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Anca Rǎdulescu, Deena Schmidt and Imelda Trejo

v



vi Contents

A Framework for Performing Data-Driven Modeling of Tumor
Growth with Radiotherapy Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Heyrim Cho, Allison L. Lewis, Kathleen M. Storey, Rachel Jennings,
Blerta Shtylla, Angela M. Reynolds, and Helen M. Byrne

Correction to: Investigating the Impact of Combination Phage
and Antibiotic Therapy: A Modeling Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1



Collaborative Workshop for Women
in Mathematical Biology

Rebecca Segal, Blerta Shtylla, and Suzanne Sindi

1 Aim and Scope

Biological systems are complex and highly interconnected. Despite increasing
amounts of information collected, it is not always clear how to use these data
to make conclusions and predictions. Mathematical models are powerful tools in
biology because they allow us to abstract the biological system in order to frame
questions, explore patterns and synthesize information. Indeed, we are writing these
remarks during the COVID-19 Pandemic which has illustrated in a staggering
way the importance of quantitative modeling in aiding our understanding of
complex biological processes. This volume contains the scientific and collaborative
work from the Collaborative Workshop for Women in Mathematical Biology. The
workshop brought together forty-five researchers to collaborate on seven problems
each of which used mathematics to understand complex biological systems. The
workshop was held at the Institute of Pure and Applied Mathematics on the campus
of University of California, Los Angeles from June 17-21, 2019 in Los Angeles, CA
and was organized by Rebecca Segal, Blerta Shtylla, and Suzanne Sindi. The articles
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2 R. Segal et al.

contained in this volume were initiated during the intensive one-week workshop and
continued through follow-up collaborations afterwards.

2 History and Context

Historically, women have been underrepresented in the mathematical sciences.
Although progress has been made, the numbers remain unbalanced. In the most
recent American Mathematical Society Survey from 2017, only 17% of tenure-
track mathematics faculty in doctoral departments are female (http://www.ams.org/
profession/data/annual-survey/demographics). A specific breakdown of distribution
within different types of institutions (https://www.womendomath.org/research/)
gives an even more compelling picture of why research workshops such as this one
can be so valuable for the mathematics community. Research mentoring and support
from senior mentors is one key to success and a workshop environment provides a
significant amount of interaction in a concentrated amount of time.

The primary aim of the Women in Mathematical Biology (WIMB) workshops is
to foster research collaboration among women in mathematical biology. Participants
spend a week making progress on a research project and encouraging innovation
in the application of mathematical, statistical, and computational methods in the
resolution of significant problems in the biosciences. The workshops have a special
format designed to maximize the opportunities to collaborate. The groups are
structured to facilitate tiered mentoring. Each group has a senior researcher who
presents a problem. This person is matched with a co-leader, typically a researcher
in their field but with whom they have not previously collaborated. The groups are
rounded out with researchers at various career stages. By matching senior research
mentors with junior mathematicians, we expand and support the community of
scholars in the mathematical biosciences. To date, WIMB workshops have occurred
at the Institute for Mathematics and its Applications (IMA, https://www.ima.umn.
edu/), the National Institute for Mathematical and Biological Synthesis (NIMBioS,
http://www.nimbios.org/), the Mathematical Biosciences Institute (MBI,https://mbi.
osu.edu/), and most recently at the Institute of Pure and Applied Mathematics
(IPAM, https://www.ipam.ucla.edu/). These workshops have been sponsored by an
ADVANCE grant from the National Science Foundation to the Association for
Women in Mathematics. This award has helped establish research networks in 21
different areas of mathematics research including Control, Commutative Algebra,
Geometry, Data Science, Materials, Operator Algebras, Analysis, Number Theory,
Shape, Topology, Numerical Analysis, and Representation Theory.

