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Chapter 1
Introduction

In today’s manufacturing environment, managing inventories is one of the basic
concerns of enterprises dealing with materials according to their activities, because
material as the principal inventories of enterprises specially production ones com-
poses the large portion of their assets. As a result, managing inventories influences
directly financial, production, and marketing segments of enterprises so that efficient
management of inventories leads to improving their profits. In addition, the effect of
managing inventories on the selling prices of finished products is undeniable
because more than half of production systems’ revenues are spent to buy materials
or production components. On the other hand, customers expect to receive their
orders at a lower price apace. So, an efficient managing inventories and production
planning are key managerial and operational tools to achieve the main goals, which
are satisfying the customers’ demand and becoming lower-cost producer, in order to
increase market share.

Economic production quantity (EPQ) model is a well-known economic lot size
model used in production enterprises that internally produce products. However,
traditional EPQ model is utilized for perfect production process to determine the
optimal production lot size so that overall production/inventory costs are minimized.
In reality, a perfect production run rarely exists. Breakdown is an inevitable issue in
production processes. Indeed, after a production period, a production process often
shifts to out-control state owing to machine wear or corrosion which leads to
generating defective items with loss cost. In order to reimburse these costs, some
production strategies including reworking and repairing defective items, quality
control, and maintenance planning to reduce the defective or scrape item costs are
employed. So, the main prophecy of this book is to introduce all mentioned
production strategies which can lessen unexpected imperfect item costs. The main
focus of this book is to introduce mathematical models of imperfect inventory
control systems in which at least one of imperfect items, scraped item, rework
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policy, quality control or maintenance planning may be used. In the following a brief
introduction about each chapter is presented.

1.1 Imperfect Items

Since the introduction of the economic order quantity (EOQ) model by Harris
(1913), frequent contributions have been made in the literature toward the develop-
ment of alternative models that overcome the unrealistic assumptions embedded in
the EOQ formulation. For example, the assumption related to the perfect quality
items is technologically unattainable in most supply chain applications (Cheng
1991). In contrast, products can be categorized as “good quality,” “good quality
after reworking,” “imperfect quality,” and “scrap” (Chan et al. 2003). In practice, the
presence of defective items in raw material or finished products inventories may
deeply affect supply chain coordination, and, consequently, the product flows among
supply chain levels may become unreliable (Roy et al. 2011). In response to this
concern, the enhancement of currently available production and inventory order
quantity models, which accounts for imperfect items in their mathematical formula-
tion, has become an operational priority in supply chain management (Khan et al.
2011). This enhancement may also include the knowledge transfer between supply
chain entities in order to reduce the percentage of defective items. In the second
chapter of this book, the main focus is on introducing several mathematical models
of EOQ inventory systems with imperfect items considering different kinds of
shortages under different assumptions.

1.2 Scrap

The economic order quantity (EOQ) model was first introduced in 1913. Seeking to
minimize the total cost, the model generated a balance between holding and ordering
costs and determined the optimal order size. Later, the EPQ model considered items
produced by machines inside a manufacturing system with a limited production rate,
rather than items purchased from outside the factory. Despite their age, both models
are still widely used in major industries. Their conditions and assumptions, however,
rarely pertain to current real-world environments. To make the models more appli-
cable, different assumptions have been proposed in recent years, including random
machine breakdowns, generation of imperfect and scrap items, and discrete shipment
orders. The assumption of discrete shipments using multiple batches can make the
EPQ model more applicable to real-world problems. The EPQ inventory models
assume that all the items are manufactured with high quality and defective items are
not produced. However, in fact, defective items appear in the most of manufacturing
systems; in this sense, researchers have been developing EPQ inventory models for
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defective production systems. In these production systems, defective items are of
two types: scrapped items and reworkable items. Usually non-conforming products
are scrapped and are removed from the systems’ inventories. This strategy is
employed for production enterprises in which either imperfect items cannot be
repaired or both repair/reworking cost is more than their selling revenues. In turn,
enterprises prefer to reject imperfect items instead of performing reworking/repair
procedure. In the third chapter of this book, the EPQ model with scraped items under
different kinds of shortages and both continuous and discrete delivery are
introduced.

1.3 Rework

Rework is one of the key drivers of production designs applied in imperfect
production systems in which their production lines face defectives. It helps pro-
ducers reproduce the non-conforming items, which are detected within/after
inspecting process, and sell them as healthy ones. Although a reworking process
makes an additive cost for production companies, it causes the producers to profit
from buying the reworked items more than their reworking costs, so they prefer to
rework the imperfect items in order to reduce their unexpected expenses. In the
fourth chapter of this book, rework process in imperfect EPQ model under different
assumptions is introduced. Indeed, several mathematical models of EPQ problem
with defective and rework process are presented.

1.4 Multi-product Single Machine

The economic production quantity (EPQ) is a commonly used production model that
has been studied extensively in the past few decades. One of the considered
constraints in the EPQ inventory models is producing all items by a single machine.
Since all of the products are manufactured on a single machine with a limited
capacity, a unique cycle length for all items is considered. It is assumed there is a
real constant production capacity limitation on the single machine on which all
products are produced. If the rework is placed, both the production and rework
processes are accomplished using the same resource, the same cost, and the same
speed. The first economic production quantity inventory model for a single-product
single-stage manufacturing system was proposed by Taft (1918). Perhaps Eilon
(1985) and Rogers (1958) were the first researchers that studied the multi-products
single manufacturing system. Eilon (1985) proposed a multi-product lot-sizing
problem classification for a system producing several items in a multi-product
single-machine manufacturing system. In the fifth chapter of this book, multi-
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product single-machine EPQ model with defective and scraped items and also
rework process under different assumptions are presented.

