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Preface

This book provides a selection of papers developed from talks presented at the
Fourth Conference of the International Society for Nonparametric Statistics
(ISNPS), held in Salerno (Italy) June 11-15, 2018. The papers cover a wide
spectrum of subjects within nonparametric and semiparametric statistics, including
theory, methodology, applications, and computational aspects. Among the most
common and relevant topics in the volume, we mention nonparametric curve
estimation, regression smoothing, models for time series and more generally
dependent data, varying coefficient models, symmetry testing, robust estimation,
rank-based methods for factorial design, nonparametric and permutation solution
for several different data, including ordinal data, spatial data, survival data and the
joint modeling of both longitudinal and time-to-event data, permutation and
resampling techniques, and practical applications of nonparametric statistics.

ISNPS was founded in 2010 “to foster the research and practice of nonpara-
metric statistics, and to promote the dissemination of new developments in the field
via conferences, books, and journal publication”. ISNPS had a distinguished
Advisory Committee that included R. Beran, P. Bickel, R. Carroll, D. Cook, P. Hall.
R. Johnson, B. Lindsay, E. Parzen, P. Robinson, M. Rosen-blatt, G. Roussas, T.
SubbaRao, and G. Wahba; an Executive Committee that comprised of M. Akritas,
A. Delaigle, S. Lahiri and D. Politis; and a Council that included P. Bertail, G.
Claeskens, R. Cao, M. Hallin, H. Koul, J.-P. Kreiss, T. Lee, R. Liu, W. Gonzdles
Maintega, G. Michailidis, V. Panaretos, S. Paparoditis, J. Racine, J. Romo, and Q.
Yao.

The 4th ISNPS conference focused on recent advances and trends in several
areas of nonparametric statistics. It included 12 plenary and special invited sessions,
69 invited sessions, 30 contributed sessions, with about 450 participants from all
over the world, thus promoting and facilitating the exchange of research ideas and
collaboration among scientists and contributing to the further development of the
field.

We would like to thank Dr. Veronika Rosteck and Dr. Tatiana Plotnikova of
Springer for their support in this project. Finally, we are also extremely grateful to
all Referees who reviewed the papers included in this volume, giving a constructive
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feedback on a tight schedule for timely publication of the proceedings. Their
valuable contribution and their efforts significantly improved the quality of this
volume.

Co-editors also wish to thank Chiara Brombin for her great commitment and
support in coordinating and managing the referring and editorial process.

Salerno, Italy Michele La Rocca
Rome, Italy Brunero Liseo
Vicenza, Italy Luigi Salmaso

Co-Editors of the book
and Co-Chairs of the Fourth ISNPS Conference
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Portfolio Optimisation via Graphical )
Least Squares Estimation e

Saeed Aldahmani, Hongsheng Dai, Qiao-Zhen Zhang,
and Marialuisa Restaino

Abstract In this paper, an unbiased estimation method called GLSE (proposed by
Aldahmani and Dai [1]) for solving the linear regression problem in high-dimensional
data (n < p) is applied to portfolio optimisation under the linear regression frame-
work and compared to the ridge method. The unbiasedness of method helps in
improving the portfolio performance by increasing its expected return and decreas-
ing the associated risk when n < p, thus leading to a maximisation of the Sharpe
ratio. The verification of this method is achieved through conducting simulation and
data analysis studies and comparing the results with those of ridge regression. It is
found that GLSE outperforms ridge in portfolio optimisation when n < p.

Keywords Graphical model - Linear regression - Ridge regression

1 Introduction

In the world of finance, investors usually seek to construct a portfolio that maximises
expected returns and minimises their risk through diversifying and computing the
correct weights of the assets in that portfolio. This weights computation can be
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achieved by what is technically known as portfolio optimisation, a problem that
was addressed by Markowitz [14] through utilising a model known as Markowitz
theory. The Markowitz theory for portfolio optimisation stipulates selecting portfolio
weights w that minimise the risk (variance) of the portfolio return for a predetermined
target return. This idea assumes that the future performance of asset returns’ mean
p and variance are known. However, in practice, these two factors are unknown and
should be estimated using a historical dataset. To select an optimal portfolio, investors
need to estimate the covariance matrix X of the returns and take its inverse. This is a
typical inverse problem if the number of assets p is too large in relation to the return
observations n; i.e. the inverse of the covariance matrix of the returns is singular.
Therefore, many regularisation methods have been proposed in the literature to find
covariance matrices and their inverses, such as in Bickel and Levina [2], Huang et
al. [10], Wong et al. [19]. However, the estimates of these methods are biased, which
might give undesirable weights for some higher return assets in portfolio.