For the Mathematical Biology workshops, each group continues their project
together to obtain results that are submitted to the peer-reviewed AWM Proceedings
volume for the workshop. The benefit of such a structured program with leaders,
projects and working groups planned in advance is based on the successful Women
In Numbers (WIN) conferences and works in both directions: senior women will
meet, mentor, and collaborate with the brightest young women in their field on a

http://www.ams.org/profession/data/annual-survey/demographics
http://www.ams.org/profession/data/annual-survey/demographics
https://www.womendomath.org/research/
https://www.ima.umn.edu/
https://www.ima.umn.edu/
http://www.nimbios.org/
https://mbi.osu.edu/
https://mbi.osu.edu/
https://www.ipam.ucla.edu/
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part of their research agenda of their choosing, and junior women and students will
develop their network of colleagues and supporters and encounter important new
research areas to work in, thereby improving their chances for successful research
careers.

One of the most critical workshop goals is help establish supportive and
productive research groups that are sustained well beyond the workshop. Below we
include some representative statements from participants shared with us when we
surveyed them at the end of the workshop to assess their opinion of the workshop
structure and the impact of the workshop on their careers. The group dynamics were
overwhelmingly listed as a positive experience:“The opportunity to work with, share
ideas, and learn from a group made up entirely of female mathematicians.” Some
participants appreciated the format of the workshop for allowing “Exclusive time
spent working with talented people on a new project.” Participants left the workshop
satisfied with their experience: “Establishing a new group of collaborators. I’ve
honestly never developed this skill and I’m glad to have had this opportunity.”
The workshop sometimes stretched participants out of their comfort zone while still
providing a positive experience: “Watching in awe as phenomenal women worked
on math and bio. I tried my best to contribute, and although I felt like I still lacked
a lot of background to really make a real impact, it was really inspirational to
learn from women established in their careers. I definitely have a lot more role
models at the end of this trip! The industry panel was helpful in showing me more
career opportunities for a mathematical biologist.” The group leaders were pleased
with the work produced by their teams and all of the participants learned new
mathematics, new biology, or new computational tools to move the research project
in a productive direction. Finally, as organizers we have been delighted to see the
teams initiated at these workshops produce new research projects, papers, proposals
and other scholarly products far beyond the scope of the original team lead project.

3 Research

Within this volume are mathematical research papers covering a wide range of
application areas. The work can be loosely grouped into a few general application
areas: structural organization of biological material, infection modeling, and disease
treatment. Throughout this research are discussions of how to create accurate
models with limited data, how to work across biological scales, and how to best
describe complex structures in a useful manner.

Several teams had research related to the structural organization of organisms.
One project focused on how the protein actin helps form larger structures within
a cell. Other projects studied DNA topology and DNA secondary structure to
understand the design and replication mechanisms in organisms. Actin assembles
into semi-flexible filaments that cross-link to form higher order structures within the
cytoskeleton. This study focused on the dynamics of the formation of a branched
actin structure as observed at the leading edge of motile eukaryotic cells. They
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constructed a minimal agent-based model for the microscale branching actin dynam-
ics, and a deterministic partial differential equation model for the macroscopic
network growth and bulk diffusion. Their results suggest that perturbations to
microscale rates can have significant consequences at the macroscopic level, and
these should be taken into account when proposing continuum models of actin
network dynamics.

DNA topology, formal grammar R-loops, are three-stranded nucleic acid struc-
tures consisting of two DNA strands and one RNA strand. They form naturally
during transcription when the nascent RNA hybridizes to the template DNA strand,
forcing the coding DNA strand to wrap around the RNA:DNA duplex. In their study,
this team used words generated by the grammars to represent topological segments
of the DNA:DNA and RNA:DNA interactions. They extended this model to include
properties of the DNA nucleotide sequence.

A third group explored the extent to which graph algorithms for community
detection can improve the mining of structural information from the predicted
Boltzmann/Gibbs ensemble for the biological objects known as RNA secondary
structures. Since more structural information is obtained in 50% of the test cases,
this proof-of-principle analysis supports efforts to improve the data mining of RNA
secondary structure ensembles.

