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Preface

“Generation of new ideas and refinement or extension of established concepts are 
the essence of advances in knowledge”: Dr. Carlton Gyles, Preface, Virulence Mech-
anisms of Bacterial Pathogens, 1st Edition, 1988, ASM Press. This was the driving 
force behind the current fifth edition of this monograph, which essentially is a 
compilation of bacterial virulence strategies and cutting-edge therapies (target-
ing these strategies) that have been unraveled in recent years and/or provide new 
insights into established dogmas. 

Previous editions of this book always provided interesting and timely infor-
mation on topics not always covered in textbooks making them reliable reference 
sources. Traditionally these were published as follow-up to a series of Interna-
tional Symposia on Virulence Mechanisms of Bacterial Pathogens, held in Ames, 
Iowa in 1987, 1994, 1999, and 2006. Hence, the last edition was published in 2007. 
With all the scientific advancements made in the area of bacterial pathogenesis 
since then, there was a pressing need for a more recent, updated version of this 
book. To make up for the lapsed time and the inevitable financial constraints, 
a general consensus was reached to initiate the publication sans a symposium. 
This turned out to be quite an insightful decision as it enabled the editors and all 
contributors to provide their undivided attention to weaving together a harmo-
nious and comprehensive monograph.

Sections in this edition have been organized in a systematic manner keeping in 
sync with the journey a pathogen undertakes in its host. Therefore, these sections 
discuss, key events occurring at the bacterial-host interface (section I) that enable 
colonization, bacterial reliance on communication (section II) and secretion (sec-
tion III) to initiate/enhance virulence, bacterial defense (section IV), persistence 
(section V), and host-exploitation strategies (section VI) that allow for extended 
survival in the host. The concluding section (section VII) discusses novel thera-
peutic approaches being developed to target some of these virulence mechanisms. 

It was our intent to deliver the science through this monograph and allow 
our savvy readers the luxury of philosophizing. As such, we sought contributions 
from distinguished experts, whether as authors or reviewers, making this mono-
graph a one-stop learning tool for recent advances made in the field of bacterial 
virulence while stepping away from being just another “textbook”. The contents 
were selected to be beneficial to diverse readership (students, faculty, scientists 
in academic, clinical, corporate and/or government settings) while promoting 
discussion, extrapolation, exploration and multi-dimensional thinking.

Indira T. Kudva
Executive Editor
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BACTERIAL-HOST INTERFACE





Evolution of Bacterial Pathogens
Within the Human Host 1
KIMBERLY A. BLIVEN1 and ANTHONY T. MAURELLI1

INTRODUCTION

The success or failure of a pathogen is entirely dependent on its ability to
survive, reproduce, and spread to a new host or environment. Host immune
systems, predators, microbial competitors, parasites, and environmental
resource limitations all exert selective pressures that shape the genomes
of microbial populations (1). Host fitness, meanwhile, is determined by the
ability of the host to survive and reproduce; the host must therefore effec-
tively curtail diseases that impair either of these abilities.

Dawkins and Krebs suggest that the conflicting drives between host and
pathogen have led to an evolutionary “arms race,” where an asymmetric
“attack-defense” strategy has come into play (2). At the basic level, this
concept suggests that when the host evolves new defenses to thwart the
pathogen’s attack, the pathogen is forced to adapt a more effective attack
strategy to penetrate the heightened defenses. In response, the host must
once again evolve to cope with the new attack mechanism, and the cycle
continues. Evolutionarily fit pathogens, which are able to survive, repli-
cate, and spread effectively within the host, have the most likely chance

1Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services
University of the Health Sciences, Bethesda, MD 20814.

