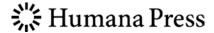

Contemporary Cardiology *Series Editor:* Peter P. Toth

Nathan D. Wong Ezra A. Amsterdam Peter P. Toth *Editors*

Second Edition

Contemporary Cardiology

Series Editor:


Peter P. Toth Ciccarone Center for the Prevention of Cardiovascular Disease John Hopkins University School of Medicine Baltimore, MD USA For more than a decade, cardiologists have relied on the Contemporary Cardiology series to provide them with forefront medical references on all aspects of cardiology. Each title is carefully crafted by world-renown cardiologists who comprehensively cover the most important topics in this rapidly advancing field. With more than 75 titles in print covering everything from diabetes and cardiovascular disease to the management of acute coronary syndromes, the Contemporary Cardiology series has become the leading reference source for the practice of cardiac care.

More information about this series at http://www.springer.com/series/7677

Nathan D. Wong • Ezra A. Amsterdam Peter P. Toth Editors

ASPC Manual of Preventive Cardiology

Second Edition

Editors
Nathan D. Wong
Heart Disease Prevention Program
Division of Cardiology
University of California, Irvine
Irvine, CA
USA

Peter P. Toth Cicarrone Center for the Prevention of Cardiovascular Disease John Hopkins University School of Medicine Baltimore, MD USA Ezra A. Amsterdam Division of Cardiovascular Medicine University of California, Davis Sacramento, CA

The first edition of this book was published with Demos MedicalWong, Nathan D., Amsterdam, Ezra A., Blumenthal, Roger S. (Eds.), ASPC Manual of Preventive Cardiology, 1/e Softcover (Demos, 9781936287864, 2015, 296 p., \$90.00)

ISSN 2196-8969 ISSN 2196-8977 (electronic) Contemporary Cardiology ISBN 978-3-030-56278-6 ISBN 978-3-030-56279-3 (eBook) https://doi.org/10.1007/978-3-030-56279-3

© Springer Nature Switzerland AG 2014, 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

It is a privilege, albeit a rather daunting one, to follow the great Thomas A. Pearson who wrote the foreword to the previous edition of the ASPC Manual of Preventive Cardiology. I would like to think of this as a symbol of increasing recognition that the approach to our greatest cause of death, atherosclerotic cardiovascular disease (ASCVD), should be global. As mortality from ASCVD has declined in the United States, it has risen in developing countries of the world. And even a decline in age-specific mortality may be misleading as deaths may be transferred to older age groups, incident non-fatal cases in younger persons will be missed, and advances in therapy will result in more persons living with ASCVD with consequent accumulating healthcare costs. We are also all concerned about our inability to contain the epidemic of obesity and the specter of unfit, overweight young adults dependent on a cocktail of medications to contain their risks—"chemical salvage" if you will.

Tom Pearson gave due credit to the great Jeremiah Stamler. I would also like to recollect what Geoffrey Rose [1] taught us—firstly, that most cases of ASCVD arise in people at only modestly increased risk, simply because they are far more numerous than high risk people; high-risk *individuals* gain most from preventive measures but a complementary population approach is needed if ASCVD is to be effectively contained. Secondly, "The primary determinants of disease are mainly economic and social, and therefore its remedies must also be economic and social. Medicine and politics cannot and should not be kept apart." It behoves those of us who try to lead in preventive cardiology to be advocates for not only our individual patients but for societal change as well.

Preventive cardiology faces many challenges. The busy healthcare professional is faced with a tsunami of clinical practice guidelines, many very detailed and dense. Many of us were not trained in such aspects as communications, behavior change, or nutrition. The medical system may be hostile to our efforts—we may be reimbursed for treating sick people but not for keeping people healthy. These aspects make the *ASPC Manual of Preventive Cardiology* singularly important, making core principles and key aspects of prevention accessible to the harassed healthcare professional and written by a star-studded cast of authors.

vi Foreword

Can we also begin to glimpse the future of prevention? Risk estimation involves applying risk estimates derived from populations to individuals, a very uncertain process. There is much talk about 'personalised' risk estimation. Will genetics help us? It is likely that we have underestimated the impact of the polymorphisms that determine risk, because their effect on 5-year risk is small whereas the impact on true lifetime risk may be great [2]. Also, we will likely see a disentangling of direct genetic effects from indirect effects on lipids and blood pressure. In contrast, the endless quest for new risk factors has been rather disappointing after the effects of the "big three" of smoking, lipids, and blood pressure have been taken onto account.

There is much talk about fashionable topics such as "big data," machine learning, and artificial intelligence. But epidemiologists have always dealt in large numbers, and the harmonisation of data from disparate sources, while exciting, is still challenging. And new methods of data analytics are not inherently magical,—we still have to define clear and answerable questions.