Two groups worked broadly in the area of infection: one group examined disease
spread across geographic regions while another group explored in host resolution
of infection. How do interventions impact malaria dynamics between neighboring
countries? Although many countries world wide have taken measures to decrease
the incidence of malaria many regions remain endemic, and in some parts of the
world malaria incidence is increasing. This team considered the case of neighboring
countries Botswana and Zimbabwe, connected by human mobility. They used a
two-patch Ross-MacDonald Model with Lagrangian human mobility to examine
the coupled disease dynamics between these two countries.

Antimicrobial resistance (AMR) is a serious threat to global health today.
The spread of AMR, along with the lack of new drug classes in the antibiotic
pipeline, has resulted in a renewed interest in phage therapy, which is the use of
bacteriophages to treat pathogenic bacterial infections. These researchers utilized
a mathematical model to examine the role of the immune response in concert
with phage-antibiotic combination therapy compounded with the effects of the
immune system on the phages being used for treatment. They explored the effect
of phage-antibiotic combination therapy by adjusting the phage and antibiotics dose
or altering the timing. Their results show that it is important to consider the host
immune system in mathematical models and that frequency and dose of treatment
are important considerations for the effectiveness of treatment.

Finally, two groups worked broadly in the area of disease progression and
treatment. One group developed a model for retinal degeneration while the other
focused on radiation therapy for cancerous tumors. In the retina, photoreceptor
degeneration can result from imbalance in lactate production and consumption as
well as disturbances to pyruvate and glucose levels. To identify the key mechanisms
in metabolism that may be culprits of this degeneration, they used a nonlinear
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system of differential equations to mathematically model the metabolic pathway
of aerobic glycolysis in a healthy cone photoreceptor. Their model allowed them
to analyze the levels of lactate, glucose, and pyruvate within a single cone cell.
They performed numerical simulations, used available metabolic data to estimate
parameters and fit the model to this data, and conducted a sensitivity analysis using
two different methods (LHS/PRCC and eFAST) to identify pathways that have the
largest impact on the system.

Recent technological advances make it possible to collect detailed information
about tumors, and yet clinical assessments about treatment responses are typically
based on sparse datasets. In this work, one team proposed a workflow for choosing
an appropriate model, verifying parameter identifiability, and assessing the amount
of data necessary to accurately calibrate model parameters. They considered a
simple, one-compartment ordinary differential equation model which tracks tumor
volume and a two-compartment model that accounts for tumor volume and the
fraction of necrotic cells contained within the tumor.

4 Concluding Remarks

It merits note that the majority of revisions for this volume were accomplished
during the COVID-19 pandemic; we are both grateful for and proud of the hard work

Fig. 1 Group photograph of the workshop participants
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of our participants during these challenging times. Workshop groups are continuing
to work on furthering the projects and presenting their work at conferences. Past
workshops have had successful research collaborations last for years following the
workshop. The more community building we can accomplish, the higher the rate of
success for women and mathematics. This means more innovative research will be
produced and built upon by the entire mathematics community (Fig. 1).

Acknowledgments The work described herein was initiated during the Collaborative Workshop
for Women in Mathematical Biology hosted by the Institute for Pure and Applied Mathematics at
the University of California, Los Angeles in June 2019. Funding for the workshop was provided
by IPAM, the Association for Women in Mathematics’ NSF ADVANCE “Career Advancement
for Women Through Research-Focused Networks” (NSF-HRD 1500481) and the Society for
Industrial and Applied Mathematics.



Connecting Actin Polymer Dynamics
Across Multiple Scales

Calina Copos, Brittany Bannish, Kelsey Gasior, Rebecca L. Pinals,
Minghao W. Rostami, and Adriana T. Dawes

Abstract Actin is an intracellular protein that constitutes a primary component of
the cellular cytoskeleton and is accordingly crucial for various cell functions. Actin
assembles into semi-flexible filaments that cross-link to form higher order structures
within the cytoskeleton. In turn, the actin cytoskeleton regulates cell shape, and
participates in cell migration and division. A variety of theoretical models have been
proposed to investigate actin dynamics across distinct scales, from the stochastic
nature of protein and molecular motor dynamics to the deterministic macroscopic
behavior of the cytoskeleton. Yet, the relationship between molecular-level actin
processes and cellular-level actin network behavior remains understudied, where
prior models do not holistically bridge the two scales together.