Virulence Mechanisms of Bacterial Pathogens, 5th edition
Edited by Indira T. Kudva, Nancy A. Cornick, Paul J. Plummer, Qijing Zhang, Tracy L. Nicholson,
John P. Bannantine, and Bryan H. Bellaire
© 2016 American Society for Microbiology, Washington, DC
doi:10.1128/microbiolspec.VMBF-0017-2015
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of passing their genes on to the next gen-
eration. Similarly, host genotypes are more
likely to persist within the population if
those particular individuals are more ca-
pable of controlling or resisting infection.
Evolution, therefore, is driven by positive
directional selection in the arms race model;
eventually, the most beneficial alleles will be-
come fixed in a population. Another model
favors frequency-dependent (balancing) se-
lection, a process that maintains rare alleles
and therefore preserves polymorphic diver-
sity within a population (3). Simply put, allele
fixation is prevented in certain instances
because different bacterial alleles confer dis-
tinct advantages to the pathogen in the pres-
ence of different host alleles (i.e., different
environments). Supporting evidence for both
directional and frequency-dependent selec-
tion can be found within nature, and both
types probably occur in bacterial populations.

In this chapter, we explore the host-
pathogen interface and offer examples of
pathogen adaptation in response to common
host selective pressures (Table 1). Although
we will focus exclusively on bacterial patho-
gens within the human host, many of the
concepts discussed in this review are readily
applicable to other organisms, such as viruses,
parasites, and fungi, which can infect a wide
range of hosts including plants, animals, and
amoeba (4–6).

As a final note, much of the evidence
presented here to support presumed evolu-
tionary events is either speculation based
on what is currently known or suspected

about host and microbial biology or is the
result of artificial laboratory-induced evo-
lution during serial passaging of bacterial
strains. Due to the sheer enormity of evo-
lutionary timescales, defining the pre-
cise origins of and factors driving natural
evolutionary events is often a difficult
undertaking.

ANTAGONISTIC PLEIOTROPY AND THE
FITNESS COST-BENEFIT ANALYSIS

At the most basic level, the theory of natural
selection stipulates that within a bacterial
population, beneficial traits will be con-
served (selected for) and deleterious traits
eventually discarded (selected against). The
actual evolutionary process is considerably
more complex, however, due to the exis-
tence of genetic drift (the change in genetic
diversity of a population due to random
chance) and antagonistic pleiotropy.

Antagonistic pleiotropy is the concept
that a single gene may control more than
one phenotype, some of which may be bene-
ficial to the organism and some deleterious
(7). Therefore, a gene may confer a selective
advantage within one particular environ-
ment, but its expression could be detrimental
within a different environment. Conserva-
tion of this gene ultimately is determined
by the overall necessity of the gene to the
organism’s fitness and the timing of selection.
Bacterial pathogens may evolve mechanisms
to neutralize the deleterious effects arising

TABLE 1 Examples of pathogenic mechanisms to evade or overcome selective pressures within the
human host

Selective pressures Pathogenic mechanisms to evade or overcome these pressures

Physical barriers in host (i.e., mucosal epithelium) Mucinases Enterotoxins Exfoliative toxins Transcytosis through
M cells

Host complement Complement inhibitor protein C3 protease
Sequestration of host resources (e.g., iron) Enterobactin/aerobactin systems
Host B and T cell lymphocytes Cytotoxins T3SS-mediated apoptosis
Antibiotics, antimicrobial peptides Efflux pumps Mutations in antimicrobial targets Enzymes to

inactivate antibiotics (e.g., beta-lactamases)
Bacterial colicins Colicin immunity proteins
Bacterial T6SSs T6S immunity proteins

4 BLIVEN AND MAURELLI



from antagonistic pleiotropy, while at the
same time conserving the beneficial ones.
Temporal regulation is a powerful tool to
ensure that specific genes are only turned on
when required and are turned off to prevent
detrimental expression within a particular
environment. Certain outer membrane pro-
teins or systems are temporally regulated
within the host, because they may provide a
marker for recognition by the host immune
system. Flagellar expression, for example, is
downregulated by Salmonella enterica sero-
var Typhi in vivo to prevent activation of
the host inflammatory response; however,
outside the host, motility is likely important
for the bacterium to seek out and scavenge
nutrients from the environment (8).

