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Preface

Materials can be divided into metals and nonmetals. The characteristic feature
of metals like copper and aluminum is a high electrical and thermal conductiv-
ity, while nonmetals such as phosphor and sulfur are insulators. The electrical
conductivity varies over many orders of magnitude, from 106 Ω−1 m−1 for
typical metals down to 10−20 Ω−1 m−1 for almost ideal insulators. However,
a sharp separation between metals and insulators is in general not possible.
For instance, semiconducting materials such as silicon and germanium fill the
conductivity domain between metals and insulators. Their electrical conduc-
tivity is dependent on temperature and, in addition, can be varied strongly by
doping the material with donor or acceptor atoms. A famous example is the
sharp insulator-to-metal transition measured in Si:P at temperatures below
0.1K and donor concentrations of about 3.8× 1018 cm−3 phosphor atoms [1].

Furthermore, materials may exist in both states: carbon is metallic as
graphite and insulating as diamond. A fascinating quantum effect is observed
at low temperatures: some materials even loose their electrical resistivity and
become superconductors. Therefore, the questions What is a metal? and When
does a metal transform into a nonmetal? are of fundamental interest and re-
lated to many aspects of modern physics and chemistry. We refer the inter-
ested reader to the very nice introduction into this diverse topic given by
Edwards [2].

This book offers a collection of reviews on nonmetal-to-metal (or metal–
insulators or Mott transitions) in very different physical systems, from solids
with a regular periodic structure via disordered fluids and plasmas, finite metal
clusters up to exotic nuclear and quark matter. The surprising similarity in
the behaviour of these very diverse systems is due to the complex many-body
nature of the respective interactions, which drives the transition and entails a
non-perturbative treatment. Therefore, the Mott transition can be regarded
as a prominent test case for methods of non-perturbative many-body physics.
This book aims to give an overview on the current status of the theoretical
treatment of Mott transitions and new experimental progress and findings
in these fields as well.
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In his original work, Mott [3] initiated the detailed discussion of metal–
insulator transitions with an analysis of the critical screening length required
to trap an electron around a positive ion in a solid from which he derived the
relation n1/3aB = 0.2. This famous Mott criterion has been very successful in
describing metal–insulator transitions in various ordered systems, for example
solids and doped semiconductors. Then Hubbard [4] introduced his today well-
known and intensively studied model such that interactions between electrons
are accounted for only when they are on the same site – via the repulsive
Hubbard U term. Considering disordered systems, Anderson [5] could show
that at a certain degree of disorder all electrons will be localized and the
system becomes non-conducting.

These basic models contain important physical effects such as screening,
repulsive on-site electron–electron interactions and disorder in a clear con-
ceptual way and were, therefore, studied extensively. Details can be found in
earlier reviews on this topic [6–9]. In real physical systems, we have to treat
all relevant correlation and quantum effects to account for finite temperatures
and thus thermal excitations and, where applicable, to include the influence
of disorder as well. The simultaneous occurrence of correlations and disorder
and their mutual interplay is of major importance in this context as has long
been stressed by Mott. The construction and evaluation of respective Mott–
Hubbard–Anderson-type models is one of the most challenging problems of
many-body physics, see for example [10, 11].

The transition from a non-conducting to a conducting state in, for example
electron–ion systems is connected with a change in the electronic wave func-
tion from being localized on a single atom or at few sites to a delocalized state.
Landau and Zeldovich proposed already in 1943 that this electronic transi-
tion could introduce additional lines of first-order transitions in the phase
diagram of the fluid state [12]. Their prediction has stimulated precise mea-
surements of the liquid–vapour phase transition in metallic fluids such as
mercury up to the critical point, see [13]. A new interpretation of data for the
combined liquid–vapour and metal-to-nonmetal transition in mercury is given
in Chap. 2. Furthermore, this electronic transition may have a strong impact
on the high-pressure phase diagram of, for example hydrogen as the simplest
and most abundant element [14, 15]. Extreme states of matter, that is pres-
sures of several megabar and temperatures of many thousand Kelvin, occur
in the interior of giant planets in our solar system as well as in extrasolar
giant planets, which have been detected in great number. A better under-
standing of their formation processes, their current structure and evolution is
intimately related to the high-pressure equation of state and the location of
phase transition lines in fluid hydrogen–helium mixtures, see also Chap. 4.