Finally, have we physicians been too paternalistic, too controlling? It is logical and pleasing to see more patient involvement in Guidelines, more development of motivational interviewing skills, and an increase in the teaching of health maintenance skills from childhood on.

In conclusion, I warmly welcome the ASPC Manual of Preventive Cardiology as a lucid, comprehensive, and insightful contribution that belongs in the library of every healthcare provider who practices preventive cardiology. It is an indispensable companion for those devoted to state-of-the-art medical practice.

Trinity College, Dublin, Ireland

Ian M. Graham, FRCPI, FESC, FTCD

References

- 1. Rose G. The strategy of preventive medicine. Oxford: Oxford University Press; 1992.
- Ference BA, Graham I, Tokgozoglu L, Catapano A. The impact of lipids on cardiovascular health. JACC Health promotion series. J Am Coll Cardiol. 2018;72:1141–56.

Preface

Despite significant declines in cardiovascular disease mortality over much of the last half century, rates have begun to rise once again, and annual healthcare costs due to cardiovascular diseases in the United States approach one trillion dollars. Cardiovascular disease has become the leading cause of death in more and more developing countries worldwide, fueled largely by the obesity and diabetes epidemic, which is also driving increases in cardiovascular disease in the United States. While coronary heart disease has traditionally been the focus of preventive cardiology, more comprehensive approaches addressing prevention of peripheral vascular disease, stroke, heart failure, atrial fibrillation, as well as cardiovascular disease related comorbidities including diabetes and chronic kidney disease are needed. Moreover, management limited to traditional risk factors such as cholesterol, blood pressure, and smoking needs to be greatly expanded with the advent of newer therapies to reduce cardiovascular disease risk in diabetes, evidence of benefit from treating inflammation, as well as the role of genetic evaluation to target those most likely to respond to risk reducing therapies.

This new edition of the *American Society for Preventive Cardiology (ASPC) Manual of Preventive Cardiology* features significant updates from newer guidelines of the American College of Cardiology, American Heart Association, and other societies for cardiovascular risk assessment and risk factor management. In just the last 5 years, we have witnessed perhaps a generation of advances in the field of preventive cardiology that have been incorporated into this new edition. The advent of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors has brought low density lipoprotein cholesterol to lower levels than ever before, in many cases below 20 mg/dL, further addressing the problem of "residual risk" in our high-risk patients. This occurred simultaneously with release of key trials of sodium-glucose transport protein 2 (SGLT-2) inhibitors and glucagon-like peptide 1 (GLP1) receptor agonists, the first diabetes therapies to show cardiovascular risk reduction benefits. Moreover, the first two trials to prove the link between inflammation and atherosclerosis and its clinical sequelae have leveraged novel mechanisms to reduce cardiovascular disease risk. The end of the last decade was then topped off by the

viii Preface

first fish oil therapy, icosapent ethyl, to further reduce risk for cardiovascular events beyond statin therapy in high-risk patients.

The contributors of the 29 chapters in this new edition are experts in their respective fields of preventive cardiology and, along with the editors, have dedicated their careers to advancing this field. While each chapter includes much relevant scientific discussion of the latest clinical trials and other research, the goal of the ASPC Manual of Preventive Cardiology is to address contemporary, practical therapeutic approaches that enhance the practice of preventive cardiology by the wide range of providers essential for its practice—ranging from lifestyle interventionists, such as dietitians and exercise physiologists, to nurses and nurse practitioners, pharmacists, primary care providers, and specialists including endocrinologists and cardiologists. Guidance is also provided for development of a preventive cardiology center that encompasses this range of healthcare providers essential for optimizing cardiovascular disease prevention in our communities.

It is hoped the ASPC Manual of Preventive Cardiology will serve as the authoritative and most up-to-date source of clinically relevant information for healthcare providers, scientists, and trainees in the United States and beyond who have an interest in or who have dedicated their careers to prevent cardiovascular disease in their patients and communities. Moreover, with the ASPC growing from a small group of academic physicians 35 years ago to a multidisciplinary membership of more than 1000 members today, the ASPC Manual of Preventive Cardiology is intended to serve an even larger audience of specialists dedicated to the field.

Irvine, CA, USA Sacramento, CA, USA Baltimore, MD, USA Nathan D. Wong Ezra A. Amsterdam Peter P. Toth

Acknowledgements

This edition of the ASPC Manual of Preventive Cardiology is dedicated to:

Drs. William B. Kannel, Jeremiah Stamler, and Nanette Wenger, giants in the field.

Nathan D. Wong: to my wife Mia, son David and parents Donald and Mew Lun Wong

Ezra A. Amsterdam: to my wife, Beulah, and daughters, Elana Amsterdam and Dina Amsterdam

Peter P. Toth: to my most valued and influential teachers: Roger Waltemyer, Louis Bixby, Clarence Suelter, Denton A. Cooley, Paul Seifert, and Barbara Anne Gooding.