Other bacteria avoid the deleterious effects
of a gene through gene inactivation; mutants
that lose functionality of the gene once it
becomes deleterious can out-compete the
wild-type parent strain, and eventually these
mutants will dominate the population. Pseu-
domonas aeruginosa, an opportunistic patho-
gen of cystic fibrosis patients, often switches
to a mucoid phenotype in vivo as a result
of overproduction of the exopolysaccharide
alginate, which allows for the production of a
bacterial biofilm in the lung (9, 10). MucA
is a P. aeruginosa transmembrane protein that
binds to and represses the sigma factor AlgU,
which acts as the transcriptional activator of
the alginate synthesis operon. AlgU activates
AlgR, a suppressor of type III secretion sys-
tem (T3SS) expression; when mucA is ex-
pressed, therefore, so are the T3SS genes.
During acute infection, the T3SS plays an
essential role in establishment of the bac-
terium within the respiratory tract. Once in-
fection has been established, however, chronic
infection appears to favor loss of T3SS and a
switch to biofilm production (11). Both of
these phenotypes are at least partially driven
by various mutations in mucA which lead to
derepression of AlgU, subsequent production
of alginate, and suppression of the T3SS (9).
Hauser speculates that loss of the T3SS pro-
tects the bacterium from eventual recognition

by the host, because patients infected with
P. aeruginosa develop antibodies against T3SS
effector proteins; conversely, biofilm produc-
tion likely allows for the persistence of the
organism in the respiratory tract (11).

Finally, certain bacteria simply tolerate
deleterious fitness costs if the benefits of
expressing the gene outweigh the negative
effects. Antibiotic-resistance mutations that
allow bacteria to survive exposure to anti-
microbials often come with a significant
fitness disadvantage, for example, and sec-
ondary compensatory mutations in these
strains may eventually arise to restore fit-
ness rather than lose resistance (12).

THE IMPACT OF HOST-PATHOGEN
INTERACTIONS ON
MICROBIAL EVOLUTION

Inside the host, a successful pathogen will
pilfer resources to survive, replicate, and
eventually escape; concomitantly, the host
will attempt to recognize and subsequently
rid the body of the intruder. Coevolution be-
tween host and pathogen naturally occurs as
a result of these interactions (13). For prac-
tical purposes, we restrict our discussion to
bacterial adaptation within the human host,
but it is important to recognize that many
of these concepts are applicable to patho-
gens of other hosts as well, such as plants and
amoeba (14–16). As novel genetic variants
within the human population emerge which
prove more successful at preventing or over-
coming infection, only pathogen variants
that allow the bacteria to surmount or avoid
this new response will be successful. Within
the last century, these natural host defenses,
which take much longer to evolve than their
microbial counterparts, have been supple-
mented by man-made developments, such
as antibiotics and modern medical inter-
ventions, which place added pressures on
microbes to adapt (17). Host innate and adap-
tive immune responses and modern medical
interventions are all selective pressures that
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contribute to pathogen evolution within the
human host. Furthermore, microbial com-
petition, against either other pathogens or
commensal bacteria, also shapes pathogen
genomes.

Bacteria have several advantages over
the human host when it comes to evolution:
first, their generation times are significantly
shorter, leading to more rapid selection
within a population. In conjunction with a
shorter generation time, bacterial popula-
tions are typically larger, which may allow
for greater genetic diversity from which to
select. Lastly, many bacteria utilize hori-
zontal gene transfer (HGT), which accounts
for the rapid spread of advantageous alleles
between strains or even species (18). Viru-
lence genes are commonly located on trans-
ferred pathogenicity islands (PAIs), which
are segments of the genome associated with
mobility elements, such as integrase genes
or transposons. PAIs can often be distin-
guished from the remainder of the genome
by a disparate G+C content (19).

