficient ma-
trices Ak (k = 0, 1, · · · , N) in (1.16) are expressed as

Ak = Qk + Tk (k = 0, 1, · · · , N), (1.17)

where

(A-Q1): Qk (k = 0, 1, · · · , N) are matrices over Q (the field of ratio-
nal numbers), and

(A-T): The collection T of nonzero entries of Tk (k = 0, 1, · · · , N) is
algebraically independent over Q.

Namely, each Ak may be assumed to be a mixed matrix, in the terminology
to be introduced formally in §1.3. Then A(s) is split accordingly into two
parts:

A(s) = Q(s) + T (s) (1.18)

with

Q(s) =
N∑

k=0

skQk, T (s) =
N∑

k=0

skTk. (1.19)

Namely, A(s) is a mixed polynomial matrix in the terminology of §1.3.
Our intention in the splitting (1.17) or (1.18) is to extract a more mean-

ingful combinatorial structure from the matrix A(s) by treating the Q-part
numerically and the T -part symbolically. This is based on the following ob-
servations.

Q-part: The nonzero pattern of the Q-matrices is subject to our arbitrary
choice in the mathematical description, as we have seen in our electrical
network, and hence the structure of the Q-part should be treated numer-
ically, or linear-algebraically. In fact, this is feasible in practice, since the
entries of the Q-matrices are usually small integers, causing no serious
numerical difficulty in arithmetic operations.

2 Informally, “algebraically independent numbers” are tantamount to “indepen-
dent parameters,” whereas a rigorous definition of algebraic independence will
be given in §2.1.1.
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�
�

�

ξ1

ξ2
ξ3

KCL

−1 · ξ1 − 1 · ξ2 + 1 · ξ3 = 0

�

�

�
η1

η2

η3

KVL

−1 · η1 − 1 · η2 + 1 · η3 = 0

�
�

�H2O
H2

O2

Stoichiometry

2 · H2O = 2 · H2 + 1 · O2

Velocity v – displacement x v = 1 · ẋ (= s · x)

Current ξ – charge Q ξ = 1 · Q̇ (= s · Q)

Fig. 1.4. Accurate numbers

T -part: The nonzero pattern of the T -matrices is relatively stable against our
arbitrary choice in the mathematical description of constitutive equa-
tions and therefore it can be regarded as representing some aspect of
the combinatorial structure of the system. It can be treated properly by
graph-theoretic concepts and algorithms.

Combination: The structural information from theQ-part and the T -part can
be combined properly and efficiently by virtue of the fact that each part
defines a well-behaved and well-studied combinatorial structure called
matroid. Mathematical and algorithmic results from matroid theory af-
ford effective methods of system analysis.

We may summarize the above as follows:
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Q-part by linear algebra
T -part by graph theory
Combination by matroid theory

In §1.3 we shall take a glimpse at how the DAE-index problem can be
treated using mixed polynomial matrices and how the embarrassing phe-
nomenon of §1.1.3 can be resolved properly.

1.2.2 Descriptor Form Rather than Standard Form

In introducing mixed polynomial matrices we have assumed that the nonzero
entries of the coefficient matrices are either fixed constants or independent
parameters. This is an assumption on a description of a physical system, and
not an assumption on the system itself. For a system in question there can
be many different descriptions, but some of them may satisfy the assumption
and others may fail to meet it. In this section we discuss this issue by com-
paring the state-space equations (Kalman [153]) and the descriptor equations
(Luenberger [182, 183]).

Let us consider another example, a simple mechanical system (Fig. 1.5)
which consists of two masses m1, m2, two springs k1, k2, and a damper f ; u
is the force exerted from outside.

f

=

=

m1

k1 x2

x1

x3 x1

x2x4

k2

m2

.

.

u

Fig. 1.5. A mechanical system

We may describe the system in the form of state-space equations:

ẋ(t) = Âx(t) + B̂u(t) (1.20)

in terms of x = (x1, x2, x3, x4) and u = (u), where x1 and x2 are vertical
displacements (downwards, as indicated in Fig. 1.5) of masses m1 and m2,
respectively, and x3 and x4 are their velocities, and
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Â =

x1 x2 x3 x4

0 0 1 0
0 0 0 1

−k1/m1 0 −f/m1 f/m1

0 −k2/m2 f/m2 −f/m2

, B̂ =

u
0
0

1/m1

0

. (1.21)

It should be clear that ẋ is a short-hand notation for dx/dt, the time deriva-
tive of x.