It is obvious that the energy spectrum of electron–ion states, which con-
tains in general a series of bound states at discrete, negative energies as
well as a continuum of scattering states at positive energies, plays a cen-
tral role for the understanding of the metal–nonmetal transition. The energy
spectrum can be calculated by solving effective two-particle Schrödinger or



Preface VII

Bethe–Salpeter equations, which contain the correlation and quantum effects
in a strongly coupled system via a perturbative treatment, or within improved
self-consistent schemas such as the GW approximation, see [16–18]. In partic-
ular, the properties of bound states (formation, life time and dissolution) have
been studied extensively in partially ionized plasmas as function of density
and temperature.

Bound states in Coulomb systems are atoms (excitons) in electron–ion
(electron–hole) plasmas and fluids. This concept can be generalized to nuclear
matter where deuterons or alpha particles as found in neutron stars or in
heavy ion collisions are bound states composed of nucleons that interact via
effective nucleon–nucleon potentials. Bound states occur also in quark matter
as diquark (e.g. pi-meson) or three-quark states (nucleons). The transition to a
quark–gluon plasma can then be interpreted as the dissolution of all respective
multi-quark states, similar to the transition from a partially to a fully ionized
electron–ion or electron–hole plasma. Driving force is in all cases an increase
in pressure or density. Thus, the original concept of Mott has found wide
applications beyond traditional Coulomb systems, and the respective Mott
transition is intensively studied.

In the following chapters, we present reviews on the Mott transition in
these various systems, which will address the specific questions as well as
the general problems. We start in Chap. 1 with a description of quantum
phase transitions in strongly correlated one-dimensional electron–phonon sys-
tems and a detailed discussion of the models of Luttinger, Peierls and Mott.
A new inspection of the metal–nonmetal transition in fluid mercury is given
in Chap. 2, which has revealed a non-congruent nature for the first time. This
might have consequences also for other predicted first-order phase transitions
such as the hypothetical plasma phase transition in warm dense matter (see
Chaps. 3 and 4), various phase separations in dusty plasmas, or the exotic
phase transitions in neutron stars (see Chaps. 6 and 7). Various aspects of
the Mott effect in dense fluids and plasmas have been treated up to now,
but Pauli blocking as a direct quantum statistical effect is a novel topic and
will be discussed in Chap. 3 within a chemical model. The metal–insulator
transition in dense hydrogen is of primary importance for modeling interiors
of Jupiter-like giant planets. A confrontation of advanced chemical models
with quantum molecular dynamics simulations within a strict physical pic-
ture is performed in Chap. 4. The so far hypothetical plasma phase transition
is discussed both in Chap. 3 and in Chap. 4. Metal–insulator transitions can
also be induced in small metal clusters by irradiation with intense and short
laser pulses. The highly effective energy deposition by resonance absorption,
the various ionization processes (tunnel, field, impact) and the subsequent
Coulomb-driven cluster explosion process are described in Chap. 5. The Mott
effect in nuclear matter is reviewed in Chap. 6 within a cluster mean-field
approximation. For instance, the formation of a two-nucleon quantum con-
densate is observed. The properties of the condensate are strongly influenced
by the bound states immersed in the dense medium, that is by the Mott
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effect. A quantum field theory for the understanding of the phase diagram
of exotic quark matter is outlined in Chap. 7. The crossover between Bose–
Einstein condensation of diquark bound states and condensation of diquark
resonances is discussed in close relation to the usual Mott effect.

At this point, we express our greatest respect to the enormous and pio-
neering work of Sir Nevil Mott. Without his outstanding contributions, our
knowledge of fundamental interaction and correlation effects in various fields
of physics would be much poorer today. His work has inspired many physi-
cists worldwide, among them also theory groups in Germany, especially in
Rostock, Greifswald and Berlin, who have developed new concepts based on
Mott’s ideas for the metal–insulator transition in fluids and plasmas as well
as in nuclear and quark matter. Therefore, it was self-evident to celebrate
Mott’s 100th birthday on 30 September 2005 at the University of Rostock by
dedicating an International Workshop to the subject of Nonmetal–Insulator
Transitions in Solids, Liquids and Plasmas; participants of the meeting are
shown in Fig. 1. The contributions to this book are mainly based on lectures
given on that occasion or were invited afterwards:

Fig. 1. Participants of the International Workshop in Rostock on the occasion of
Mott’s 100th birthday on 30 September 2005 (from left to right): F. Hensel, B. Holst,
D. Semkat, N. Nettelmann, A. Kietzmann, A. Kleibert, J. Adams, A. Bechler,
M. French, T. Fennel, R. Egdell, K.-H. Meiwes-Broer, T. Döppner, W. Ebeling,
J. Berdermann, T. Bornath, H. Reinholz, W.-D. Kraeft, V. Schwarz, H. Stolz,
R. Ludwig, G. Röpke, R. Redmer, A. Weiße and D. Kremp.
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• P.P. Edwards (Oxford): Phase Separation in Metal–Ammonia Solutions:
Was Mott, or was Ogg Correct?

• R. Egdell (Oxford): Electron Spectroscopy and Metal-to-Nonmetal Tran-
sitions in Oxides

• H. Stolz (Rostock): Mott Effect and Bose–Einstein Condensation in Dense
Exciton Systems

• G. Röpke (Rostock): Mott Effect in Nuclear Matter: Formation of
Deuterons at Finite Temperature and Density

• W. Ebeling (Berlin): On Coulombic Phase Transitions
• F. Hensel (Marburg): Electronic Transitions in Liquid Metals
• K.-H. Meiwes-Broer (Rostock): Metal–Insulator Transitions in Expanding

Clusters
• R. Redmer (Rostock): Metal–Nonmetal Transition in Dense Plasmas

We thank all contributors to this book for the careful preparation of their
manuscripts. Finally, the project could be finished successfully and we thank
all authors for their patience and for staying tuned to the project until the
end. We thank Peter Edwards for his interest and the continuing support.

We thank the Deutsche Forschungsgemeinschaft (DFG) for support within
the SFB 652, especially for the organization of the Workshop in 2005. Finally,
we thank the Spinger-Verlag for supporting our project and, especially,
Mr. Balamurugan Elumalai for the excellent mentoring of the edition of
this book.
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Institut für Physik
Universität Rostock
18051 Rostock, Germany
josef.tiggesbaeumker@
uni-rostock.de

Nguyen Xuan Truong
Institut für Physik
Universität Rostock
18051 Rostock, Germany
xuan.nguyen@uni-rostock.de

Daniel Zablocki
Institute for Theoretical Physics
University of Wroclaw
50-204 Wroclaw, Poland
zablocki@ift.uni.wroc.pl



1

Luttinger, Peierls or Mott?
Quantum Phase Transitions in Strongly

Correlated 1D Electron–Phonon Systems

Holger Fehske and Georg Hager

Abstract. We analyse the complex interplay of charge, spin, and lattice degrees
of freedom in one–dimensional electron systems coupled to quantum phonons. To
this end, we study generic model Hamiltonians, such as the Holstein models of
spinless fermions, the Holstein–Hubbard model and a Heisenberg spin-chain model
with magneto-elastic interaction, by means of an unbiased numerical density–matrix
renormalisation group technique. Thereby particular emphasis is placed on the
Luttinger–liquid charge–density-wave, Peierls–insulator Mott-insulator, and spin–
Peierls quantum phase transitions.

1.1 Introduction

The way a material evolves from a metallic to an insulating state is one of
the most fundamental problems in solid state physics. Apart from band struc-
ture and disorder effects, electron–electron and electron–phonon interactions
are the driving forces behind metal–insulator transitions in the majority of
cases. While the so-called Mott–Hubbard transition [1] is caused by strong
Coulomb correlations, the Peierls transition [2] is triggered by the coupling
to vibrational excitations of the crystal. Both scenarios compete in a subtle
way. As a result, quantum phase transitions (QPT) between insulating phases
become possible. Most notably this applies to quasi one-dimensional (1D)
materials like conjugated polymers, organic charge transfer salts, ferroelectric
perovskites, or halogen-bridged transition metal complexes, which exhibit a
remarkably wide range of strengths of competing forces [3, 4]. Moreover, 1D
systems are known to be very susceptible to structural distortions.