Britten-Jones [3] utilised regression in order to find the portfolio weights as fol-
lows:

>

W=, (D

B1,
where /} is the ordinary least squares (OLS) estimate of the coefficient parameter 8
for the linear regression model

y=xB+e, 2

where the response y = 1,.

When n < p, the popular ordinary least square method (OLS) becomes ineffec-
tive, and this has triggered the proposal of many methods to solve this issue, such
as Least Absolute Shrinkage and Selection Operator (LASSO) [18], Least Angle
Regression (LARS) [7] and ridge regression [9]. However, all these methods suffer
from the limitation of giving biased estimates. In addition, LASSO and LARS suffer
from the problem of not selecting more than n covariates [20] and giving a sparse
portfolio. Another problem with some of these methods is over-shrinking the final
regression coefficients [16], which might lead to inaccuracy in portfolio weights.
Apart from these methods, some other related approaches could be found in Can-
des and Tao [4], Meinshausen and Yu [15], DeMiguel et al. [6], Still and Kondor
[17], Carrasco and Noumon [5], Fastrich et al. [8] and Lin et al. [12]. These methods,
however, still give biased estimates and perhaps produce inaccurate weights for some
higher return and less risk assets in the portfolio.

Aldahmani and Dai [1] proposed an unbiased estimation method called GLSE
which can provide unbiased estimates for regression coefficients in high-dimensional
data (n < p). The GLSE method is closely related to the theory of graphical models,
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where least square estimation in conjunction with undirected Gaussian graphical
models is implemented.

GLSE can give unbiased coefficient estimates for all assets, which helps the low-
risk and high return assets maintain their correct weights in the portfolio and conse-
quently assists in maximising their expected returns and lower the associated risk.
Such an advantage will lead to increasing the Sharpe ratio and the expected rate
of returns and decreasing the risk of the portfolio for both in-and-out-of-sample
periods. This is particularly important upon comparison with other regularisation
methods such as ridge, where the weights of low-risk and high return assets may be
sharply reduced due to the method’s biasedness, thus causing the portfolio’s expected
returns to fall down and its risk to rise. Moreover, unlike other regularisation methods
which produce sparse portfolios(such as LASSO and LARS), GLSE and ridge share
the advantage of generating diversified portfolios across a large number of stocks, as
they produce non-sparse portfolios. This diversification of the portfolio leads to low-
ering the risk [13] due to the fact that when one or more sectors of the economy fail
or decline, the rest of the sectors can then mitigate the significant impact of the loss
caused by market fluctuations. However, due to the biasedness of ridge regression,
the weights of some low-risk and high return assets may be sharply reduced, which
may deprive ridge of its ability to reduce the risk through diversifying the assets.
This limitation can clearly be overcome by GLSE due to its unbiasedness feature.

In the rest of the paper, graph theory and Matrices are given in Sect. 2. Section 3
presents the main methodology of GLSE and its properties. Section 4 provides the
algorithm of graph structure selection. Simulation studies are given in Sect. 5, and a
real data analysis is presented in Sect. 6. The study is concluded in Sect. 6.