We also wish to acknowledge Mr. Michael D. Sova, managing editor, for his tireless efforts and attention to detail in helping to assemble this book.

Contents

Opportunities for Improvement	1
Devinder S. Dhindsa, Anurag Mehta, and Laurence S. Sperling	-
National and Global Trends of Cardiovascular Disease Mortality, Morbidity, and Risk Sadiya S. Khan, Stephen Sidney, Donald M. Lloyd-Jones,	17
and Jamal S. Rana	
Cardiovascular Risk Assessment: From Global Risk Scoring to Risk Enhancing Factors	35
Assessment and Management of Psychosocial Risk Factors Within Preventive Cardiology Practice	61
Dietary Strategies for Atherosclerotic Cardiovascular Risk Reduction	73
Physical Activity Strategies	99
Obesity Management and Prevention of Cardiovascular Disease	119
Smoking and Vaping	149
Alcohol and Cardiovascular Diseases	163

xii Contents

The 2018 AHA/ACC/Multisociety Cholesterol Guidelines: A Personalized Approach to Risk Reduction Ewa Dembowski, Scott M. Grundy, and Neil J. Stone	179
Blood Pressure and Hypertension Management	201
Cardiodiabetology: Reducing Risks to Optimize Cardiovascular Disease Outcomes Nathan D. Wong and Yehuda Handelsman	227
Antiplatelet Therapy	249
Inflammation and Atherosclerotic Cardiovascular Disease	289
The Role of Genetics in Preventive Cardiology: Utility of Clinically Available Genetic Tests H. Robert Superko	335
Exercise Electrocardiographic Stress Testing Ezra A. Amsterdam, Nene Takahashi, Muhammad Majid, Sura Abbas, Yasameen Alismail, and Sandhya Venugopal	365
Ultrasound and MRI Assessment of Cardiovascular Risk	391
Role of CT Coronary Calcium Scanning and Angiography in Evaluation of Cardiovascular Risk	417
Cardiovascular Disease Prevention in Women	441
Racial/Ethnic Considerations in the Prevention of Cardiovascular	
Disease Keith C. Ferdinand, Ayan Ali, and Melvin R. Echols	463
Prevention of Heart Failure	489
Prevention of Peripheral Arterial Disease Elsie Gyang Ross, Jonathan T. Unkart, and Matthew Allison	513
Prevention of Atrial Fibrillation	541
Prevention of Ischemic Stroke	581

Contents xiii

Prevention of Cardiovascular Disease in Patients with Chronic Kidney Disease Robin H. Lo and Richard J. Glassock	611
Primary Prevention of Cardiovascular Disease Guidelines	653
Secondary Prevention and Cardiac Rehabilitation	673
Integrative Approaches for Cardiovascular Disease Prevention	705
Preventive Cardiology as Specialized Medical Art	733
Index	745

Contributors

Sura Abbas, MD Division of Cardiovascular Medicine, University of California Davis Medical Center, Sacramento, CA, USA

Abdulhamied Alfaddagh, MD Department of Medicine, Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Ayan Ali, BS Tulane University School of Medicine, New Orleans, LA, USA

Yasameen Alismail, MD Division of Cardiovascular Medicine, University of California Davis Medical Center, Sacramento, CA, USA

Matthew Allison, MD, MPH Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA

Jaime P. Almandoz, MD, MBA Weight Wellness Program, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX, USA

Ezra A. Amsterdam, MD, FACC, FAHA Division of Cardiovascular Medicine, University of California, Davis, Sacramento, CA, USA

Bettina M. Beech, DrPH, MPH Department of Health Systems and Population Health Science, College of Medicine, University of Houston, Houston, TX, USA

Emelia J. Benjamin, MD, ScM National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts & Sections of Cardiovascular Medicine and Preventive Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA

Department of Epidemiology, Boston University School of Medicine, Boston, MA, USA

Jeffrey S. Berger, MD, MS Center for the Prevention of Cardiovascular Disease, New York University School of Medicine, New York, NY, USA

xvi Contributors

Roger S. Blumenthal, MD Department of Medicine, Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Gerd Brunner, MS, PhD Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA

Matthew J. Budoff, MD Department of Cardiology, Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, USA

Ewa Dembowski, MD Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Devinder S. Dhindsa, MD Department of Medicine (Cardiology Division), Emory University School of Medicine, Atlanta, GA, USA

Elizabeth H. Dineen, DO Susan Samueli Integrative Health Institute, University of California, Irvine, Irvine, CA, USA

Division of Cardiology, Department of Medicine, University of California, Irvine, Irvine, CA, USA

Melvin R. Echols, MD Department of Medicine, Division of Cardiology, Morehouse School of Medicine, Atlanta, GA, USA

Sergio Fazio, MD, PhD Center for Preventive Cardiology/Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA

Keith C. Ferdinand, MD Department of Medicine, Tulane Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA

Barry A. Franklin, PhD Department of Cardiology (Cardiac Rehabilitation), Beaumont Health & Wellness Center, Royal Oak, MI, USA

Chellse Gazda, MD, MPH Weight Wellness Program, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX, USA

Richard J. Glassock, MD Department of Medicine, Geffen School of Medicine at UCLA, Laguna Niguel, CA, USA

Scott M. Grundy, MD, PhD Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA

Martha Gulati, MD, MS, FACC, FAHA, FASPC Division of Cardiology, University of Arizona College of Medicine, Phoenix, AZ, USA

Yehuda Handelsman, MD, FACP, FNLA, FASPC, MACE Metabolic Institute of America, Tarzana, CA, USA

Aliza Hussain, MD Department of Medicine, Baylor College of Medicine, Houston, TX, USA

Nada El Husseini, MD, MHSc Department of Neurology, Duke University, Durham, NC, USA

Contributors xvii

Wayneho Kam, MD Department of Neurology, Duke University, Durham, NC, USA

Sadiya S. Khan, MD, MSc Division of Cardiology/Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Amit Khera, MD, MSc, FASCP Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, USA

Arthur L. Klatsky, MD Department of Cardiology, Division of Research, Kaiser Permanente, Oakland, CA, USA

Jelena Kornej, MD, MSC National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts & Sections of Cardiovascular Medicine and Preventive Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA

Donald M. Lloyd-Jones, MD, ScM Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Hannah C. Lo, BS Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, USA

Robin H. Lo, MD Internal Medicine, University of California at Irvine Medical Center, Irvine, CA, USA

Russell V. Luepker, MD, MS Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA

Muhammad Majid, MD Department of Cardiology, Division of Cardiovascular Medicine, University of California (Davis) Medical Center, Sacramento, CA, USA

Shaista Malik, MD, PhD, MPH Susan Samueli Integrative Health Institute, University of California, Irvine, Irvine, CA, USA

Division of Cardiology, Department of Medicine, University of California, Irvine, Irvine, CA, USA

Rina Mauricio, MD Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern, Dallas, TX, USA

Anurag Mehta, MD Department of Medicine (Cardiology Division), Emory University School of Medicine, Atlanta, GA, USA

Vijay Nambi, MD, PhD Department of Medicine, Michael E DeBakey Veterans Affairs hospital and Baylor College of Medicine, Houston, TX, USA

Khurram Nasir, MD, MPH Division of Cardiovascular Prevention and Wellness Houston Methodist DeBakey Heart & Vascular Center, Center for Outcomes Research, Houston Methodist Hospital, Houston, TX, USA

Keith C. Norris, MD, PhD Department of Medicine, Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, CA, USA

xviii Contributors

Afiachukwu Onuegbu, MD, MPH Department of Cardiology, Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, USA

Aryana Pazargadi, BS Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, USA

Jamal S. Rana, MD, PhD Division of Cardiology, Kaiser Permanente Northern California, Oakland, CA, USA

Elsie Gyang Ross, MD, MSc Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA

Alan Rozanski, MD Department of Cardiology, Mount Sinai Morningside Hospital and Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Anum Saeed, MD Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA

Aparna Sajja, MD Department of Medicine, Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Nazir Savji, MD Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA

Douglas D. Schocken, MD Cardiology Division, Duke University School of Medicine, Durham, NC, USA

Michael D. Shapiro, DO, MCR Center for Prevention of Cardiovascular Disease, Fred M. Parrish Professor of Cardiology and Molecular Medicine, Winston-Salem, NC, USA

Stephen Sidney, MD, MPH Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA

Geeta Sikand, MA, RD, FAND, CDE, CLS, FNLA Department of Medicine (Cardiology), University of California Irvine, Irvine, CA, USA

Laurence S. Sperling, MD, FACC, FACPFAHA, FASPC Department of Medicine (Cardiology Division), Emory University School of Medicine, Atlanta, GA, USA

R. Brandon Stacey, MD, MS Section in Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA

Neil J. Stone, **MD** Department of Medicine/Cardiology and Preventive Medicine, Northwestern Memorial Hospital/Feinberg School of Medicine, Winnetka, IL, USA

H. Robert Superko, MD, FASPC, FACC, FAHA Cholesterol, Genetics, and Heart Disease Institute, Carmel, CA, USA

Contributors xix

Iwona Świątkiewicz, MD, PhD, FESC Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, USA

Department of Cardiology and Internal Medicine, Nicolaus Copernicus University Collegium Medicum, Bydgoszcz, Poland

Nene Takahashi, MPH Western University of Health Sciences, College of Osteiopathic Medicine, Pomona, CA, USA

Pam Taub, MD Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, USA

Peter P. Toth, MD, PhD Cicarrone Center for the Prevention of Cardiovascular Disease, John Hopkins University School of Medicine, Baltimore, MD, USA