Host Selective Pressures: The Innate
and Adaptive Immune Systems

The innate immune system is one of the first
challenges encountered by the incoming
pathogen following host contact. These di-
verse host defenses include physical barriers
such as the mucosal epithelium, activation
of the complement cascade, circulating anti-
microbial peptides and cytokines, leukocytes,
activation of the adaptive immune system,
and sequestration of host nutrients away
from pathogenic bacteria. In addition to
effective evasion of innate immune mecha-
nisms, bacteria must also prevent or avoid
adaptive immune responses, which include B
cell antibody production and T cell–mediated
cytotoxicity. Pathogenic bacteria have evolved
different approaches to overcome these host
defenses.

In the human colon alone, intestinal mi-
crobiota concentrations average 1011 micro-
organisms per gram gut content, while 3 × 108

prokaryotes are thought to colonize the
entire skin surface of the human adult (20).
Consequently, bacteria that exploit more
hostile and less frequently occupied niches
may gain a selective edge in survival by
avoiding sites of high competition. Natural
structural barriers, however, typically pre-
vent pathogens from engaging deeper host
tissues. Physical blocks to infection include
the intestinal and respiratory mucosa, the
blood-brain barrier, the blood–cerebral spi-
nal fluid barrier, and the placental barrier
(21). Most of these structures consist of a
single layer of epithelial or endothelial cells
bound closely together by tight junctions,
adherens junctions, and desmosomes, which
preclude bacteria from passively crossing
(21, 22). Gastric and respiratory epithelia
support an additional protective coating of
mucus, which consists primarily of mucin
glycoproteins and antimicrobial molecules
(23). Mucin glycoproteins, produced by epi-
thelial goblet cells and submucosal glands,
can either remain cell-associated or undergo
secretion into the mucosa, where they con-
tribute to the viscous layer of mucus that can
effectively trap microbes (24). Additionally,
nonspecific antimicrobials, such as defensins
and lysozymes, and specific antimicrobials,
such as IgG and secretory IgA, also limit the
growth of microbes within the mucosa (23).
Bacterial pathogens have developed numer-
ous mechanisms to counteract these defenses.

The mucosal barrier can be broken down
by mucinases such as the Pic enzyme of Shi-
gella and enteroaggregative Escherichia coli
(EAEC) (25, 26). The pic gene is located on a
chromosomal pathogenicity island in Shi-
gella and flanked by insertion-like elements
in EAEC, indicating a history of horizontal
gene transfer in these pathogens (26). This
potential gene transfer is intriguing because
mucin degradation is also important for cer-
tain gastrointestinal commensals, which me-
tabolize mucin glycoproteins for energy (27).
It is tempting to speculate that these enzymes
first evolved within human commensal bac-
teria as a means of nutrient acquisition and
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only later spread to emerging pathogens to
confer passage through the mucosal surface.
Such a concept would support the hypothesis
proposed by Rasko et al., who suggest that
commensal E. coli acts as a “genetic sink” for
pathogenic E. coli isolates (28). Other patho-
gens, such as Yersinia enterocolitica and
Vibrio cholerae, avoid the thickest layers of
the mucosal layer by targeting microfold
cells within the small intestine for uptake
(23, 29). These specialized epithelial cells
sample microorganisms residing in the intes-
tinal lumen and present them to immune
cells in the underlying lymphoid tissue.
Microfold cells are situated in the region of
the epithelium known as the dome, which
lacks mucin-secreting goblet cells (23).