The challenge of understanding such a kind of metal–insulator or
insulator–insulator QPT has stimulated intense work on generic microscopic
models of interacting electrons and phonons. In this respect, the 1D Holstein–
Hubbard model is particularly rewarding to study [5–10]. It accounts for a
tight-binding electron band, a local coupling of the charge carriers to optical
phonons, the energy of the phonon subsystem in harmonic approximation,
and an intra-site Coulomb repulsion between electrons of opposite spin:
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Fig. 1.1. The 1D Holstein–Hubbard model (left panel) and the competing ground
states for the half-filled band case (right panel)

H = −t
∑

〈i,j〉σ
c†iσcjσ − gω0

∑

iσ

(b†i + bi)niσ + ω0

∑

i

b†ibi + U
∑

i

ni↑ni↓ . (1.1)

Here niσ = c†iσciσ, where c†iσ (ciσ) creates (annihilates) a spin-σ electron at
Wannier site i of a 1D lattice with N sites, and b†i (bi) are the corresponding
bosonic operators for a dispersionsless phonon with frequency ω0.

The physics of the Holstein1–Hubbard2 model is governed by three com-
peting effects: the itinerancy of the electrons (∝ t), their on-site Coulomb
repulsion (∝ U), and the local electron–phonon (EP) coupling (∝ g). As
the EP interaction is retarded, the phonon frequency (ω0) defines a further
relevant energy scale (see Fig. 1.1). This advises us to introduce besides the
adiabaticity ratio, ω0/t, two dimensionless coupling constants

u = U/4t and g2 = εp/ω0 or λ = εp/2t . (1.2)

Both Holstein and Hubbard interactions tend to immobilise the charge
carriers. Therefore, Peierls insulator (PI) or Mott insulator (MI) states are
expected to be favoured over the metallic state, at least for the half-filled
band case (

∑
i,σ niσ = Nel = N) and at zero temperature. Strictly speaking,

this holds in the adiabatic limit (ω0 = 0) for ‘U -only’ (Hubbard model) and
‘λ-only’ (Peierls model) parameters. For the more general Holstein–Hubbard
model, the situation is much less obvious. Clearly a large phonon frequency
will act against any static ordering. If insulating phases exist nevertheless,
their ground-state properties will depend on ω0 and on the ratio of Coulomb
and EP interactions u/λ. Likewise, the nature of the physical excitations
is puzzling as well. While one expects ‘normal’ electron–hole excitations in
the PI phase (U = 0), charge (spin) excitations are known to be massive
(gapless) in the MI state of the Hubbard model (λ = 0). Thus, varying the
1 The Holstein model [11] has been studied extensively as a paradigmatic model

for polaron formation in the low-density limit. For commensurate band fillings,
the coupling to the lattice supports charge ordering.

2 The Hubbard model [12], originally designed to describe ferromagnetism of tran-
sition metals, has more recently been used as the probably most simple model to
account for strong Coulomb correlation effects in the context of high-temperature
superconductivity.
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control parameter u/λ, a cross-over from standard quasi-particle behaviour to
spin-charge separation might be observed in the more general 1D Holstein–
Hubbard model.

The aim of this contribution is to affirm this physical picture and the
anticipated phase diagram of the 1D Holstein–Hubbard model. For these pur-
poses we adapt Lanczos exact diagonalisation (ED) [13], kernel polynomial
(KPM) [14] and density-matrix renormalisation group (DMRG) [15] methods
for EP problems (for an overview see [16, 17]). These numerical techniques
allow us to obtain unbiased results for all interaction strengths with the full
quantum dynamics of phonons taken into account.

1.2 Luttinger–Peierls Metal–Insulator Transition

To study the metal–insulator transition in 1D EP systems, we neglect, in
a first step, the spin degrees of freedom in (1.1). Even so, the resulting 1D
spinless fermion Holstein model,

H = −t
∑

〈i,j〉
c†i cj − gω0

∑

i

(b†i + bi)ni + ω0

∑

i

b†i bi, (1.3)

is, despite its seeming simplicity, not exactly solvable. It is generally accepted,
however, that the model exhibits a QPT from a metallic to an insulating phase
at half-filling (Ne = N/2) [18,19]. During the last two decades, a wide range of
analytical and numerical methods have been applied to map out the ground-
state phase diagram in the whole g –ω0 plane [18, 20–26], with significant
differences, especially in the low-frequency intermediate EP coupling regime.
In the adiabatic limit (ω0 → 0), the critical coupling λc(ω0) vanishes. In the
anti-adiabatic (ω0 →∞) strong EP coupling regime, the model can be trans-
formed to the exactly solvable XXZ model [18, 23], which shows a transition
of Kosterlitz–Thouless type.