2 Graph Theory and Matrices

2.1 Graph Theory

An undirected graph G consists of two sets, a set P and a set £. The set P denotes
the vertices representing variables and £ is the set of edges (a subset of P x P)
connecting the vertices [11]. The elements in the set P are usually natural numbers,
ie. P=1,2,..., p, representing the labels of random variables. If all the pairs of
vertices in P in a graph G are joined by an edge, then the graph is complete. If
A C P, the subset A induces a subgraph G4 = (A, £4), where £4 = E N (A x A).
The subset graph G4 is complete if it induces a complete subgraph from G. This
subgraph is maximal if it cannot be extended by including one more neighbouring
vertex. A complete subset that is maximal is called a clique.
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2.1.1 Decomposition of a Graph

A triple (A, B, C) of disjoint subsets of the vertex set P of an undirected graph G is
said to form a decomposition of G if P = A U B U C and the following conditions
hold [11]:

e B separates A from C;
e B is a complete subset of P.

An undirected graph G is considered as decomposable if it holds one of the
following:

e Graph g is complete.
e There is a proper decomposition (A, B, C) into decomposable subgraphs g4 and
gpc where B separates A from C.

Consider a sequence of sets Cy, ..., C, that are the subsets of the vertex set P of
an undirected graph g such that C; U --- U C, = P. If the following holds, then the
given sequence is said to be a perfect sequence [11]:

S;=C;N(C,UC,U---UC;_y) CCi,

where j =2,...,qgandi € {l,..., j — 1}. The sets §; are the separators. These
orderings, if they exist, might not be unique.

2.2 Matrices

A p x p matrix F can be written as (Fy;)i jep. ' € R” represent a vector. Denote
Fup = (Fij)kea,jen,asubmatrix of F. Denote [FAB]F asa p x p-dimensional matrix
obtained by filling up Os, with

n _ |FyxifjeA, keB
([F4s] )jk = {0 otherwise. ©

Similarly, let x4 is a matrix only having covariates with indices in set A and
ssda = X/, x4. Then [(ssds)~" " represents a p x p-dimensional matrix obtained
by filling up Os, with

((ssda)™"),, ifj ke A
0 otherwise.

([ssd)™1") ;= { )
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3 The Idea of GLSE

Suppose that the graph G is decomposable and let C denote the set of cliques and S
denote the set of separators [1]. Then the GLSE is given as follows:

B= [Z[(ssdc)lf - Z[(ssds)l]r} X'y. (5)

CeC SeS

For the existence of the GLSE, the following condition must hold
Condition 3.1 The sample size n > maxcec{|C|}.

For unbiasedness of ﬁ, based on Aldahmani and Dai [1], the following condition is
imposed:

Condition 3.2 Write the cliques and separators of g in the perfect ordering, as
Ci,---,Coand S5, - - -, S,, such that

Xcns, = X5, *Is,,0\8 + El’ E(El) =0,
Xc\8 =X, *Iscns +& EE) =0, k=2,---,q,

where rs, c,\s, are constant matrices with dimensions |s; x (¢ — si)|;

Under Conditions 3.1 and 3.2, Aldahmani and Dai [1] show that the above esti-
mator is unbiased;

E(B) = B.

4 Model Selection

A stepwise selection algorithm has been used by Aldahmani and Dai [1] to find
which graph G is the best for the data. The method considers adding/deleting edges
one by one to/from the current graph. When an edge under consideration is not in
the current graph, it will be added if the addition makes an improvement in terms of
the predetermined criteria; otherwise it will not be added. The same applies to the
case of edge deletion. According to Aldahmani and Dai [1], the best graph is given
by minimising a target function T(8, g, A,):

(B. &, o) =arg min T(B, g, i) (6)
B.g€G . rg

T(B, 8. Ag) = |1y — XBII* + A&l (7
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where G is the set of all possible graphs, A, is a penalty term and |, | is the number
of edges in graph G. The following pseudocode is the algorithm used by Adlahmani
and Dai [1] to find the optimal graph that best fits the data:

Algorithm 1 Pseudocode of the GLSE graph selection

1: Start graph g = (P, £), which can be an empty (or a given decomposable) graph such that
n > maxcec |C| .

2: Generate all possible graphs, g;, such that there is only one edge difference between g; and the
current graph g. All such g; are decomposable and n > maxcec |C|.

3: Find the graph g} and the associated 8 such that g7 minimises the target function T(.) (given in
).