Next, to breach the epithelial/endothelial
barrier, pathogens must either actively cross
using microbial-mediated processes or oppor-
tunistically cross following disruption
of barrier integrity. Some pathogens, such as
Bacteroides fragilis and Staphylococcus aureus,
directly break cell-cell junctions (30, 31).
B. fragilis, an opportunistic pathogen, encodes
a zinc-dependent metalloprotease toxin, BFT
(B. fragilis enterotoxin), which cleaves the
extracellular domain of E-cadherin, a host
zonula adherens protein (30). Like the pic
genes of Shigella and EAEC, the bft gene is
carried on a PAI present in all enterotoxi-
genic B. fragilis strains (32). S. aureus induces
bullous impetigo and staphylococcal scalded
skin syndrome through the actions of three
exfoliative toxins (ETs): ETA, ETB, and ETD
(31). The ETs act as serine proteases which
cleave human desmoglein 1, a transmembrane
protein of desmosomes. The genes encoding
these toxins are carried on different mobile
genetic elements: the ETA gene is carried by a
family of Sa1int phages; the ETB gene is
plasmid-encoded; and the ETD gene localizes
to a 9-kB PAI (33, 34). Other pathogens, such
as Shigella, Salmonella, and Listeria, trans-
cytose through microfold cells in the gut
to gain access to the basolateral surface of
the intestinal epithelium (35). Because these
specialized host cells overlay Peyer’s patches

(or gut-associated lymphoid tissue), enteric
bacteria transcytosed through microfold
cells must then contend with macrophages,
T lymphocytes, B lymphocytes, and dendritic
cells.

As a putative example of counterevolution,
the human host may have developed mech-
anisms to avoid bacterial-mediated adhesion
processes.Helicobacter pylori binds to the ad-
hesion decoy Muc1, a mucin expressed on the
surface of epithelial cells in the gastrointes-
tinal tract (36). Muc1 is subsequently shed
from the epithelial surface along with cou-
pled bacteria, precluding long-term adhesion.
Consequently, wild type mice have a 5-fold
lower H. pylori colonization burden than
Muc1-/- mice. Furthermore, human epidemi-
ological studies have linked shorter Muc1
alleles to a higher probability of chronic gas-
tritis progression, indicating that longer
Muc1 alleles may confer a protective advan-
tage to the host (37). Polymorphisms between
human Muc1 alleles are largely restricted
to the extracellular domain, which consists
of a region of 30 to 90 tandem repeat units
rich in serine and threonine. A study by Costa
et al., demonstrated a significant positive
association between the number of Muc1
tandem repeats and bacterial adherence for
two strains of H. pylori in vitro (38). Longer
Muc1 alleles probably evolved from shorter
alleles via duplication events and may have
emerged to protect against pathogens such as
H. pylori (39).

Complement cascade activation via the
classical, lectin, and alternative pathways pre-
cedes the cleavage of C3 convertase into C3a,
an anaphylatoxin, and C3b, which binds to
the surface of microbes (otherwise known as
opsonization) to promote the eventual clear-
ance of bacteria through phagocytosis. Addi-
tionally, C3 convertase may convert to the
lytic C5 convertase through addition of a C3b
molecule. Pathogens have evolved mecha-
nisms to evade or block these processes (40).
The S. aureus staphylococcal complement in-
hibitor protein stabilizes C3 convertase, pre-
venting its cleavage into the active C3a and
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C3b fragments and attenuating anaphylatoxin
activity and bacterial opsonization (41). Like
many of the previously described pathoge-
nicity factors, the gene encoding staphylo-
coccal complement inhibitor (scn) is located
on a PAI (42). Rather than preventing C3
cleavage, the Neisseria meningitidis serine
protease NalP splits C3 at a unique site, gen-
erating shorter C3a-like and longer C3b-like
fragments (43). The C3b-like fragments are
capable of binding N. meningitidis but are
rapidly degraded by host complement fac-
tors H (fH) and I (fI). Although the activity
of the C3a-like fragment has not been de-
termined, this fragment lacks the conserved
C-terminal arginine residue found in wild
type C3a that is essential for activity, and
therefore this truncated version is likely
inactive.