In this work, we focus on the dynamics of the formation of a branched actin
structure as observed at the leading edge of motile eukaryotic cells. We construct
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a minimal agent-based model for the microscale branching actin dynamics, and
a deterministic partial differential equation (PDE) model for the macroscopic
network growth and bulk diffusion. The microscale model is stochastic, as its
dynamics are based on molecular level effects. The effective diffusion constant and
reaction rates of the deterministic model are calculated from averaged simulations
of the microscale model, using the mean displacement of the network front and
characteristics of the actin network density. With this method, we design concrete
metrics that connect phenomenological parameters in the reaction-diffusion system
to the biochemical molecular rates typically measured experimentally. A parameter
sensitivity analysis in the stochastic agent-based model shows that the effective
diffusion and growth constants vary with branching parameters in a complementary
way to ensure that the outward speed of the network remains fixed. These results
suggest that perturbations to microscale rates can have significant consequences
at the macroscopic level, and these should be taken into account when proposing
continuum models of actin network dynamics.

Keywords Actin · Differential equations · Stochastic model · Sensitivity
analysis · Cytoskeleton

1 Introduction

A cell’s mechanical properties are determined by the cytoskeleton whose primary
components are actin filaments (F-actin) [1–4]. Actin filaments are linear polymers
of the abundant intracellular protein actin [5–7], referred to as G-actin when not
polymerized. Regulatory proteins and molecular motors constantly remodel the
actin filaments and their dynamics have been studied in vivo [8], in reconstituted in
vitro systems [2, 9], and in silico [10]. Actin filaments are capable of forming large-
scale networks and can generate pushing, pulling, and resistive forces necessary
for various cellular functions such as cell motility, mechanosensation, and tissue
morphogenesis [8]. Therefore, insights into actin dynamics will advance our
understanding of cellular physiology and associated pathological conditions [2, 11].

Actin filaments in cells are dynamic and strongly out of equilibrium. The
filaments are semi-flexible, rod-like structures approximately 0.007 μm in diameter
and extending several microns in length, formed through the assembly of G-actin
subunits [6, 7]. A filament has two ends, a barbed end and a pointed end, with
distinct growth and decay properties. A filament length undergoes cycles of growth
and decay fueled by an input of chemical energy, in the form of ATP, to bind
and unbind actin monomers [6, 7]. The rates at which actin molecules bind and
unbind from a filament have been measured experimentally [3, 12, 13]. The cell
tightly regulates the number, density, length, and geometry of actin filaments [7].
In particular, the geometry of actin networks is controlled by a class of accessory
proteins that bind to the filaments or their subunits. Through such interactions,
accessory proteins are able to determine the assembly sites for new filaments,
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change the binding and unbinding rates, regulate the partitioning of polymer
proteins between filaments and subunit forms, link filaments to one another, and
generate mechanical forces [6, 7]. Actin filaments have been observed to organize
into branched networks [14, 15], sliding bundles extending over long distances [16],
and transient patterns including vortices and asters [17, 18].