The state-space equations (1.20) have been useful for investigating an-
alytic and algebraic properties of a dynamical system, and the structural
or combinatorial analysis at the early stage3 was based on it. It is gradu-
ally recognized, however, that the state-space equations are not very suitable
for representing the combinatorial structure of a system in that the entries
of matrices Â and B̂ of (1.20) are usually not independent but interrelated
to one another, being subject to algebraic relations. For instance, we have
Â33 + Â34 = 0 in (1.21), and consequently Â of (1.21) does not admit a
splitting into Q-part and T -part satisfying (A-Q1) and (A-T).

In this respect, the so-called descriptor form

F̄ ẋ(t) = Āx(t) + B̄u(t) (1.22)

is more promising, having more flexibility to avoid complicated algebraic rela-
tions among entries of the coefficient matrices. Here x is called the descriptor-
vector and u is the input-vector. The matrix F̄ is not necessarily nonsingular,
so that the reduction of (1.22) to the standard state-space form (1.20) is not
straightforward. Even when F̄ is nonsingular, the reduction to the standard
state-space form (1.20) with Â = F̄−1Ā and B̂ = F̄−1B̄ entailing compli-
cated algebraic relations among the entries of Â and B̂, is not advantageous
from the combinatorial point of view.

To describe our mechanical system in the descriptor form (1.22), it may
be natural to introduce two additional variables x5 (= force by the damper
f) and x6 (= relative velocity of the two masses). Additional equations (con-
straints) for these variables are given by4

x5 = fx6, x6 = ẋ1 − ẋ2.

Then the coefficient matrices in (1.22) are given by

F̄ =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 m1 0 0 0
0 0 0 m2 0 0
0 0 0 0 0 0
1 −1 0 0 0 0

, Ā =

0 0 1 0 0 0
0 0 0 1 0 0

−k1 0 0 0 −1 0
0 −k2 0 0 1 0
0 0 0 0 −1 f
0 0 0 0 0 1

, B̄ =

0
0
1
0
0
0

. (1.23)

3 Structural approach in the literature of control theory was initiated by Lin [173]
in the mid-seventies.

4 We could replace the equation x6 = ẋ1− ẋ2 by x6 = x3−x4, which may be more
natural. Our choice is to make the example less trivial.
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The Laplace transform of the equation (1.22) gives a frequency domain
description:

sF̄ x̂(s) = Āx̂(s) + B̄û(s), or
[
Ā− sF̄ B̄

]
[

x̂(s)
û(s)

]

= 0,

where x(0) = 0, u(0) = 0 is assumed (see Remark 1.1.1 for the Laplace
transform). Then the system is described by a polynomial matrix

A(s) =
[
Ā− sF̄ B̄

]
. (1.24)

For our mechanical system we have

A(s) =

x1 x2 x3 x4 x5 x6 u
−s 0 1 0 0 0 0
0 −s 0 1 0 0 0

−k1 0 −sm1 0 −1 0 1
0 −k2 0 −sm2 1 0 0
0 0 0 0 −1 f 0
−s s 0 0 0 1 0

(1.25)

as the matrix of (1.24). Note that no complicated algebraic expressions are
involved in this matrix, for which it is reasonable to assume (A-Q1) and (A-T)
above. Consequently, A(s) of (1.25) is expressed as A(s) = Q(s) + T (s) with

Q(s) =

x1 x2 x3 x4 x5 x6 u
−s 0 1 0 0 0 0
0 −s 0 1 0 0 0
0 0 0 0 −1 0 1
0 0 0 0 1 0 0
0 0 0 0 −1 0 0
−s s 0 0 0 1 0

, T (s) =

x1 x2 x3 x4 x5 x6 u
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−k1 0 −sm1 0 0 0 0
0 −k2 0 −sm2 0 0 0
0 0 0 0 0 f 0
0 0 0 0 0 0 0

.

(1.26)
Here we have T = {m1,m2, k1, k2, f} as the set of system parameters.

It is emphasized again that the coefficient matrices Â and B̂ in the stan-
dard state-space form do not admit such natural splitting into two parts. Thus
we may conclude that the descriptor form is more suitable for representing
the combinatorial structure than the standard state-space form.

1.2.3 Dimensional Analysis

Here is a kind of dimensional analysis concerning “accurate numbers,” i.e.,
concerning the constant part Q(s) =

∑N
k=0 s

kQk of the matrix A(s) in (1.18).
First we consider the physical dimensional consistency in the system of

equations A(s)x = b, where A(s) is assumed to be an m × n matrix. Since
this system is to represent a physical system, relevant physical dimensions are
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associated with both the variables (corresponding to the components of x)
and the equations (corresponding to the components of b), or alternatively,
with both columns and rows of the matrix A(s). Also the entries of A(s) have
physical dimensions.