A final example of an innate host selective
pressure is the sequestration of host resources
or nutrients away from colonizing bacteria.
Iron, an essential nutrient, is in short supply
within the host, either sequestered away in
host cells or stored as a complex in hemoglo-
bin, which is inaccessible to most microbes
(44). Correspondingly, pathogens have been
forced to develop numerous mechanisms to
scavenge host iron. Predictably, these systems
are often iron-regulated, and their genes
are expressed following bacterial exposure
to the low-iron environment of the human
host. Certain surface-bound receptors can
recognize iron-bound complexes, such as
heme, transferrin, or lactoferrin. Additionally,
secreted bacterial siderophores (aerobactin
and enterobactin) steal iron away from host
transferrin and lactoferrin. E. coli strains
can encode for both of these systems (45).
Another putative example of arms race
coevolution is the mammalian neutrophil
gelatinase-associated lipoprotein (NGAL).
NGAL directly binds the catecholate-type
ferric siderophore complexed to iron, pre-
venting bacterial iron sequestration and even-
tually exerting a bacteriostatic effect upon
microbial populations (46). Some bacteria can
even bypass this defense mechanism, however.

Uropathogenic E. coli strains express the
siderophore salmochelin, a glycosylated form
of enterobactin resistant to the effects of
NGAL (47).

Finally, if a pathogen manages to evade the
innate immune system and can successfully
compete with commensal bacteria, it must
then elude host adaptive immune responses,
including B- and T-cell lymphocytes (48).
One bacterial strategy employed in this eva-
sion process inhibits lymphocyte prolifera-
tion. The VacA cytotoxin ofH. pylori blocks the
activity of host calcineurin, leading to down-
stream attenuation of interleukin-2 (IL-2) tran-
scription, a key mediator of T cell proliferation
(49). Alternatively, bacteria can avoid the
adaptive immune response altogether by medi-
ating lymphocyte cell death. For example,
Shigella induces B-cell apoptosis through the
actions of its T3SS (50).

Host Selective Pressures:
Antibiotic Resistance

The rise of adaptive antibiotic resistance in
bacteria is perhaps one of the most intensely
studied examples of pathogen evolution in
response to a specific selective pressure(s)
(51). Blair et al. separated adaptive resistance
mechanisms into three primary categories:
reduced drug permeability through altera-
tions in the bacterial membrane or the de-
velopment of efflux pumps that quickly
expel antimicrobials; prevention of binding
through mutation of antimicrobial targets;
and the direct inactivation of antimicrobial
agents by specific enzymes (51). Well-
characterized efflux pumps include the mul-
tidrug exporters discovered in the common
food-borne pathogens E. coli (ArcAB-TolC),
S. enterica (EmrAB), and S. aureus (QacA/B,
NorA) (52). Linezolid, an oxazolidinone class
antibiotic, binds the 23S rRNA subunit and
blocks tRNA interactions with the A site to
prevent peptide bond formation (53). Un-
surprisingly, linezolid resistance in a num-
ber of bacterial species has been linked to a
G2576T mutation in the 23S rRNA gene,
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precluding linezolid binding at this site and
providing an example of Blair's second
category of adaptive drug resistance (54,
55). Finally, inactivating enzymes such as
beta-lactamases, aminoglycoside acyltrans-
ferases, and monooxygenases are responsi-
ble for the hydrolysis, group transfer, or
oxidation of their respective antibiotics (56,
57).

The rapid spread of antimicrobial resis-
tance, and the rise of multidrug resistance,
is often linked to the HGT dissemination
of genes encoding these enzymes, because
many PAIs and plasmids have been shown
to carry one or more drug-resistance genes
(58). Resistance adaptations often come with
a fitness cost, however, which has been
demonstrated both in vivo and in vitro (59).

Microbial Competition

Competition between microbes undoubtedly
plays a role in driving pathogen evolution,
although this aspect of microbial evolution
has not been widely studied and, except
for a few examples, is still only very poorly
understood. Bacteria can directly eliminate
potential rivals through use of toxic pep-
tides (bacteriocins) or through the utiliza-
tion of type six secretion systems (T6SSs)
(60, 61).