To generate pushing forces for motility, the cell uses the energy of the growth or
polymerization of F-actin [19, 20]. Actin polymerization powers the formation of
flat cellular protrusions, known as lamellipodia, found at the leading edge of motile
cells [8, 21]. Microscopy of the lamellipodial cytoskeleton has revealed multiple
branched actin filaments [15]. The branching structure is governed by the Arp2/3
protein complex, which binds to an existing actin filament and initiates growth
of a new “daughter” filament through a nucleation site at the side of preexisting
filaments. Growth of the “daughter” filament occurs at a tightly regulated angle of
70◦ from the “parent” filament due to the structure of the Arp2/3 complex [22].
The directionality of pushing forces produced by actin polymerization originates
from the uniform orientation of polymerizing actin filaments with their barbed ends
towards the leading edge of the cell [8]. Here, cells exploit the polarity of filaments,
since growth dynamics are faster at barbed ends than at pointed ends [23, 24].
Polymerization of individual actin filaments produces piconewton forces [25], with
filaments organized into a branched network in lamellipodia or parallel bundles in
filopodia [15]. The localized kinetics of growth, decay, and branching of a protrusive
actin network provide the cell with the scaffold and the mechanical work needed for
directed movement.

Many mathematical models have been developed to capture the structural forma-
tion and force generation of actin networks [20, 26, 27]. Due to the multiscale nature
of actin dynamics, two main approaches are used: agent-based methods [27–29] and
deterministic models using PDEs [30–33]. The effects of different molecular com-
ponents (e.g., depolymerization, stabilizers) on the architecture of a protrusive actin
network has been studied with detailed hybrid micro-macroscopic models [34, 35].
While both techniques are useful for understanding actin dynamics, each presents
limitations. Agent-based models more closely capture the molecular dynamics of
actin by explicitly considering the behavior of actin molecules through rules, such
as, bind to the closest filament at a particular rate. In general, agent-based models
simulate the spatiotemporal actions of certain microscopic entities, or “agents”,
in an effort to recreate and predict more complex large-scale behavior. In these
simulations, agents behave autonomously and through simple rules prescribed at
each time step. The technique is stochastic and can be interpreted as a coarsening of
Brownian and Langevin dynamical models [36]. However, agent-based approaches
are computationally expensive: at every time step, they specifically account for the
movement and interaction of individual molecules, while also assessing the effects
of spatial and environmental properties that ultimately result in the emergence of
certain large-scale phenomena, such as crowding. Such approaches benefit from the
direct relationship to experimental measurements of parameters, yet they present a
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further computational cost in that many instances of a simulation are needed for
reliable statistical information. Agent or rule-based approaches have been used to
reveal small-scale polymerization dynamics in actin polymer networks [26, 37],
but due to the inherent computational complexity, it remains unclear how this
information translates to higher length scales, such as the cell, tissue, or whole
organism.

To overcome such computational costs and still gain a mechanistic under-
standing of actin processes, one approach is to write deterministic equations that
“summarize” all detailed stochastic events. These approaches rely on differential
equations to predict a coarse-grained biological behavior by assuming a well-
mixed system where the molecules of interest exist in high numbers [20, 38–40]
and the spread of the polymer network can be qualitatively approximated by
a diffusion process [41, 42]. In continuum models, the stochastic behavior of
the underlying molecules are typically ignored. While continuum models can be
explored via traditional mathematical analysis, the challenge lies in determining the
terms and parameters of these equations that are representative of the underlying
physical system. Thus, these methods use phenomenological parameters of the
actin network, such as bulk diffusion and reaction terms, that are less readily
obtained experimentally. The relationship between molecular-level actin processes
and cellular-level actin network behavior remains disconnected. This disconnect
presents a unique challenge in modeling actin polymers in an active system across
length scales.