H. Nicole Tran, MD, PhD Department of Internal Medicine, Kaiser Permanente Medical Center, Oakland, CA, USA

Jonathan T. Unkart, MD, MPH, MS Family Medicine and Public Health, Division of Preventive Medicine, University of California, San Diego, La Jolla, CA, USA

Sandhya Venugopal, MD, MS-HPEd Department of Internal Medicine, Division of Cardiovascular Medicine, University of California Davis Health, Sacramento, CA, USA

Nathan D. Wong, PhD, FACC, FAHA, FASPC, FNLA Heart Disease Prevention Program, Division of Cardiology, University of California, Irvine, Irvine, CA, USA

Focus on Cardiovascular Health Promotion and Disease Prevention: Opportunities for Improvement

1

Devinder S. Dhindsa, Anurag Mehta, and Laurence S. Sperling

Summary

- Prior reductions in cardiovascular mortality have seen stagnation and even a reversal in that trend despite modern and expensive technologies and therapies.
- This trend is due in part to an increase in the prevalence of obesity and diabetes, with resultant impact on other cardiovascular risk factors.
- The need for prevention is imperative and requires a comprehensive approach on a continuum of care from individual patients to large-scale public policy initiatives.

1 Introduction

The latter part of the twentieth century in the United States was notable for an unprecedented reduction in cardiovascular deaths. Importantly, most of the decrease in cardiovascular deaths, particularly between 1980 and 2000, was attributable to preventive efforts through improved awareness and treatment of traditional cardiovascular risk factors (smoking, dyslipidemia, hypertension, diabetes) [1]. Unfortunately, in recent years there has been stagnation in these gains with trends demonstrating a concerning increase in cardiovascular mortality, particularly in younger adults, due in part to a rise in obesity and diabetes in the United States [2–5]. Currently, there are 30 million Americans living with diabetes, 84 million with pre-diabetes, and 75 million with hypertension, and nearly 40% of Americans are obese [6, 7]. Disturbingly, the development of these cardiovascular risk factors

D. S. Dhindsa · A. Mehta · L. S. Sperling (⋈)

Department of Medicine (Cardiology Division), Emory University School of Medicine,

Atlanta, GA, USA

e-mail: lsperli@emory.edu

is largely preventable. Our current healthcare system is inadequate in promoting healthy behaviors and incentivizes disease-focused care, often at advanced stages.

Despite outspending any other country with 18% of our gross domestic product on healthcare, the United States is ranked last among industrialized nations in healthcare value, measured as a composite of care process, access, efficiency, equity, and healthcare outcomes [8]. In 2016, cardiovascular disease spending was estimated at \$555 billion [9]. By 2035, this cost is expected to increase to \$1.1 trillion [10]. Although spending on technology for cardiovascular care had value in prior decades, the current trends in cardiovascular outcomes suggest this trend may no longer be true [5, 10–12]. As such, a greater focus on primordial and primary prevention is critical for the health and well-being of our communities and our future economy.

2 Defining Cardiovascular Health

A definition of cardiovascular health is useful for guiding efforts geared toward health promotion and disease prevention. In 2010, the Goals and Metrics Committee of the Strategic Planning Task Force of the American Heart Association (AHA) envisioned ideal cardiovascular health as a combination of three key factors: (1) absence of cardiovascular disease (CVD), (2) favorable levels of cardiovascular health factors, and (3) presence of favorable health behaviors [13]. The committee developed objective definitions for "ideal," "intermediate," and "poor" cardiovascular health based on these principles incorporating a combination of seven distinct cardiovascular risk factors and health behaviors [13]. These modifiable cardiovascular risk factors have been colloquially termed Life's Simple 7 and consist of blood pressure, total cholesterol, fasting blood glucose, smoking, physical activity, body mass index, and healthy diet (Table 1) [13]. Ideal cardiovascular health was defined as the presence of ideal levels of all seven metrics, intermediate cardiovascular health as the presence of at least one intermediate metric without any poor metrics, and poor cardiovascular health as the presence of at least one poor health metric [13].

Over the past decade, several studies have reported that individuals with ideal cardiovascular health are rare in American communities. The estimated prevalence of ideal cardiovascular health ranged from 0.5% to 12% in a systematic review conducted in 2016 [14]. A seminal investigation from the National Health and Nutrition Examination Survey (NHANES) revealed that the proportion of American adults meeting all seven ideal cardiovascular health metrics declined over time from 2.0% [95% CI, 1.5–2.5%] in 1988–1994 to 1.2% [95% CI, 0.8–1.9%] in 2005–2010 [15]. Women, non-Hispanic whites, and those with higher education levels were more likely to meet a greater number of these cardiovascular health metrics than their male, ethnic minority, and less educated counterparts. Furthermore, this investigation and several other epidemiologic studies have demonstrated the direct association of ideal cardiovascular health with favorable long-term cardiovascular outcomes [14, 15]. These findings illustrate the urgent need for cardiovascular health