Bacteriocins are toxic peptides produced
by bacteria that can target and kill neighbor-
ing microbes. Colicins, the most well-known
members of this category, are produced by
strains of E. coli, although bacteriocins have
been described in a wide variety of bacteria,
including S. aureus, Pseudomonas pyogenes,
Yersinia pestis, and Serratia marcescens (61,
62). In E. coli, colicins exhibit a number of
different modes of action. Pore-forming coli-
cins, such as colicin A, can insert into the
inner membranes of susceptible bacteria to
create ion channels (63). Nuclease colicins,
such as colicins E9 and E3, translocate across
the outer and inner membranes of a sus-
ceptible bacterium to the cytoplasm, where
they function as DNases (E9) or RNases (E3)

(64, 65). Lastly, colicin M, a unique member
of the colicin family, blocks peptidoglycan
biosynthesis by degrading undecaprenyl
phosphate-linked peptidoglycan precursors.
These lipid-anchored intermediates are crit-
ical for the transport of peptidoglycan sub-
units across the cytoplasmic membrane (66,
67). To protect their own population against
the harmful effects of these toxic peptides,
the producers of colicins must concomitantly
express immunity proteins, which block the
action of their respective colicins. Immunity
proteins of pore-forming colicins sit in the
inner membrane and block colicin insertion.
Nuclease colicin immunity proteins bind to
DNase or RNase colicins to prevent their en-
zymatic activity, and the immunity protein
Cmi binds colicin M to render it catalytically
inactive (61, 68). Competing bacteria can
acquire these immunity proteins via HGT,
providing protection against E. coli colicin
toxicity. For example, Shigella, which does
not produce the pore-forming colicin V,
nevertheless encodes an immunity protein
on its SHI-2 PAI, which protects against
colicin V produced by strains of E. coli (69,
70).

The recently discovered T6SSs of Gram-
negative bacteria are responsible for the
direct delivery of effector proteins into neigh-
boring eukaryotic or bacterial cells, resulting
in the death of host cells or the lysis of po-
tential microbial competitors (71). VgrG1,
an ADP-ribosyltransferase, is secreted from
the Aeromonas hydrophila T6SS into host
cells, where it disrupts the actin cytoskeleton
and induces host cell apoptosis (72). Most of
the described T6SS effectors, however, have
been shown to target other microbes. The
T6SS-exported proteins 1 and 3 (Tse1 and
Tse3) of P. aeruginosa exhibit amidase and
muramidase activity, respectively, against bac-
terial peptidoglycan (73). P. aeruginosa also
encodes type VI lipase effector (Tle) proteins,
which degrade the bacterial phospholipid
phosphatidylethanolamine (74). In Dickeya
dadantii, the Rhs (rearrangement hotspots)
proteins RhsA and RhsB are secreted through
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the T6SS and function as toxic endonucle-
ases in susceptible bacteria. While D. dadantii
is a plant pathogen, the human pathogen
S. marcescens also expresses a T6SS-secreted
Rhs-family protein, although its function is
unknown (75, 76). Similar to the colicin pro-
teins, pathogens which encode a T6SS must
also express immunity proteins to prevent
self-killing. P. aeruginosa encodes T6SS im-
munity 1 and 3 (Tsi1 and Tsi3) proteins,
which interact with and inactivate Tse1 and
Tse3 through mechanisms that are not yet
understood (73).

Intriguingly, T6SSs may also be effective
tools for gene acquisition via HGT. In
V. cholerae, the T6SS is coregulated with
competence genes by the regulator TfoX, and
transformation events are dependent upon
the presence of an active T6SS (77). Borgeaud
et al., suggest that following activation of
TfoX, both competence and T6SS systems
are expressed and assembled. After T6SS-
mediated lysis of neighboring cells, DNA is
released to the extracellular space, where it
can then transform the competent bacterium
(77).

CONCLUDING REMARKS

Bacterial pathogens within the human host
are exposed to a vast variety of selective
pressures which shape bacterial genomes and
drive the evolution of novel virulence factors.
Concomitantly, human genomes also evolve
as a result of these interactions, leading to a
genetic arms race between pathogens and
their hosts. In bacteria, HGT can enhance
this process by allowing for the rapid dis-
semination of potentially beneficial alleles
across strains or even species.
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