In this work, we design a systematic and rigorous methodology to com-
pare and connect actin molecular effects in agent-based stochastic simulations to
macroscopic behavior in deterministic continuum equations. Measures from these
distinct-scale models enable extrapolation from the molecular to the macroscopic
scale by relating local actin dynamics to phenomenological bulk parameters. First,
we characterize the dynamics of a protrusive actin network in free space using
a minimal agent-based model for the branching of actin filaments from a single
nucleation site based on experimentally measured kinetic rates. Second, in the
macroscopic approach, we simulate the spread of actin filaments from a point source
using a partial differential equation model. The model equation is derived from
first principles of actin filament dynamics and is found to be Skellam’s equation
for unbounded growth of a species together with spatial diffusion. To compare the
emergent networks, multiple instances of the agent-based approach are simulated,
and averaged effective diffusion coefficient and reaction rate are extracted from
the mean displacement of the advancing network front and from the averaged
network density. We identify two concrete metrics, mean displacement and the
averaged filament length density, that connect phenomenological bulk parameters
in the reaction-diffusion systems to the molecular biochemical rates of actin
binding, unbinding, and branching. Using sensitivity analysis on these measures,
we demonstrate that the outward movement of the actin network is insensitive to
changes in parameters associated with branching, while the bulk growth rate and
diffusion coefficient do vary with changes in branching dynamics. We further find
that the outward speed, growth rate constant, and effective diffusion increase with
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F-actin polymerization rate but decrease with increasing depolymerization of actin
filaments. By formalizing the relationship between micro- and macro-scale actin
network dynamics, we demonstrate a nonlinear dependence of bulk parameters on
molecular characteristics, indicating the need for careful model construction and
justification when modeling the dynamics of actin networks.

2 Mathematical Models

2.1 Microscale Agent-Based Model

2.1.1 Model Description

We build a minimal, agent-based model sufficient to capture the local microstructure
of a branching actin network. This model includes the dynamics of actin filament
polymerization, depolymerization, and branching from a nucleation site [1, 2, 43,
44]. We treat F-actin filaments as rigid rods. Each actin filament has a base (pointed
end) fixed in space and a tip (barbed end) capable of growing or shrinking due
to the addition or removal of actin monomers, respectively. We assume that there
is an unlimited pool of actin monomers available for filament growth, in line
with normal, intracellular conditions [3]. For simplicity, we neglect the effects of
barbed end capping, mechanical response of actin filaments, resistance of the plasma
membrane, cytosolic flow, and molecular motors and regulatory proteins. Motivated
by the short timescale of the initial burst of a growing actin network, we assume
that the pointed end of actin filaments is stabilized at a nucleation site, and thus, do
not account for the turnover dynamics at the pointed end. The physical setup of the
model is similar to conditions associated with in vitro experiments, as well as initial
actin network growth in cells, before components such as actin monomers become
limiting.

2.1.2 Numerical Implementation

At the start of each simulation, an actin filament of length zero is assigned an angle
of growth from the nucleation site (located at the origin) from a uniform random
distribution. Once a filament is prescribed a direction of growth, it will not change
throughout the time-evolution of that particular filament. At each subsequent time
step in the simulation, there are four possible outcomes: (i) growth of the filament
with probability ppoly, (ii) shrinkage of the filament with probability pdepoly, (iii) no
change in filament length, or (iv) branching of a preexisting filament into a “daugh-
ter” filament with probability pbranch provided that the “parent” filament has reached
a critical length Lbranch, measured from the closest branch point. To determine
which outcome occurs, two random numbers are independently generated for each
filament. The first random number governs polymerization (i) or depolymerization
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(ii): if the random number is less than ppoly, polymerization occurs, and if greater
than 1 − pdepoly, depolymerization occurs. If the first random number is greater
than or equal to ppoly and less than or equal to 1 − pdepoly, then the filament neither
polymerizes nor depolymerizes this time step, and therefore remains the same length
(iii). Similarly, if the random number is simultaneously less than ppoly and greater
than 1 − pdepoly, then both polymerization and depolymerization occur within this
time step, and therefore the filament remains the same length (iii). Both filament
growth and shrinkage occur in discrete increments corresponding to the length of a
G-actin monomer, Δx = 0.0027 μm [4]. We enforce that a filament of length zero
cannot depolymerize.

The second random number pertains to filament branching (iv). For filaments of
length greater than Lbranch, a new filament can be initiated at a randomly oriented
70◦-angle from a preexisting filament tip in correspondence with the effect of
Arp2/3 protein complex. If the second random number is less than the probability
of branching, pbranch, for the given filament, then the filament will branch and
create a “daughter” filament now capable of autonomous growth and branching.
This branching potential models the biological effect of the Arp2/3 complex without
explicitly including Arp2/3 concentration as a variable.