1.5 Quality Considerations

Traditional economic order quantity (EOQ) models offer a mathematical approach to
determine the optimal number of items a buyer should order to a supplier each time.
One major implicit assumption of these models is that all the items are of perfect
quality (Rezaei and Salimi 2012). However, presence of defective products in
manufacturing processes is inevitable. There is no production process which can
guarantee that all its products would be perfect and free from defect. Hence, there is a
yield for any production process. Basic and classical inventory control models
usually ignore this fact. They assume all output products are perfect and with
equal quality; however, due to the limitation of quality control procedures, among
other factors, items of imperfect quality are often present. So it has given researchers
the opportunity to relax this assumption and apply a yield to investigate and study its
impact on several variables of inventory models such as order quantity and cycle
time. In the sixth chapter of this book, several inventory control models under
quality considerations such as sampling, inspections, return, etc. with different
assumptions of inventory systems are presented.

1.6 Maintenance

The role of the equipment condition in controlling quality and quantity is well-
known (Ben-Daya and Duffuaa 1995). Equipment must be maintained in top
operating conditions through adequate maintenance programs. Despite the strong
link between maintenance production and quality, these main aspects of any
manufacturing system are traditionally modeled as separate problems. In the last
chapter of this book, maintenance and inventory systems are considered together,
and several mathematical models are presented.
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Chapter 2
Imperfect EOQ System

2.1 Introduction

Since the introduction of the economic order quantity (EOQ) model by Harris
(1913), frequent contributions have been made in the literature toward the develop-
ment of alternative models that overcome the unrealistic assumptions embedded
in the EOQ formulation. For example, the assumption related to the perfect-quality
items is technologically unattainable in most supply chain applications. In contrast,
products can be categorized as “good quality,” “good quality after reworking,”
“imperfect quality,” and “scrap” (Chan et al. 2003; Pal et al. 2013). In practice,
the presence of defective items in raw material or finished product inventories may
deeply affect supply chain coordination, and, consequently, the product flows among
supply chain levels may become unreliable (Roy et al. 2015). In response to this
concern, the enhancement of currently available production and inventory order
quantity models, which accounts for imperfect items in their mathematical formula-
tion, has become an operational priority in supply chain management (Khan et al.
2011). This enhancement may also include the knowledge transfer between
supply chain entities in order to reduce the percentage of defective items (Adel et
al. 2016).

Also some related works can be found in Hasanpour et al. (2019), Keshavarz et al.
(2019), Taleizadeh et al. (2015, 2016a, 2018a, b), Taleizadeh and Zamani-Dehkordi
(2017a, b), Salameh and Jaber (2000), Maddah and Jaber (2008), and Papachristos
and Konstantaras (2006).

The EOQ models with imperfect-quality items in three categories are categorized
and their subcategories are shown in Fig. 2.1.

The common notations of imperfect EOQ models are shown in Table 2.1.
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2.2 Literature Review

The academic literature related to inventory control for imperfect-quality items is
multidisciplinary in nature and, for reviewing/presentation purposes in this chapter,
is thematically organized around two main streams: (1) deterioration, perishability,
and shelf lifetime constraints and (2) model formulations and related solution
techniques that consider imperfect-quality items (Adel et al. 2016).

2.2.1 Deterioration, Perishability, and Lifetime Constraints

The terms “deterioration,” “perishability,” and “obsolescence” are used interchange-
ably in the literature and may often be perceived as ambiguous because they are
linked to particular underlying assumptions regarding the physical state/fitness and
behavior of items over time. Usually, deterioration refers to the process of decay,
damage, or spoilage of a product, i.e., the product loses its value of characteristics
and can no longer be sold/used for its original purpose (Wee 1993). In contrast, an
item with a fixed lifetime perishes once it exceeds its maximum shelf lifetime and
then must be discarded (Ferguson and Ketzenberg 2005). Obsolescence incurs a
partial or a total loss of value of the on-hand inventory in such a way that the value
for a product continuously decreases with its perceived utility (Song and Zipkin
1996; Also some related works can be found in works of Nobil, et al. (2019),
Lashgary et al. (2016, 2018), Kalantary and Taleizadeh (2018), Diabat et al.

No shortage No shortage

Entropy EOQ

Inspections
and screening

Inspections
and screening

ReparationRejection

rejection
Batch

Fully backordered

Screening

Partial backorderedPartial backordered

Fully backordered

Learning
actiuons qualityeffects

Learning
effects

Maintenance Imperfect

quality

Im
pe

rf
ec

t E
O

Q
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te

m

Imperfect

quality
Imperfect

Fig. 2.1 Categories of EOQ model of imperfect-quality items
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(2017), Mohammadi et al. (2015), Tat et al. (2015), Hasanpour et al. (2019),
Taleizadeh (2014), Taleizadeh and Rasouli-Baghban, (2015, 2018), Taleizadeh et
al. (2013a, b, 2015, 2016, 2019), Taleizadeh and Nemattolahi (2014) and Tavakkoli
and Taleizadeh (2017), Bakker et al. (2012).