Metric	Poor	Intermediate	Ideal
Blood pressure	SBP ≥140 or DBP ≥90 mm Hg	SBP 120–139 or DBP 80–89 mm Hg or treated to goal	SBP <120 or DBP <80 mm Hg
Total cholesterol	≥240 mg/dl	200–239 mg/dl or treated to goal	<200 mg/dl
Fasting glucose	≥126 mg/dl	100–125 mg/dl or treated to goal	<100 mg/dl
Smoking status	Current smoker	Former smoker or quit ≤12 months ago	Never smoker or quit >12 months ago
Physical activity	None	1–149 min/week moderate intensity or 1–74 min/week vigorous intensity or 1–149 min/week moderate + vigorous intensity	≥150 min/week moderate intensity or ≥75 min/week vigorous intensity or ≥150 min/week moderate + vigorous intensity
Body mass index	≥30 kg/m ²	25–29.9 kg/m ²	<25 kg/m ²
Healthy diet score*	0–1 component	2–3 components	4–5 components

Table 1 Modifiable risk factors and behaviors comprising the definitions of poor, intermediate, and ideal cardiovascular health

Adapted from American Heart Association's Life's Simple 7

SBP systolic blood pressure, DBP diastolic blood pressure, mm HG millimeters of mercury, mg/dl milligrams per deciliter, min minutes, kg/m^2 kilogram per meter squared

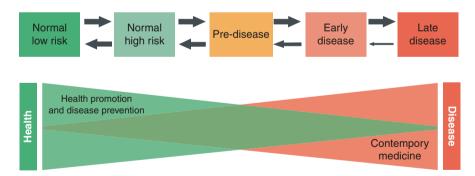


Fig. 1 The cardiovascular health/disease continuum. (Reprinted from Knapper et al. [16]. With permission from Elsevier)

promotion to help shift the cardiovascular health/disease continuum in favor of health (Fig. 1) [16].

A comprehensive, multifaceted approach that involves concerted efforts from key stakeholders is needed for promoting cardiovascular health. We will structure this chapter using the paradigm of the "three buckets of prevention": (1) traditional

^{*}The Goals and Metrics Committee of the Strategic Planning Task Force selected five aspects of diet to define a healthy dietary score, which is detailed in their American Heart Association Special Report [13]

D. S. Dhindsa et al.

clinical prevention, (2) innovative clinical prevention, and (3) community-wide prevention [17]. This framework is a useful means of approaching the continuum of prevention to discuss the challenges and opportunities related to cardiovascular prevention.

3 Bucket 1: Traditional Clinical Prevention

3.1 Improvement in Utilization and Adherence to Guideline-Recommended Therapies

Evidence-based guidelines are designed to guide clinicians and patients toward favorable outcomes for those with, or at risk for, atherosclerotic cardiovascular disease (ASCVD) [18, 19]. Unfortunately, current registries demonstrate inadequate uptake of recommendations, even those with a Class I indication. As an example, 28–36% of patients in the ACC National Cardiovascular Data Registry's (NCDR) Practice Innovation and Clinical Excellence (PINNACLE) Registry who were identified as high-risk benefit groups by current guidelines were not prescribed statins [20]. Additionally, other challenges include clinicians not prescribing the appropriate dose of statins despite supportive evidence for high-intensity statins in high-risk patients [21, 22]. In addition, there is significant lack of adherence among patients. In clinical trials and registries, nonadherence to statins is reported in up to 40% of subjects [23–26]. Together, between patient and clinician-related approaches to care, a large percentage of at-risk patients are not receiving guideline-directed medical therapy [27].

Importantly, lack of adherence poses both short-term and potential long-term risk. Younger patients accrue incremental benefit from early preventive therapy, yet are less likely to have hypertension diagnosed and treated, use statins as recommended, and are more likely to use tobacco [28–30]. Notably, in a high-risk secondary prevention cohort, 20% did not fill at least one of their prescribed cardiac medications within a month of hospital discharge after a myocardial infarction (MI), and of concern, nearly 50% of patients did not fill their antiplatelet therapy afterward [31]. Additionally, although lifestyle management remains the cornerstone of cardiovascular disease risk reduction, implementation remains a challenge, despite guideline recommendations. Americans have high rates of poor diet quality and physical inactivity [15, 28, 32]. Over one-fourth (28%) of US adults aged 35–64 are physically inactive, defined as never getting 10 min or more of leisure-time physical activity per day [28].

Multiple factors impact adherence. Out-of-pocket costs are a significant factor, although studies have shown that adherence does not improve substantially when medication copays are eliminated [33]. Additionally, clinicians and their patients, especially younger adults, may hesitate to start a medication regimen that could be lifelong, despite a strong indication to do so [34]. These challenges highlight multiple opportunities to address risk through better understanding and overcoming

barriers to adherence [23]. Whenever possible, clinicians should minimize patient cost, reduce barriers to obtaining medications, and simplify regimens [35]. Prescribing medication electronically reduces risk that a patient may lose a prescription. Pharmacy-initiated text reminders and automated refills are beneficial as well. Additionally, lower dosing frequency (i.e., utilizing long-acting formulations where possible) can improve adherence [36–38].