The step-wise process is repeated until the final simulation time is reached.
Simulation steps are summarized graphically in Fig. 1. All parameters for the
model are listed in Table 1. We calculate several different measurements from the
microscale simulation, as described below.

2.1.3 Parameter Estimation

Actin dynamics have been extensively studied in vivo and in vitro, providing many
rate constants used in this study. A 10 μM actin monomer concentration elongates
the barbed ends of F-actin filaments at a reported velocity of 0.3 μm/s [3]. We use
this measurement to calculate the polymerization probability, ppoly, via the formula:

assembly rate = polymerization probability × length added to filament

× number of timesteps per second (1)

0.3 μm
s = ppoly × 0.0027 μm × 1

0.005 s
, (2)

which implies that ppoly = 0.56. For simplicity, we round this probability to ppoly =
0.6 in the microscale model simulations. ADP-actin has a depolymerization rate of
4.0 1/s at the barbed ends of actin filaments [3]. This measurement represents the
rate of depolymerization of one actin subunit per second, thus a filament loses length
at a rate of

4.0 subunit
s × 0.0027 μm

subunit = 0.0108 μm
s . (3)
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Fig. 1 Flow chart of the algorithm implemented for the agent-based microscale model. All steps
following “Initialization” are repeated at every time step

To calculate the depolymerization probability, pdepoly, we use the analogous for-
mula:

disassembly rate = depolymerization probability × length removed from filament

× number of timesteps per sec (4)

0.0108 μm
s = pdepoly × 0.0027 μm × 1

0.005 s
, (5)

which yields pdepoly = 0.02.
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Table 1 Microscale model parameter values. Details on parameter estimation are available in
Sect. 2.1.3. Values flagged with one star (∗) were calculated from [3] and depend on the time
step as indicated in Eqs. 2 and 5. The value flagged with a dagger (†) is motivated by literature
measurements of actin filament length per branch which vary from 0.02 to 5 μm [15, 45–49]

Parameter Meaning Value

pbranch Probability of branching normal CDF

ppoly Probability of polymerizing 0.6∗

pdepoly Probability of depolymerizing 0.02∗

Lbranch Critical length before branching can occur 0.2 μm†

Tend Total run time 10 s

Δt Time step 0.005 s

nsim Number of independent simulations 10

Model parameter Lbranch represents the critical length a filament must reach
before branching can occur. Literature estimates for the spacing of branching Arp2/3
complexes along a filament vary widely, from 0.02 to 5 μm [15, 45–49]. We choose
an intermediate estimate, Lbranch = 0.2 μm, which is of similar order to the
values from other studies [48, 49]. The branching probability, pbranch, is chosen
from a cumulative distribution function (CDF) of the standard normal distribution
with mean, μ = 2 and standard deviation, σ = 1. For in vitro systems, branch
formation is inefficient because once an Arp2/3 complex is bound to a filament, the
reported branching rate is slow (estimated to be 0.0022−0.007 s−1) [49]. Given the
relative dynamic scales of polymerization/depolymerization versus branching, we
assume that (de)polymerization occurs at a prescribed rate, but because branching
is infrequent, its probability is drawn from a distribution function.