4: Go to step 2 with the selected graph g and iterate until the best one is found.

5: Output g and f!

It is worth noting that step 2 of Algorithm 1 can be improved significantly via
parallel computation.

5 Simulation Study

The aims of this simulation study are to investigate the performance of GLSE in
constructing a saturated optimal portfolio compared to ridge. The graph structure for
the covariates used in generating the dataset under this simulation study is presented
in Fig. 1.

This simulation involves a total of n = 48 observations corresponding to p = 60
variables derived from multivariate normal distribution, with mean 0.01 and variance
covariance matrix ¥, where 36 observations are used for the in-sample period through
estimating the portfolio’s weight and performance (Sharpe ratios, expected returns
and risk), and the remaining observations are used to find the performance of the
portfolio for the out-of-sample period. The true weight of the portfolio w is derived
based on the true covariance matrix X.

Table 1 gives the means of 500 simulated data for the in-and-out-of-sample port-
folio’s Sharpe ratios, expected returns and risk. It shows that out of the 500 simulated
data, the GLSE yields higher means of the portfolio’s Sharpe ratio and lower risk
than the ridge does for the out-of-sample period. However, for the in-sample period,
the ridge gives higher means of the portfolio’s expected returns than the GLSE does.
It should be noted that the ridge portfolio’s risk is very high compared to this under
the GLSE. In addition, the in-sample portfolio’s Sharpe ratio is negative for the ridge
but positive for the GLSE, which is desirable in finance.

The computational burden for the proposed algorithm is not too heavy with modern
parallel computing technology. The computational times for one run of the above
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Fig. 1 Graph structure for covariates under the simulation study

Table 1 The in-and-out-of-sample portfolio’s Sharpe ratios, expected returns and risk from the
simulated data

Ridge GLSE
In sample Out of sample In sample Out of sample
Sharpe ratio —0.007 0.005 0.733 0.570
Expected returns 0.149 0.030 0.127 0.107
Portfolio’s risk 1.282 1.236 0.526 0.516
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Table 2 Portfolio size and in- and out-of sample portfolio’s Sharpe ratios, expected returns and
risk find by the ridge and GLSE

Portfolio size Methods Sharpe ratio | Expected Portfolio’s
returns risk

150 stocks (in sample) Ridge 0.719 0.097 0.134
GLSE 2.023 0.061 0.030

150 stocks (out of sample) Ridge —-0.074 —0.010 0.135
GLSE 0.117 0.015 0.130

200 stocks (in sample) Ridge 0.792 0.056 0.071
GLSE 0.963 0.046 0.047

200 stocks (out of sample) Ridge 0.150 0.013 0.086
GLSE 0.224 0.015 0.068

generated datasets for both serial and parallel computing are considered. It is noted
that on a machine with 8 GB of memory and 3.60 GHz processor, the time taken
is approximately 20 min. When the parallel processing was used, with 5 cores, the
computational time reduced to approximately 2 min.

6 Data Analysis

Monthly returns of 875 stocks listed on the New York Stock Exchange (NYSE) cov-
ering the period from 02/12/2007 to 02/12/2017 are downloaded from Datastream.
Out of these stocks, 150 and 200 stocks are selected at random. Then, ridge and
GLSE are applied to construct two portfolios for the selected stocks. The in-sample
period for the above constructed portfolios is from 02/12/2007 to 01/12/2016. The
out-of-sample period, on the other hand, is from 02/12/2016 to 01/12/2017. For ridge,
cross validation is used for obtaining the penalty parameter. The in-and-out-of sam-
ple average returns, risk and Sharpe ratio are used to evaluate the performance of the
obtained portfolios. The results are shown in Table 2 and they reveal that the GLSE
method performs better than ridge in term of average returns, risk and the Sharpe
ratio of portfolios for both in-and-out-of-sample periods.