Evidence suggests that patients are more likely to make a lifestyle modification if their clinician recommends they do so [39]. One readily available lifestyle modification program is the National Diabetes Prevention Program, which enables people at risk for type 2 diabetes to participate in evidence-based lifestyle change programs that have shown significant long-term improvements on cardiovascular risk factors [40]. Registered dieticians, exercise physiologists, or promising community-based programs like Walk With a Doc should be utilized as well [41]. Engaging patients through involvement in shared decision-making, in which clinical guideline-based approaches in the context of individualized care, can strengthen therapeutic relationships, boosting patient engagement and medication adherence [42].

A systems approach to care, using protocols and electronic-medical record alerts, may be useful in overcoming some of the barriers on the part of physicians to implementation of guideline-directed therapy. Treatment protocols can help systematically identify patients who are eligible for intensification of clinical management, reduce variation between patients, simplify medication initiation and intensification, reinforce counselling on lifestyle modifications, and help in scheduling timely follow-up [34, 43]. Protocol implementation has been effective in improvement in performance on chronic disease quality indicators including hypertension control and may serve a critical role in cardiovascular risk reduction in our increasingly electronic and protocolized health system [44, 45].

3.2 Improving Utilization of Cardiac Rehabilitation

As a further example of challenges in implementation of guideline recommendations into clinical practice, cardiac rehabilitation (CR) remains significantly underutilized [46]. Cardiac rehabilitation (CR) services are an integral component in the care of patients with cardiovascular disease [47–49]. Referral to CR is a Class IA recommendation for secondary prevention established by the American Heart Association (AHA) and American College of Cardiology (ACC) after myocardial infarction (MI), percutaneous coronary intervention (PCI), or coronary artery bypass graft surgery (CABG), stable chronic heart failure, stable angina, cardiac transplantation, peripheral arterial disease, and cardiac valve surgery [50]. A meta-analysis of 34 randomized controlled trials showed that exercise-based CR programs in secondary prevention patients are associated with a lower risk of reinfarction (odds ratio [OR] 0.53; 95% confidence interval [CI] 0.38 to 0.76), cardiac mortality (OR 0.64; 95% CI 0.46 to 0.88), and all-cause mortality (OR 0.74, 95% CI 0.58 to 0.95), and CR also leads to improvements in cardiovascular risk

factors (i.e., lipid levels, blood pressure, tobacco use), as compared to usual care [51, 52]. Despite this, only about 60% of patients undergoing PCI are referred for cardiac rehabilitation [53] and even less enroll in CR. The safety and effectiveness of the traditional medically supervised, center-based CR is well established, but unfortunately CR remains substantially underused among eligible patients [54].

Data from several registries and databases indicate patient participation remains low across most demographic groups [49, 55]. Between 2007 and 2011, only 16.3% of Medicare patients and 10.3% of veterans participated in CR after hospitalization for MI, PCI, or CABG [55]. Improving referral rates through education and/or automatic generation of referrals following a hospitalization for a cardiac diagnosis is one possible solution to poor referral rates, but lack of access and other barriers including competing responsibilities, cost/financial viability, and perceived inconvenience for the patient require innovative solutions.

3.3 Improving Identification and Treatment of Familial Hypercholesterolemia

Familial hypercholesterolemia (FH) is the most common autosomal dominant genetic disorder, affecting one in 250 people worldwide in heterozygous form and approximately one in one million in homozygous form [56]. FH is caused by mutations in genes responsible for low-density lipoprotein (LDL) receptor and if left untreated places affected individuals at high risk for premature cardiovascular disease. FH is suggested to account for nearly 20% of myocardial infarctions before the age of 45, and the first presentation of the disease may be MI or sudden death, with homozygous FH resulting in significant ASCVD in childhood [57]. As such, early identification of this disease is critical, as starting therapy with statins and other lipid-lowering medications has been shown to attenuate this risk [58].

Despite the danger presented by this genetic disease, FH remains underdiagnosed and undertreated [59]. Public awareness and implementation of the recommendations from the World Health Organization regarding FH care have lagged substantially behind other advancements made within cardiovascular medicine [60]. Clinicians underestimate the prevalence, high level of risk, importance of treatment initiation within the first two decades of life, and the autosomal dominant inheritance pattern necessitating cascade family screening. Limited understanding by affected individuals of their disease process, economic ramifications of living with and affording lifelong care, and pragmatic concerns surrounding possible genetic discrimination pose additional barriers to care in those who are able to receive an accurate diagnosis [61]. Use of registries, such as the CASCADE FH Registry, and public awareness campaigns are critical to improving detection of this disease estimated to affect 34 million individuals worldwide [62]. Groups such as the FH Foundation have made significant progress in helping increase awareness and identify affected patients [63].