The three microscale model probabilities are calculated in a time-step-dependent
manner, such that the results of the microscale simulation are independent of
the value of Δt , for a given time step for which calculated polymerization and
depolymerization probabilities are not greater than 1. For example, polymerization
and depolymerization probabilities are obtained using Eqs. 1 and 4. From Eqs. 1
and 2 we see that the largest possible value of Δt consistent with a probability
less than or equal to 1 is 0.009 s. The branching probability, pbranch, is always
obtained using the CDF described in the preceding paragraph, but branching is
only allowed to happen at fixed time intervals of 0.005 s. Using the Δt value from
Table 1, branching can occur every time step with probability pbranch. If, instead,
Δt = 0.0025 s, branching can occur every other time step with probability pbranch.
Simulations in this study were performed with a time step Δt = 0.005 to ensure
that all results are internally consistent and comparable.
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2.2 Macroscale Deterministic Model

2.2.1 Model Description

We model the growth and spread of a branching actin network through a reaction-
diffusion form of the chemical species conservation equation derived in Sect. 2.2.2.
This form is frequently known as Skellam’s equation, applied to describe popu-
lations that grow exponentially and disperse randomly [50]. The two-dimensional
Skellam’s equation is

∂ũ

∂t
= D

(
∂2ũ

∂x2 + ∂2ũ

∂y2

)
+ rũ. (6)

In the context of our actin network, ũ(x, y, t) is a dimensionless, normalized number
density of polymerized actin monomers at location (x, y) and time t , D is the
diffusion coefficient of the network (network spread), and r is the effective growth
rate constant (network growth). More precise definitions of ũ and r will be given
in Sect. 2.2.2. Note that the diffusion coefficient is in reference to the bulk F-actin
network spread, rather than representing Fickian behavior of monomers as has been
done in previous literature [31, 40]. We use no flux boundary conditions in Eq. 6 to
enforce no flow of actin across the cell membrane. For the initial condition of Eq. 6,
we prescribe a point source at the origin.

2.2.2 Derivation of Reaction Term from First Principles

We present a derivation of the reaction term in Skellam’s continuum description
(Eq. 6) from simple kinetic considerations of actin filaments which include poly-
merization, depolymerization, and branching.

First, we write the molecular scheme for actin filament polymerization and
depolymerization in the form of chemical equations. We denote a G-actin monomer
in the cytoplasmic pool by M , an actin polymer chain consisting of n − 1 subunits
by pn−1, and a one monomer longer actin polymer chain by pn. The process of
binding and unbinding of an actin monomer is described by the following reversible
chemical reaction:

M + pn−1

kf−⇀↽−
kr

pn . (7)

The constants kf and kr represent the forward and reverse rate constants, respec-
tively, and encompass the dynamics that lead to the growth/shrinking of an actin
filament.
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Next, the biochemical reaction in Eq. 7 can be translated into a differential
equation that describes rates of change of the F-actin network density. To write the
corresponding equations, we first use the law of mass action which states that the
rate of reaction is proportional to the product of the concentrations. Then, the rates
of the forward (rf ) and reverse (rr ) reactions are:

rf = kf [M] [pn−1], (8)

rr = kr [pn], (9)

where brackets denote concentrations of M, pn−1, and pn, in number per unit
area. This single actin polymerization/depolymerization reaction can be extended
to capture all actin filaments reacting simultaneously across the network as follows:

rf = kf [M] [Pn−1], (10)

rr = kr [Pn], (11)

where we define

Pn =
n∑

i=2

i [pi]. (12)

Under the assumption that the forward and reverse reactions are each elementary
steps, the net reaction rate is

rnet = rf − rr = kf [M] [Pn−1] − kr [Pn]. (13)

We note that the monomer concentration [M] can be eliminated from Eq. 13 if it is
expressed in terms of initial concentration of monomers in the cell cytoplasm [M]0:

[M] = [M]0 −
n∑

i=2

i [pi] = [M]0 − [Pn]. (14)

Lastly, we note that [Pn] = [Pn−1] + n [pn]. We can assume a minor contribution
from actin polymers at this maximum length, such that [Pn] ≈ [Pn−1]. Then, Eq. 13
becomes

rnet = kf

(
[M]0 − [Pn]

)
[Pn] − kr [Pn], (15)

and can be further simplified if we divide both sides of the equation by [M]0:

rnet

[M]0
= [M]0

[Pn]
[M]0

[(
1 − [Pn]

[M]0

)
kf − 1

[M]0
kr

]
. (16)