7 Conclusion

The unbiased GLSE method was used in this paper to construct a saturated optimal
portfolio in high-dimensional data (n < p). The results of applying this method were
compared to those of ridge and they showed that GLSE outperforms ridge in terms of
its ability to reduce the portfolio’s risk and increase its expected returns, consequently
maximising the Sharpe ratio. While both ridge and GLSE have practical implications
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in the world of finance in that they both lead to a non-sparse portfolio with diversified
assets, the GLSE overcomes ridge’s shortcoming where the weights of low-risk and
high return assets may be reduced due to its biasedness. Due to its unbiasedness,
GLSE thus maintains the higher weights of low-risk and high return assets, which,
as a result, minimises the chances of risk increase and income reduction in the
portfolio.
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Abstract Neyman [7] was the first to propose a change in measure in the context of
goodness of fit problems. This provided an alternative density to the one for the null
hypothesis. Hoeffding introduced a change of measure formula for the ranks of the
observed data which led to obtaining locally most powerful rank tests. In this paper,
we review these methods and propose a new approach which leads on the one hand
to new derivations of existing statistics. On the other hand, we exploit these methods
to obtain Bayesian applications for ranking data.
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1 Introduction

In a landmark paper, [7] considered the nonparametric goodness of fit problem and
introduced the notion of smooth tests of fit by proposing a parametric family of
alternative densities to the null hypothesis. In this article, we describe a number of
applications of this change of measure. Hence, we obtain a new derivation of the
well-known Friedman statistic as the locally most powerful test in an embedded
family of distributions.

2 Smooth Models

Suppose that the probability mass function of a discrete k-dimensional random vector
X is given by
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m(x;;0)=exp(6'x; — K@) p;, j=1,....m, (1)

where x; is the jth value of X and p = ( p_,)/ denotes the vector of probabilities
when 8 = 6. Here K (0) is a normalizing constant for which

Zw(x,-;@) =1.

J
We see that the model in (1) prescribes a change of measure from the null to the

alternative hypothesis. Let T = [x;, ..., x,,] be the k x m matrix of possible vector
values of X. Then under the distribution specified by p,

T = Cov, (X) = E,[(X — E[X]) (X — E[X])] 2)
=T (diag (p)) T — (Tp) (Tp)’, (3)

where the expectations are with respect to the model (1). This particular situation
arises often when dealing with the nonparametric randomized block design. Define

T(0)=(mr(x1;0),....,7(xn;0))
and suppose that we would like to test
Hy:0=0vsH; :0#0.

Letting N denote a multinomial random vector with parameters (n, 7 (6)), we see
that the log likelihood as a function of 0 is, apart from a constant, proportional to

m

anlog (7r (xj; 9)) = an (O’xj — K(B))
Jj=1 Jj=1
=0 (> njx; | —nk@).
j=1

The score vector under the null hypothesis is then given by

n 1 On; (0
U@®;X) =Y N, <—7Tj 3 7:%6(, )>
j=1

=T (N —np).

Under the null hypothesis,

E[U (05 X)] =0,
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and the score statistic is given by

%[ﬂN—mpﬂZ’ﬂT@ﬁﬂmﬂ:ﬁ%N—nm%TEATﬂN—wpngﬂ
“)
where r = rank (T'S7'T).

In the one-sample ranking problem whereby a group of judges are each asked to
rank a set of ¢ objects in accordance with some criterion, let P = {1/ pi=1.., t!}
be the space of all ! permutations of the integers 1, 2, ..., ¢t and let the probability
mass distribution defined on P be given by

pz(ply"'5pf!)7

where p; = Pr (V j). Conceptually, each judge selects a ranking v in accordance
with the probability mass distribution p. In order to test the null hypothesis that each
of the rankings are selected with equal probability, that is,

Hy:p=pyvs H : p # py, 5

where p, = %1, define a k-dimensional vector score function X (v) on the space P
and following (1), let its smooth probability mass function be given as

1
7r(xj;0)=exp(0/xj—K(0));, j=1,...,1 (6)

where 6 is a t-dimensional vector, K () is a normalizing constant and x; is a t-
dimensional score vector to be specified in (8). Since

i T (x js 9) =1
Jj=1
it can be seen that K (0) = 0 and hence the hypotheses in (5) are equivalent to testing
Hy:0=0vs H :0#0. @)
It follows that the log likelihood function is proportional to
1) ~n[0h—K®O)],

where

!

o A A n;

n= 2 XjPnj | Pnj = —~
j=1
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and n; represents the number of observed occurrences of the ranking ;. The Rao
score statistic evaluated at @ = 0 is

0 (a
U (6; X) =n%[ 71— K(0)]

. 0
=n|:77—%1((0)],

whereas the information matrix is
2

o
10) = —n [ﬁK(O)].