2.2.2 Imperfect-Quality Items

The classical EOQ has been a widely accepted model for inventory control purposes
due to its simple and intuitively appealing mathematical formulation. However, it is
true to say that the operation of the model is based on a number of explicitly or

Table 2.1 Notations

P Production rate (units per unit time)

D Demand rate (units per unit time)

R Repair rate (units per unit time)

s Selling price for good-quality items ($/unit)

v Selling price for imperfect or salvage value per items ($/unit)

C Production/purchasing cost ($/unit)

CR Rework cost per unit ($/unit)

CJ Reject cost per unit (including transportation, handling, and damage cost) ($/unit)

Cb Backordering cost ($/unit/unit time)

CT Transportation cost per unit ($/unit)

Cd Disposal cost per unit ($/unit)

g Goodwill cost per unit ($/unit)bπ Lost sale cost per unit ($/unit)

K Fixed setup/ordering cost ($/lot)

KS Fixed transportation or shipment cost ($/lot)

h Holding cost per unit per unit time ($/unit/unit time)

h1 The holding cost for defective items per unit per unit time ($/unit/unit time)

hR The holding cost for reworked items per unit per unit time ($/unit/unit time)

γ Fraction of imperfect items (percent)

CI The unit screening or inspection cost ($/unit)

x Inspection rate (units per unit time)

p Imperfect rate (units per unit time)

E[p] Expected imperfect rate

f( p) Probability density function of p

T Ordering cycle duration (time)

t Screening time (time)

f(γ) Probability density function of imperfect products (γ)

y Production/ordering quantity (unit)

B Backordered level (unit)

β Partial backordering rate (%) 0 < β � 1

E[.] Expected value of a random variable

2.2 Literature Review 9



implicitly made unrealistic mathematical assumptions that are never actually met in
practice (Jaber et al. 2004). Salameh and Jaber (2000) developed a mathematical
model that permits some of the items to drop below the quality requirements, i.e., a
random proportion of defective items are assumed for each lot size shipment, with a
known probability distribution. The researchers assumed that each lot is subject to a
100% screening, where defective items are kept in the same warehouse until the end
of the screening process and then can be sold at a price lower than that of perfect-
quality items. Huang (2004) developed a model to determine an optimal integrated
vendor–buyer inventory policy for flawed items in a just-in-time (JIT) manufactur-
ing environment. Maddah and Jaber (2008) developed a new model that rectifies a
flaw in the one presented by Salameh and Jaber (2000) using renewal theory. Jaber
et al. (2008) extended it by assuming that the percentage defective per lot reduces
according to a learning curve.

Jaggi and Mittal (2011) investigated the effect of deterioration on a retailer’s
EOQ when the items are of imperfect quality. In their research, defective items were
assumed to be kept in the same warehouse until the end of the screening process.
Jaggi et al. (2011) and Sana (2012) presented inventory models, which account for
imperfect-quality items under the condition of permissible delay in payments.
Moussawi-Haidar et al. (2014) extended the work of Jaggi and Mittal (2011) to
allow for shortages.

In a real manufacturing environment, the defective items are not usually stored in
the same warehouse where the good items are stored. As a result, the holding cost
must be different for the good items and the defective ones (e.g., Paknejad et al.
2005). With this consideration in mind, Wahab and Jaber (2010) presented the case
where different holding costs for the good and defective items are assumed. They
showed that if the system is subject to learning, then the lot size with the same
assumed holding costs for the good and defective items is less than the one with
differing holding costs. When there is no learning in the system, the lot size with
differing holding costs increases with the percentage of defective items. For more
details about the extensions of a modified EOQ model for imperfect-quality items,
see Khan et al. (2011).

Here are some main models in literature with their mathematical model, solution
procedure, and numerical examples. In the next sections, these models starting from
the basic to complicated ones are presented. First, EOQ models with imperfect
quality items are studied considering no shortage, back-ordering shortage, and
partial back-ordering.

2.3 EOQ Model with No Shortage

2.3.1 Imperfect Quality

In this section, two imperfect EOQ models developed by Salameh and Jaber (2000)
and Maddah and Jaber (2008) are presented. Consider the EOQ model with a
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demand rate of D units per unit time. An order of size y is placed every time the
inventory level reaches zero and is assumed to be delivered instantaneously. The
fixed ordering cost is K, the fixed shipping of imperfect-quality items is KS, the unit
purchasing cost is C, and the inventory holding cost is h per unit per unit time. Each
order contains a fraction P of defective items, a random variable with support in [0,
1]. Each order is subjected to a 100% inspection process at a rate of x units per unit
time, x�D. The screening cost is d per unit. Upon completion of the screening
process, items of imperfect quality are sold as a single batch at a reduced price of
v per unit. The price of a perfect-quality item is s per unit, s < v.