In our mechanical system, for instance, we may choose time T , length
L and mass M as the fundamental quantities in the dimensional analysis.
Then the dimensions of velocity and force are given by T−1L and T−2LM ,
respectively. The physical dimensions associated with the equations, i.e., with
the rows of A(s) of (1.25), are

row 1 row 2 row 3 row 4 row 5 row 6
velocity velocity force force force velocity
T−1L T−1L T−2LM T−2LM T−2LM T−1L

(1.27)

whereas those with the variables (xi and u), i.e., with the columns of A(s),
are

col 1 col 2 col 3 col 4 col 5 col 6 col 7
length length velocity velocity force velocity force
L L T−1L T−1L T−2LM T−1L T−2LM

(1.28)

The (3, 1)-entry “−k1” of A(s), for example, has a dimension of T−2M .
The principle of dimensional homogeneity demands that

[Dimension of ith row]
= [Dimension of (i, j) entry] × [Dimension of jth column] (1.29)

for each (i, j) with Aij �= 0. For instance, this identity reads

T−2LM = T−2M × L

for (i, j) = (3, 1) in our mechanical system.
Choosing time as one of the fundamental dimensions, we denote by −ri

and −cj the exponent to the dimension of time associated respectively with
the ith row and the jth column. Then the (i, j) entry of A(s) should have
the dimension of time with exponent cj − ri.

In our mechanical system we have

r1 = r2 = 1, r3 = r4 = r5 = 2, r6 = 1;
c1 = c2 = 0, c3 = c4 = 1, c5 = 2, c6 = 1, c7 = 2

from (1.27) and (1.28).
The “accurate numbers” usually represent topological and/or geometrical

incidence coefficients (cf. Fig. 1.4), which have no physical dimensions, so
that it is natural to expect that the entries of Qk in (1.19) are dimensionless
constants. On the other hand, the variable (indeterminate) “s” should have
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the physical dimension of the inverse of time, since it corresponds to d/dt,
the differentiation with respect to time. This implies, in particular, that each
entry of the term skQk has the physical dimension of time with exponent
−k. On the other hand, the (i, j) entry of A(s), and hence the (i, j) entry of
Q(s), should have the dimension of time with exponent cj − ri, as pointed
out above.

Combining these two facts we obtain

ri − cj = k if (Qk)ij �= 0, (1.30)

or in matrix form:

Q(s) = diag [sr1 , · · · , srm ] ·Q(1) · diag [s−c1 , · · · , s−cn ], (1.31)

where diag [d1, d2, · · ·] means a diagonal matrix having diagonal entries
d1, d2, · · ·. It follows from this decomposition that every nonvanishing sub-
determinant of Q(s) is a monomial in s over Q, i.e., of the form αsp with a
nonvanishing rational number α and a nonnegative integer p.

In our mechanical system, it can be verified that Q(s) of (1.26) admits an
expression of the form (1.31):

−s 0 1 0 0 0 0
0 −s 0 1 0 0 0
0 0 0 0 −1 0 1
0 0 0 0 1 0 0
0 0 0 0 −1 0 0
−s s 0 0 0 1 0

=

s 0 0 0 0 0
0 s 0 0 0 0
0 0 s2 0 0 0
0 0 0 s2 0 0
0 0 0 0 s2 0
0 0 0 0 0 s

·

−1 0 1 0 0 0 0
0 −1 0 1 0 0 0
0 0 0 0 −1 0 1
0 0 0 0 1 0 0
0 0 0 0 −1 0 0
−1 1 0 0 0 1 0

·

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 s−1 0 0 0 0
0 0 0 s−1 0 0 0
0 0 0 0 s−2 0 0
0 0 0 0 0 s−1 0
0 0 0 0 0 0 s−2

.

Note that the diagonal entries sri and s−cj are determined from the negative
of the exponents to T (time) in (1.27) and (1.28).

We have thus arrived at a subclass of mixed polynomial matrices suitable
for representing the structure of linear time-invariant dynamical systems.
Namely, we are to consider the class of polynomial matrices A(s) in indeter-
minate s with rational coefficients which are represented as

A(s) = Q(s) + T (s),

where

(A-Q2): Every nonvanishing subdeterminant of Q(s) is a monomial
in s over Q, and