The test then rejects the null hypothesis whenever

2 A_ﬂ L A_i 2
n|:17 801((0)}1 (0)[71 aeK(O)]>xf(oz),

where X? () is the upper 100(1 — ) % critical value of a chi square distribution

with f = rank(Z (0)) degrees of freedom. We note that the test just obtained is the
locally most powerful test of Hy.
Specializing this test statistic to the Spearman score function of adjusted ranks

t+1 r+1\ .
Xj=<Vj(1)—T,...,Vj(t)—T),]:1,...,t!, ®)

we can show that the Rao score statistic is the well-known Friedman test [5].
12 M- 417
W= " Z R — i . )
t(@+1) p 2

where R; is the average of the ranks assigned to the ith object.

2.1 The Two-Sample Ranking Problem

The approach just described can be used to deal with the two-sample ranking problem
assuming again the Spearman score function. Let X1, X, be two independent random
vectors whose distributions as in the one sample case are expressed for simplicity as

m(x;:0) =exp{O0x; — K@)} pi(j), j=1,....101=1,2,
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where 6; = (01, ..., 0;;)’ represents the vector of parameters for population /. We
are interested in testing

H0101=02VSH12017502.

The probability distribution {p; (j)} represents an unspecified null situation. Define

/
X n Ny
pl == Ty ey T 3
nj nj
where n;; represents the number of occurrences of the ranking v ; in sample /.
Also, forl = 1, 2, set Z]. ni =n;,y =0, —6,and

01 =m+ bl’)’,
where
~ mO+nb,  ny by — ni
ny+n, o l’ll—f-l’lz’ 2 I’l1+n2.

Let ¥, be the covariance matrix of X; under the null hypothesis defined as
X =1L - pp)

where I; = diag (p; (1), ..., p;(t)) and p, = (p; (1), ..., p; ). The loga-
rithm of the likelihood L as a function of (m, -y) is proportional to

2 !

log L (m,y) ~ > > ny{m+b~)x;—K(@6))}.

=1 j=I

In order to test
H()Ig] =02VSH1 291 #92

we calculate the Rao score test statistic which is given by
n (Tsi71 - TSi’z)/ b (Tsi’1 - TSi’z) . (10)

It can be shown to have asymptotically a X? whenever n;/n — A\ > 0 as n — 00,

where n = n; + n,. Here D is the Moore—Penrose inverse of T SfJT/S and ¥ is a
consistent estimator of ¥ = f—I‘ + f—z’ and f is the rank of D, as required.
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2.2 The Use of Penalized Likelihood

In the previous sections, it was possible to derive test statistics for the one and
two-sample ranking problems by means of the change of measure paradigm. This
paradigm may be exploited to obtain new results for the ranking problems. Specifi-
cally, we consider a negative penalized likelihood function defined to be the negative
log likelihood function subject to a constraint on the parameters which is then mini-
mized with respect to the parameter. This approach yields further insight into ranking
problems.
For the one-sample ranking problem, let

A0, ¢c) = -0 anxj +nK(0)+/\(29i2—c> (11)
j=1

i=1

represent the penalizing function for some prescribed values of the constant c. We
shall assume for simplicity that ||x j || = 1. When ¢ is large (say ¢ > 10), the compu-
tation of the exact value of the normalizing constant K () involves a summation of
t! terms. [6] noted the resemblance of (6) to the continuous von Mises-Fisher density

olI'=
PR _
2211 (16IDT ()

exp (0'x) ,

where [|@|| is the norm of @ and x is on the unit sphere and /,(z) is the modified
Bessel function of the first kind given by

[ 1 7\ 2k+v

This seems to suggest the approximation of the constant K (6) by

exp (—K(0)) ~ l . “0”% .
2T L (16T (S

In [1], penalized likelihood was used in ranking situations to obtain further insight
into the differences between groups of rankers.