The behavior of the inventory level in an ordering cycle is shown in Fig. 2.2,
where T is the ordering cycle duration (T ¼ (1 � p)y/D, and t ¼ y/x). Salameh and
Jaber (2000) assumed that (1 � p) y � D�t, or, equivalently, p � 1 � D/x, in order to
avoid shortages. Under the above assumptions, the expected profit is presented as:

TP yð Þ ¼sy 1� pð Þ þ υyp
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{Revenue

� K
z}|{Fixed cost

� Cy
z}|{Purchasing cost

� CIy
z}|{Inspection cost

�

h
y 1� pð Þ½ �2

2D
þ py2

x

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Holding cost

ð2:1Þ

Then the expected profit per unit time is derived as:

E TPU yð Þ½ � ¼ E
TP yð Þ
T

� �
ð2:2Þ

After some simplifications,

Inventory

Time

y

t

Py

T

Fig. 2.2 Inventory level
(Salameh and Jaber 2000;
Maddah and Jaber 2008)
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E TPU yð Þ½ � ¼ D s� υþ h
y
x

� �
þ D υ� hy

x
� C � CI � K

y

� �
� E

1
1� p

� �
� hy 1� E p½ �ð Þ

2
ð2:3Þ

And the optimal order quantity is derived as:

ySJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2KDE 1= 1� pð Þ½ �
h 1� E p½ � � 2D 1� E 1= 1� pð Þ½ �ð Þ=x½ �

s
ð2:4Þ

Then, Maddah and Jaber (2008) corrected Eq. (2.2) as:

E TPU yð Þ½ � ¼ E TP yð Þ½ �
E T½ � ð2:5Þ

and derived a new expected profit function as:

E TP yð Þ½ � ¼ sy 1� E p½ �ð Þ þ υyE p½ � � K � Cy� CIy

� h
y2E 1� pð Þ2
h i
2D

þ E p½ �y2
x

0@ 1A
Since E[T] ¼ (1 � E[p])y/D, then Eq. (2.5) is rearranged as:

E TPU yð Þ½ � ¼
s 1�E p½ �ð ÞþυE p½ ��C�CI½ �D�KD=y�hyðE 1�pð Þ2

h i
=2þE p½ �D=xÞ

1�E p½ �
ð2:6Þ

After proofing the concavity of Eq. (2.6) with respect to y, the optimum order size
is derived as:

y� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2KD

h E 1� pð Þ2
h i

þ 2E p½ �D=x
��vuut ð2:7Þ

The expected profit in Eq. (2.6) has several terms independent of y. In subsequent
analysis, these are dropped, and the objective function is redefined in terms of
minimizing the expected “relevant” cost per unit time as (Maddah and Jaber 2008):
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EC yð Þ ¼ 1
1� E p½ � KD=yþ hy E 1� pð Þ2

h i
=2þ E p½ �D=x

�� ih
ð2:8Þ

Maddah and Jaber (2008) showed that for a large inspection rate, the optimum
order size in Eq. (2.7) converges to:

y� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2KD

h E 1� pð Þ2
h i� �vuut ð2:9Þ

In real cases, it is not optimal to ship imperfect-quality items as a single batch in
each ordering cycle (Maddah and Jaber 2008). So Maddah and Jaber assumed that
shipping any number of imperfect-quality batches has a fixed cost of KS and
developed their previous model under multiple batches. Now the decision variables
are order size ( y) and ordering cycle number (n), and they derived the expected cost
per unit time of perfect-quality items similar to Eq. (2.8) as below:

E CP yð Þ½ � ¼ KD=yþ hy E 1� pð Þ2
h i

=2
� �h i

= 1� E p½ �ð Þ

Figure 2.3 corresponds to the case when n ¼ 3, where the imperfect-quality
inventory is held for two ordering cycles and then shipped upon completing the
screening of the last order. According to Maddah and Jaber (2008), let Ti be the
duration of ordering period i of a shipping cycle, i¼ 1, . . ., n. Note that Ti¼ (1� Pi)
y/D, where Pi is the fraction of imperfect-quality items in order i of a shipping cycle.
Then, the expected holding cost per shipping cycle is:

ECIh y,nð Þ¼hE
Xn�1

i¼1

Pi

"
y 1�Pið Þy=D

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Imperfect quality inventory

cost fromanorder

carriedover theordering

periodof theorder itself

þ
Xn�2

i¼1

Piy
Xn�1

j¼iþ1

1�Pið Þy=D|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Imperfect inventory cost fromanorder

carried through subsequent ordering

periods duringashipping cycle

excluding thenthorderingperiod

þ
Xn
i¼1

Piy2

x

zfflfflfflffl}|fflfflfflffl{

Imperfect inventory cost accumulated

in thenthperiod,which is carried

foradurationof y=x

before being shipped

26666666666666666666666664

37777777777777777777777775
ð2:10Þ

Assuming that P1, . . ., Pn are independent and identically distributed, the expres-
sion for ECIh(y, n) in Eq. (2.10) after some simplifications changes to:
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ECIh y, nð Þ ¼ hy2

D
n n� 1ð Þ

2

�
�E p½ � 1� E p½ �ð Þ þ nE p½ �Dy

x
� n� 1ð Þvar p½ �

i

Knowing E
Pn
i¼1

1� Pið Þy=D
� �

¼ n 1� E p½ �ð Þy=D, the expected imperfect-quality

item cost per unit time is:

E CI y, nð Þ½ � ¼ 1
1� E p½ �

KS

n

n D
y

þ hy
n� 1ð Þ
2

E p½ � 1� E p½ �ð Þ þ E p½ �D
x
� n� 1

n
var p½ �

� �

And total cost will be:

E TC y, nð Þ½ � ¼ 1
1� E p½ � K þ KS

n

� �n D
y
þ hy

2
½E 1� pð Þ2
h i

� 2 n� 1ð Þ
n

var p½ �

þ n� 1ð ÞE p½ � 1� E p½ �ð Þ þ 2E p½ �D
x
�
o

ð2:11Þ

Because of convexity of Eq. (2.11), one can easily derive that:

y� nð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 Kþ KS=nð Þð ÞD
h E 1�pð Þ2

h i
� 2 n�1ð Þ=nð Þvar p½ �þ n�1ð ÞE p½ � 1�E p½ �ð Þþ2E p½ � D=xð Þ

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

γ nð Þ

vuuuuut
ð2:12Þ

Maddah and Jaber (2008) showed that optimal values of n can be found by
optimizing the expected total cost presented in Eq. (2.13) which is presented in
Eq. (2.14):

ECT1 nð Þ ¼ ECT n, y� nð Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ nð Þγ nð ÞD

p
ð2:13Þ

en ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 E 1� pð Þ2

h i
� 2 1� K=KSð Þvar p½ � � E p½ � 1� E p½ �ð Þ þ 2E p½ � D=xð Þ

h i
KE p½ � 1� E p½ �ð Þ

vuut
ð2:14Þ

Then, the optimal value of n is one of the two integers which is closest to en ,
whichever leads to lower value of ECT1(n). That is, n

� ¼ argmin(ECT1(n)) where [x]
is the largest integer �x and [x] is the smallest integer �x. Finally, the optimal order
quantity is found from Eq. (2.12) as y* ¼ y*(n*) (Maddah and Jaber 2008).
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Example 2.1 Maddah and Jaber (2008) developed numerical results similar to those
in Salameh and Jaber (2000). This illustrates the application of their model and
allows comparing their results with those of Salameh and Jaber. Consider a situation
with the following parameters: demand rate, D ¼ 50,000 units/year; ordering cost,
K ¼ $100/cycle; holding cost, h ¼ $5/unit/year; screening rate, x ¼ 175,200 units/
year; screening cost, CI ¼ $0.5/unit; purchasing cost, C ¼ $25/unit; selling price of
good-quality items, s ¼ $50/unit; selling price of imperfect-quality items, v ¼ $20/
unit; and the fraction of imperfect-quality item, p, uniformly distributed on (a, b),
0 < a < b < 1, i.e., P ~ (a, b). With p ~ U(a, b), E[p] ¼ (a + b)/2, Var[p] ¼ (b � a)/
12 and:

E 1� pð Þ2
h i

¼ 1
b� a

Z b

a
1� pð Þ2dp ¼ a2 þ abþ b2

3
þ 1� a� b ð2:15Þ

Assuming a ¼ 0 and b ¼ 0.04, then the optimal order quantity using Eq. (2.7)
becomes y* ¼ 1434 units, and the related cost from Eq. (2.6) is E[TPU
(y*)] ¼ $1,212,274.

Assuming shipping of imperfect-quality items has a fixed cost of KS ¼ $50 with
same values for other parameters used in the previous example, in the following, the
continuous value of n that minimizes ECT1(n) is en ¼ 4.93. So, n* is either 4 or
5 where ECT1(4) ¼ 7614 > ECT1 (5) ¼ 7600. So, n* ¼ 5. The optimal order
quantity is then given from Eq. (2.11) as y*(5) ¼ 1447.

Perfect 
Quality
Inventory

Time

(1 -P1)y

t

Time

Imperfect
Quality
Inventory

P1y

T1 T2 T3

Fig. 2.3 Perfect and
imperfect inventory levels
when shipments are
consolidated, n ¼ 3
(Maddah and Jaber 2008)
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2.3.2 Maintenance Actions

The objective of the analysis in this section is to determine the optimal lot size y�
such that the expected total cost is minimized when maintenance and reworking
actions are taken into account. For describing this section, some new notations are
used as presented in Table 2.2 (Porteus 1986).

Before presenting the model, first we should take notice of the remark presented
by Hou et al. (2015) in Eq. (2.16). He derived the expected number of unhealthy item
as below:

E Nð Þ ¼ θ y�
Xy
j¼1

q�j

 !
ð2:16Þ

and

Pr X ¼ jf g ¼ q�jq, 0 � j � y

q�y, j ¼ y

�
ð2:17Þ

Then, they showed that:

E Xð Þ ¼ q
Xy�1

j¼1

jq�j þ yq�y ¼
Xy
j¼1

q�j ð2:18Þ

Finally, the number of defective items in y is N ¼ θ(y � X) and the E(N ) is what
presented in Eq. (2.16). Now based on Eq. (2.18), the expected cyclic cost of rework
process will be:

CRE Nð Þ ¼ CRθ y�
Xy
j¼1

q�j

 !
ð2:19Þ

Since the related cost to maintenance should be considered when the manufactur-
ing process is out-of-control at the end of a production uptime for a lot of size y, the
expected cyclic-related cost is:

Table 2.2 Notations of a given problem

Q The probability that the system from in-control state shifts to out-of-control state

q The probability that the system stays in-control state during the production of an item and q

¼ 1 � q

θ The percentage of defective items when the process is in the out-of-control state

X Random variable representing number of items produced in the in-control state

Cm Maintenance cost per unit ($/unit)
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Cm 1� q�yð Þ ð2:20Þ

So the cyclic total cost is (Hou et al. 2015):

TC yð Þ ¼ K
z}|{Fixed cost

þ hy2

2D|{z}
Holding cost

þ Cm 1� q�yð Þ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Maintenance cost

þCRθ y�
Xy
j¼1

q�j

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Rework cost

ð2:21Þ

And the expected cost per unit of time becomes:

f yð Þ ¼ TC yð Þ=T

¼ DK
y

þ h
2
yþ CRDθ þ D

y
Cm 1� q�yð Þ � CRθ

Xy
j¼1

q�j

" #
ð2:22Þ

It should be noticed that for q ¼ 0, the production system is always in the
in-control state and the produced items are healthy, and Eq. (2.22) reverses to the
traditional EOQ model with healthy item. But Cm ¼ 0 means all produced items are
defective, and Eq. (2.22) will reduce to the approximated model (using Taylor series
expansion) in Porteus (1986) as presented in Eq. (2.23):

f p yð Þ ¼ DK
y

þ y
2

hþ CRDqð Þ ð2:23Þ

and derive an approximately optimal lot size as follows (Hou et al. 2015):

y�p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DK
hþ CRDq

r
ð2:24Þ

Since Eq. (2.23) was not a good approximation, Hou et al. (2015) presented a
comprehensive method to derive the optimal values. They provided the bounds for
searching the optimal lot size y� that minimizes f( y) of Eq. (2.22) as β ¼ Cm � CRθq

q

and using necessary condition for optimal points ( f0(y�)¼ 0) derived optimal values.
They prove that y� exists and is unique when q equals 0 or 1 such that f 0(y�) ¼ 0
satisfies. But for 0 < q < 1, let:

g yð Þ ¼ y2 f 0 y�ð Þ ¼ �DK þ h
2
y2 � Dβ 1� q�y þ yq�y ln q�ð Þ ð2:25Þ

since g(y) is a continuous function with lim
y!0þ

g yð Þ ¼ �D and lim
y!1g yð Þ ¼ 1 > 0.

Furthermore, the first derivative of g(y) is given by Hou et al. (2015):
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g0 yð Þ ¼ y h� Dβ ln q�ð Þ2q�y
h i

ð2:26Þ

After some algebra, Hou et al. (2015) proposed the optimal lot size y� when
0 < q < 1:

y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D K þ Cmð Þ

h

r
y2 ¼

ffiffiffiffiffiffiffiffiffiffi
2DK
h

r
ð2:27Þ

And proved that:

if β � 0 ! 0 < y � y�2 � y�1
if β > 0 ! 0 < y�2 < y < y�1

ð2:28Þ

Using Eqs. (2.27) and (2.28), the following algorithm is proposed to find the
optimal values.

Algorithm 2.1 Step 1: Let ε > 0, and compute β, y2, and y1.
Step 2: If β � 0, set yL ¼ 0, yU ¼ y2; otherwise, set yL ¼ y2, yU ¼ y1.
Step 3: Set yopt ¼ yLþyU

2 .
Step 4: If |g(yopt)| < ε, go to Step 6; otherwise, go to Step 5.
Step 5: If |g(yopt)|< 0, set yL¼ yopt; however, if |g(yopt)|> 0, yU¼ yopt. Then, go to

Step 3.
Step 6: Set y� ¼ yopt and compute f(y�).

Example 2.2 Consider K¼ $600/cycle, h ¼ $8/unit/year, D ¼ 1000 units/year, and
CR ¼ $5/unit, Cm ¼ $200/cycle, θ ¼ 0.75, and θ ¼ 0.1. Then, it can be verified that
β ¼ 166.25. Using Algorithm 2.1, y� ¼ 437.68 units and f(y�) ¼ $7251.43 (Hou
et al. 2015).

2.3.3 Screening Process

In this section, now consider a general EOQ model for items with imperfect quality
under varying demand, defective items, screening process, and deterioration rates for
an infinite planning horizon presented by Alamri et al. (2016). Assume that each lot
is subject to a 100% screening where items that are not conforming to certain quality
standards are stored in a different warehouse. Therefore, different holding costs for
the good and defective items are considered. Items deteriorate while they are in
storage, with demand, screening, and deterioration rates being arbitrary functions of
time. The percentage of defective items per lot reduces according to a learning curve.
After a 100% screening, imperfect-quality items may be sold at a discounted price as
a single batch at the end of the screening process or incur a disposal penalty charge.
Moreover, a general step-by-step solution procedure is provided for continuous
intra-cycle periodic review applications.
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Some related notation for this problem is presented in Table 2.3.
Alamri et al. (2016) assumed that a single item held in stock lead time is zero and

no restrictions exist. Moreover, any order arrives before the end of that same cycle.
In order to avoid the shortage, Alamri et al. (2016) assumed (1 � pj)x(t) � D(t),