Before we determine the metal–insulator phase boundary, let us charac-
terise the metallic and insulating phases themselves. According to Haldane’s
Luttinger liquid (LL) conjecture [27], an 1D gapless (metallic) system of inter-
acting fermions should belong to the Tomonaga–Luttinger universality class
[28,29]. As the Holstein model of spinless fermions is expected to be gapless at
weak couplings g, the system is described by (non-universal) LL parameters
uρ (charge velocity) and Kρ (correlation exponent).

In the following, we try to determine uρ and Kρ by large-scale DMRG cal-
culations. To leading order, the charge velocity and the correlation exponent
is related to the ground-state energy of a finite system with N sites

E0(N)
N

= ε0(∞)− π

3
uρ
2

1
N2

(1.4)

(ε0(∞) denotes the bulk ground-state energy density) and the charge
excitation gap
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Δc(N) = E±
0 (N)− E0(N) = π

uρ
2

1
Kρ

1
N

(1.5)

(here E±
0 (N) is the ground-state energy with ±1 fermion away from half-

filling n = Nel/N = 0.5). Note that the LL scaling relations (1.4) and
(1.5) were derived for the pure electronic spinless fermion model only [30].
A careful finite-size analysis shows, however, that they also hold for the case
that a finite EP is included [31]. Figure 1.2 shows the resulting LL param-
eters, exemplarily for two frequencies belonging to the adiabatic (upper left
panel) and anti-adiabatic (upper right panel) regimes. Interestingly, the LL
phase splits into two different regions: for small phonon frequencies, the effec-
tive fermion–fermion interaction is attractive (Kρ > 0), while it is repulsive
(Kρ < 0) for large frequencies. In the latter region, the kinetic energy (∝ uρ)
is strongly reduced and the charge carriers behave like (small) polarons. In
between, there is a transition line Kρ = 1, where the LL is made up of (al-
most) non-interacting particles. The LL scaling breaks down just at a critical
coupling gc(ω0/t), signalling the transition to the CDW (charge density wave)
state. We find, for example g2

c (ω0/t = 0.1) � 7.84 and g2
c (ω0/t = 10) � 4.41.

The middle panels of Fig. 1.2 prove the existence of CDW long-range order
above gc. Here the staggered charge structure factor

Sc(π) =
1
N2

∑

i,j

(−1)j〈(ni − n)(ni+j − n)〉 (1.6)

unambiguously scales to a finite value in the thermodynamic limit (N →∞).
Simultaneously, Δc(∞) acquires a finite value. In contrast, we have Sc(π)→ 0
in the metallic regime (g < gc). Note that such a finite-size scaling, in-
cluding dynamical phonons, is definitely out of range for any ED calcula-
tion. The CDW at strong EP coupling is connected to a Peierls distortion
of the lattice and can be classified as traditional band insulator and pola-
ronic superlattice in the strong-coupling adiabatic and anti-adiabatic regimes,
respectively.

The optical absorption spectra shown in the lower panels of Fig. 1.2 eluci-
date the different nature of the CDW for small and large adiabaticity ratios
in more detail. The regular part of the optical conductivity,3

σreg(ω) =
∑

m>0

|〈ψ0|ĵ|ψm〉|2
Em − E0

δ[ω − (Em − E0)], (1.7)

takes into account finite-frequency transitions from the ground state |ψ0〉 to
excited quasi-particle states |ψm〉 in the same particle sector.4 Importantly, the
current operator ĵ = it

∑
i(c

†
i ci+1−c

†
i+1ci) has finite matrix elements between

3 The evaluation of dynamical correlation functions like σreg(ω) can be carried out
by means of the very efficient and numerically stable ED-KPM algorithm [14].

4 In (1.7), σreg(ω) is given in units of πe2 and we have omitted an 1/N prefactor.
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Fig. 1.2. Basic properties of the 1D half-filled spinless fermion Holstein model:
Luttinger liquid parameters uρ and Kρ in the metallic region (top panels; the solid
lines in the right panel gives the asymptotic results for the XXZ model), finite-size
scaling of the charge structure factor Sc(π) below and above the metal–insulator
transition (middle panels), and optical response σreg(ω) in the CDW regime (lower
panels). See text for further explanation

states of different site-parity only. In the adiabatic region, the most striking
feature is the sharp absorption threshold and large spectral weight contained
in the incoherent part of optical conductivity. In the anti-adiabatic regime,