3 Bayesian Models for Ranking Data

The fact that the model in (1) is itself parametric in nature leads one to consider
an extension to Bayesian considerations. Let R = (R(1), ..., R(¢))’ be a ranking ¢
items, labeled 1, ..., ¢ and define the standardized rankings as
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B t+1 t@t2 -1
y‘(R_Tl)/\/T’

where y is the ¢ x 1 vector with || y|| = +/y'y = 1. We consider the following more
general ranking model:

T(ylk, 0) = C(k, 0) exp {k0'y}

where the parameter @ is a ¢ x 1 vector with ||@|| = 1, parameter x > 0, and C (., 0)
is the normalizing constant. This model has a close connection to the distance-based
models considered in [3]. Here, 0 is a real-valued vector, representing a consensus
view of the relative preference of the items from the individuals. Since both |8 = 1
and ||y|| = 1, the term 8’y can be seen as cos ¢ where ¢ is the angle between the
consensus score vector 8 and the observation y. The probability of observing a rank-
ing is proportional to the cosine of the angle from the consensus score vector. The
parameter  can be viewed as a concentration parameter. For small «, the distribution
of rankings will appear close to a uniform whereas for larger values of «, the distri-
bution of rankings will be more concentrated around the consensus score vector. We
call this new model an angle-based ranking model.

To compute the normalizing constant C(x, 6), let P, be the set of all possible

permutations of the integers 1, ..., 7. Then
(Cr.0)7" = exp {0 y}. (12)
yeP

Notice that the summation is over the ¢! elements in P. When ¢ is large, say greater
than 15, the exact calculation of the normalizing constant is prohibitive. Using the fact
that the set of ¢! permutations lie on a sphere in (¢ — 1)-space, our model resembles
the continuous von Mises-Fisher distribution, abbreviated as vM F (x|m, k), which is
defined on a (p — 1) unit sphere with mean direction m and concentration parameter
K:

p(x|k, m) = V,(k) exp(km'x),

where )
K2~

Vo) = —5——,
@m* 15(6)

and /1, (k) is the modified Bessel function of the first kind with order a. Consequently,
we may approximate the sum in (12) by an integral over the sphere:

=3
K2

2%!1% (RT (5

C(k,0) ~Ci(k) =
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where I'(.) is the gamma function. In ([9], it is shown that this approximation is
very accurate for values of x ranging from 0.01 to 2 and ¢ ranging from 4 to 11.
Moreover, the error drops rapidly as ¢ increases. Note that this approximation allows
us to approximate the first and second derivatives of log C which can facilitate our
computation in what follows.

3.1 Maximum Likelihood Estimation (MLE) of Our Model

LetY = {y,...., yy} be arandom sample of N standardized rankings drawn from
p(y|k, 8). The log likelihood of (x, 0) is then given by

1(, 0) = nlog C; (k) + Y _k0'y;. (13)

i=1

Maximizing (13) subjectto [|@]| = 1 and x > 0, we find that the maximum likelihood

N
i=1Yi
N

estimator of @ is given by éM LE = ]Z—‘—, and & is the solution of
|Zi:l Yi

A = ~C(w) A5 (®) HZ,N=1 Yi
W= = I=() N

=r (14)

A simple approximation to the solution of (14) following [4] is given by

. rit—1-— r2)
RMLE = 7

A more precise approximation can be obtained from a few iterations of Newton’s
method. Using the method suggested by [8], starting from an initial value x¢, we can
recursively update x by iteration:

Ai(ki) —r i =0,1,2,....