8t � 0. Lot size covers both deterioration and demand during both the first phase
(screening) and the second phase (non-screening). Each lot is subjected to a 100%
screening process that starts at the beginning of the cycle and ceases by time T1j, by
which point in time Qj units have been screened and yj units have been depleted,
which is the summation of demand and deterioration. During this phase, items not
conforming to certain quality standards are stored in a different warehouse. The
variation in the inventory level during the first and second phase (please refer to
Fig. 2.4) and the variation in the inventory level for the defective items (Alamri et al.
2016) are presented in Eq. (2.29):

Table 2.3 Notations of a given problem

D(t) Demand rate (units per unit time)

x(t) Screening rate (units per unit time)

δ(t) Deterioration rate (units per unit time)

pj The percentage defective per lot reduces according to a learning curve

j Cycle index ( j ¼ 1, 2,. . .)

Qj Lot of size delivered at the beginning of each cycle j (unit)

Qj (1 – pj) – yj 

pj Qj 

In
ve

n
to

ry
 le

ve
l

0

Cycle length

TimeT1j 
T2j 

Qj  

Fig. 2.4 Inventory variation of an economic order quantity (EOQ) model for one cycle (Alamri
et al. 2016)
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dIgj tð Þ
dt

¼ �D tð Þ � p jx tð Þ � δ tð ÞIgj tð Þ, 0 � t � T1j ð2:29Þ

Using boundary condition Igj(0) ¼ Qj:

Q j ¼
Z T1j

0
x uð Þdu, ð2:30Þ

dIgj tð Þ
dt

¼ �D tð Þ � δ tð ÞIgj tð Þ, ð2:31Þ

And with the boundary condition Igj(T2j) ¼ 0:

dIdj tð Þ
dt

¼ p jx tð Þ, 0 � t � T1j ð2:32Þ

knowing Idj(0) ¼ 0.
After some complicated algebra, the solutions of the above differential equations

are (Alamri et al. 2016):

Igj tð Þ ¼ e� g tð Þ�g 0ð Þð Þ
ZT1j

0

x uð Þdu� e�g tð Þ
Z t

0

D uð Þ þ p jx uð Þ� 

eg uð Þdu, 0 � t

� T1j ð2:33Þ

Igj tð Þ ¼ e�g tð Þ
ZT2j

t

D uð Þeg uð Þdu, 0 � t � T1j ð2:34Þ

Igj tð Þ ¼
Z t

0

p jx uð Þdu, 0 � t � T1j ð2:35Þ

g tð Þ ¼ ιζδ tð Þdt ð2:36Þ

The per cycle cost components for the given inventory system are as follows. The
total purchasing cost during the cycle ¼ C

R T1j

0 x uð Þdu. Note that this cost includes
the defective and deterioration costs. Holding cost ¼ h[Igj(0, T1j) + Igj(T1j, T2j)] + h1
Idj(0, T1j). Thus, the total cost per unit time of the underlying inventory system
during the cycle [0, T2j], as a function of T1j and T2j, say Z(T1j, T2j) is given by:

G tð Þ ¼ ζeg tð Þdt ð2:37Þ

Our objective is to find T1j and T2j that minimize Z(T1j, T2j). However, the
variables T1j and T2j are related to each other as follows:
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0 < T1j < T2j ð2:38Þ

eg 0ð Þ
Z T1j

0
x uð Þdu ¼

Z T2j

0
D uð Þeg uð Þduþ

Z T1j

0
p jx uð Þeg uð Þdu ð2:39Þ

Thus, their goal is to solve the following optimization problem, which they shall
call problem (m).

(m) ¼ {minimize Z(T1j, T2j) given by Eq. (2.37) subject to Eq. (2.39) and hj ¼ 0:

h j ¼ eg 0ð Þ
Z T1j

0
x uð Þdu�

Z T1j

0
p jx uð Þeg uð Þdu�

Z T2j

0
D uð Þeg uð Þdu ð2:40Þ

It can be noted from Eq. (2.40) that T1j ¼ 0 ) T2j ¼ 0 and T1j > 0 ) T1j < T2j.
Thus Eq. (2.40) implies constraint (Eq. 2.38). Consequently, if they temporarily
ignore the monotony constraint (Eq. 2.38) and call the resulting problem as (m1),
then it does satisfy any solution of (m1). Hence, (m) and (m1) are equivalent.
Moreover, T1j > 0 ) RHS of Eq. (2.33) > 0, i.e., Eq. (2.39) guarantees that the
number of good items is at least equal to the demand during the first phase.