Ri = KRj — , 1
o 1= A (Ri)? — Z2A,(R)

3.2 One-Sample Bayesian Method with Conjugate Prior

Taking a Bayesian approach, we consider the following conjugate prior for (x, 6) as

p(k, ) o [Ci(1)]" exp { Bormy6]} , (15)
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where ||mg|| = 1,0, Byp > 0.Given y, the posterior density of («, 8) can be expressed
by
[Ci(0)]VH

P, Bly) oc exp { frm'O} Vi(Br) - — - p=—

wherem = (ﬁomo +3r, yi) g 8= Hﬁomo + 3V, y;|. The posterior density

can be factored as

p(k,0ly) = p(Olk, y)p(kly), (16)

where p(0|k, y) ~ vM F(0|m, Bx) and

(G KTV (Bk)
TS (K)]"°*N Br)'F

p(kly) «

The normalizing constant for p(x|y) is not available in closed form. For reasons
explained in [9], we approximate the posterior distribution using the method of
variational inference (abbreviated VI from here on). Variational inference provides
a deterministic approximation to an intractable posterior distribution through opti-
mization. We first adopt a joint VMF- Gamma distribution as the prior for (x, 6):

p(k, 0) = p(0|r)p(K)
= vM F(0|my, Bor) Gamma(k|ag, by),

where Gamma(k|ag, by) is the Gamma density function with shape parameter ag
and rate parameter by (i.e., mean equal to Z—g), and p(0|k) = vM F (8|my, Byk). The
choice of Gamma(k|ay, by) for p(x) is motivated by the fact that for large values
of k, p(k) in (15) tends to take the shape of a Gamma density. In fact, for large

o " . .
values of k, [ = (k) ~ Wirh and hence p(k) becomes the Gamma density with

shape (v — 1)% + 1 and rate vy — Gp:

[C:(W)]™
Vi(Bor)

o KD exp(— (o — Bo)k).

p(K) &

Using the variational inference framework, [9] showed that the optimal posterior
distribution of # conditional on « is a von Mises-Fisher distribution vM F (0|m, k(3)

where
N
and m = (ﬁomo + Zy,) Bt

i=I

N
p= 50m0+zyi

i=l1

The optimal posterior distribution of « is a Gamma(k|a, b) with shape a and rate
b with
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-3 0
a=ay+ N (IT) + Bk [% lnlxzz(ﬁk)] (17)
b="b —l—NaI k) + 5 In I+—2 (Gyk) (18)
= Do P %(KJ) 0 3Bor n /2 (fok) | -

Finally, the posterior mode  can be obtained from the previous iteration as

4 otherwise.

<l ifa>1
/%:{b na= (19)
b

3.3 Two-Sample Bayesian Method with Conjugate Prior

LetY; = {y“, e, yl-Ni} fori = 1, 2, be two independent random samples of stan-
dardized rankings each drawn, respectively, from p(y;|x;, 8;). Taking a Bayesian
approach, we assume that conditional on k, there are independent von Mises conju-
gate priors, respectively, for (81, 8;) as

p(B;|K) o [Ci(r)]"° exp { Biom[0; } ,

where ||m;o|| = 1, V0, Bio = 0. We shall be interested in computing the Bayes factor
when considering two models. Under model 1, denoted M|, 8; = 6, whereas under
model 2, denoted M, equality is not assumed. The Bayes factor comparing the two
models is defined to be

_ J Pk, 1) p(32lk, 62) p(011K) p(0:]K)d61d0rd Kk
[ P11k, 0)p(y2lk, 0) p(B|r)dOd K

TS pnls. 81)p(611k)d6 | [ [ p(y2lk. 62) p(B2K)d6,] dr:
[ Pl 0)p(y21i, 0) p(Blk)dOdk '

By

The Bayes factor enables us to compute the posterior odds of model 2 to model 1. We
fist deal with the denominator in B;;. Under M|, we assume a joint von Mises-Fisher
prior on § and a Gamma prior on £ :

p (0, k) = vMF (0lmo, Bor) G (klao, bo) .
Hence,

/ P11k, 0)p(y2l, 0) p(Blr)dOdr = f CN () exp {8167 m | Vi (50k) G (xlao. bo) dOdss

= / cN (v) V, (Bor) V7' (BK) G (slag, bo) dr,