First, Alamri et al. (2016) noted from Eq. (2.30) that T1j can be determined as a
function of Qj, say:

T1j ¼ f 1j Q j

� � ð2:41Þ

Taking also into account Eq. (2.40), they found that T2j can be determined as a
function of T1j, and thus of Qj, say:

T2j ¼ f 2j Q j

� � ð2:42Þ

Thus, if they substitute Eqs. (2.40)–(2.42) in Eq. (2.36), then problem (m) will be
converted to the following unconstrained problem with the variable Qj (which they
shall call problem (m2)):

W Q j

� �¼ 1
f 2j

CþCIð Þ
Z f 1j

0
x uð Þduþh �G 0ð Þeg 0ð Þ

Z f 1j

0
x uð Þdu

��
þ
Z f 1j

0
p jx uð ÞG uð Þeg uð Þduþ

Z f 2j

0
D uð ÞG uð Þeg uð Þdu

�
þh1

Z f 1j

0
f 1j�u

� 

p jx uð Þdu

� �
þK



ð2:43Þ

Now, the necessary condition for having a minimum for problem (m2) is:
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dW
dQ j

¼ 0 ð2:44Þ

Letting W ¼ w
f 2j
, then:

dW
dQ j

¼
w0
Q j

f 2j � f 02j,Q j
w

f 22j
ð2:45Þ

where w0
Q j

and f 02j,Q j
are the derivatives of w and f2j w.r.t. Qj, respectively. Hence,

Eq. (2.45) is equivalent to (Alamri et al. 2016):

w0
Q j

f 2j ¼ f 02j,Q j
w ð2:46Þ

Also, taking the first derivative of both sides of Eq. (2.40) w.r.t. Qj, one obtains:

eg 0ð Þ � p je
g f 1jð Þ ¼ f 02j,Q j

D f 2j
� �

eg f 2jð Þ ð2:47Þ

From which and Eqs. (2.38)–(2.40) it can be obtained:

w0
Q j

¼ C þ CIð Þ þ h G f 2j
� �� G 0ð Þ� ��

eg 0ð Þ þ G f 1j
� ��

��G f 2j
� ��

p je
g f 1jð Þiþ h1

x f 1j
� � Z f 1j

0
p jx uð Þdu: ð2:48Þ

W ¼ w
f 2j

¼
w0
Q j

f 02j,Q j

ð2:49Þ

where W is given by Eq. (2.40) and w0
Q j

is given by Eq. (2.48). Equation (2.49) can

be used to determine the optimal value of Qj and its corresponding total minimum
cost and then the optimal values of T1j and T2j (Alamri et al. 2016).

Example 2.3 Alamri et al. (2016) presented an example to illustrate the efficiency of
their mathematical model and solution procedures. They considered x(t) ¼ at + b, D
(t)¼ at + r, p j ¼ τ

Cbþeγj, and δ tð Þ ¼ l
z�βtwhere b, d, l, τ, Cb, z> 0; a, r, γ, β, t� 0; and

βt < z.

Alamri et al. (2016) adopted the values considered in the study by Wahab and
Jaber (2010), as presented in Table 2.4.

The optimal values of Qj*, T1j*, T2j*, and ωj*, the corresponding total minimum
cost for ten successive cycles, are obtained, and the results are shown in Table 2.5.
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2.3.4 Learning Effects

2.3.4.1 Different Holding Costs

Salameh and Jaber (2000) developed a model to determine the economic lot size by
maximizing the expected total profit per unit time. Each delivered lot has defective
items with a known probability function and is screened completely. Then the
defective items are sold as a single batch at a discounted price at the end of the
screening period (Wahab and Jaber 2010).

In Salameh and Jaber’s model, it is observed that they use the same holding cost
for both good items and defective items. However, in the real manufacturing
environment, the good items and the defective items are treated in a different way.
So, the holding cost, h ¼ iC, must be different for the good items and the defective
items (e.g., Paknejad et al. 2005). With this consideration, they assigned holding
costs h and h1 (where h > h1) for a unit of good item per period and a unit of
defective item per period, respectively. In Fig. 2.5, inventory of defective items is
depicted by the shaded area. In this section, the work of Wahab and Jaber (2010)
based on Salameh and Jaber (2000), Maddah and Jaber (2008), and Jaber et al.

Table 2.4 Input parameters (Alamri et al. 2016)

Parameter Value Parameter Value

C 100 ($/unit) α 500 (unit/year)

CI 0.5 ($/unit) r 50,000 (unit/year)

h 20 ($/unit/year) l 1 (unit/year)

h1 5 ($/unit/year) z 20 (unit/year)

K 3000 ($/cycle) β 25 (unit/year)

a 1000 (unit/year) τ 70.067 (unit/year)

b 100,200 (unit/year) Cb 819.76 (unit/year)

γ 0.7932 (unit/year)

Table 2.5 Optimal results for varying demand, screening, and deterioration rates with pj (Alamri
et al. 2016)

j pj T1j T2j Qj* pj�Qj* ωj* Wj* wj*

1 0.08524 0.035424 0.06482 3550 303 5.4 5,585,464 362,030

2 0.08497 0.035419 0.06483 3550 302 5.4 5,583,830 361,980

3 0.08436 0.035407 0.06485 3548 299 5.4 5,580,142 361,850

4 0.08305 0.035380 0.06489 3546 294 5.4 5,572,240 361,580

5 0.08030 0.035324 0.06498 3540 284 5.4 5,555,724 361,020

6 0.07482 0.035212 0.06516 3529 264 5.5 5,523,107 359,900

7 0.06502 0.035013 0.06548 3509 228 5.5 5,465,734 357,890

8 0.05042 0.034715 0.06594 3479 175 5.6 5,382,467 354,900

9 0.03369 0.034376 0.06644 3445 116 5.7 5,290,159 351,490

10 0.01944 0.034088 0.06686 3416 66 5.8 5,214,030 348,600
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