4 Bucket 2: Innovative Clinical Prevention

4.1 New Care Models

The prior discussion on the poor utilization of CR highlights the need for new care models in the modern era. Potential approaches include alternative site-, home-based, or hybrid models of CR, which can be carried out in the home or other non-clinical settings, alleviating access-related barriers for patients. European guidelines on CVD prevention state that "home-based rehabilitation with and without telemonitoring holds promise for increasing participation and supporting behavioral change" [63]. Comparisons of center-based CR and home-based CR show similar effects on quality of life and cost among patients with recent MI or PCI, with low rates of adverse events [49, 64, 65]. Theoretically, these types of programs can be used for other preventive strategies including management of risk factors, increasing physical activity, and maintenance of a healthy dietary pattern.

The increasing use of mobile technology serves as another opportunity to reduce gaps in access to CR through mobile health or "M-health" [66]. Mobile technology is widely utilized in the United States, with approximately 95% of adults owning a cellular device, and smartphone ownership estimated to be at 77%, an increase from 35% in 2011 [67]. This rise in smartphone adoption provides an opportunity to leverage advances in mobile technology, especially in capturing data regarding patient behaviors, physical activity, and enhanced two-way communication. Early research suggests "mCR" may be associated with greater utilization as post-MI patients assigned to a smartphone-based CR program had greater uptake (80% vs 62%), adherence (94% vs 68%), and completion (80% vs 47%) of a CR program compared to those assigned to traditional, center-based CR [68]. Both groups showed similar improvements in physiological and psychological outcomes suggesting equivalent benefits could be achieved with potential reductions in mortality and morbidity commensurate with those observed with center-based programs, with much greater reach [66].

Furthermore, the potential utility of m-health also extends to the promotion of healthy behavior modification beyond CR [69, 70]. A randomized controlled Tobacco, Exercise and Diet Messages (TEXT ME) trial showed that the use of lifestyle-focused text messaging resulted in significant reduction in low-density lipoprotein cholesterol, systolic blood pressure, body mass index, and smoking rates and an increase in physical activity compared to usual care in patients with established cardiovascular disease [71]. Patient education via social media and Internet sources has been shown to increase adherence in patients with non-cardiovascular conditions and could similarly impact cardiovascular care [5, 72, 73].

Systematic reviews indicate benefits of digital health interventions (telemedicine, web-based strategies, e-mail, mobile applications, text messages, remote monitoring) on improving cardiovascular risk [74]. An important area of future investigation will be exploring opportunities to optimize other emerging technologies (i.e., smartphone applications) to improve access, reach, and effectiveness of cardiovascular risk reduction strategies [66].

8 D. S. Dhindsa et al.

4.2 Improving Risk Assessment and Treatment of Cardiovascular Disease

Estimation of risk is the first step in cardiovascular disease prevention. In the 2018 ACC/AHA Cholesterol Guidelines, risk calculation guides initiation and intensity of therapy [75]. However, it is important for clinicians to recognize the limitations of population-based risk calculators for individual risk estimation. The 2018 Cholesterol Guideline recommends the identification of risk-enhancing factors beyond traditional cardiovascular risk factors and appropriate consideration of cardiac CT calcium scoring to reclassify risk with the goal of a more accurate and personalized assessment of risk (Table 2) [18]. Advances in genomics and biomarkers may enhance our ability to further assess risk facilitating tailored therapies. Polygenic risk scores may help identify patients at highest cardiovascular risk, even in the absence of traditional cardiovascular risk factors, who may benefit from earlier or more aggressive interventions [76, 77]. Large longitudinal studies, such as the NIH-funded All of Us Research Program, which is enrolling one million individuals, can collect the detailed genotypic and phenotypic data needed for this type of research [78]. Initiatives such as this will be invaluable in research and innovation moving forward to usher in an era of precision medicine with refined risk prediction and individualized targeted therapies.

4.3 Improving Partnerships and the Use of Registries

Registries offer clinicians and health systems the capability to evaluate real-world data to monitor practice patterns and trends. Use of the ACC's National Cardiac Data Registry (NCDR) and the Diabetes Collaborative Registry (tracking eight diabetes-related metrics and six either ACC/AHA-endorsed or Physician Quality

Table 2 Risk-enhancing factors in the 2018 ACC/AHA Cholesterol Guidelines

Family history of premature ASCVD (males <55 years; females <65 years)

Primary hypercholesterolemia (LDL-C 160–189 mg/dL; non-HDL-C 190–219 mg/dL)

Metabolic syndrome (three of the following: increased waist circumference, elevated

triglycerides ≥150 mg/dL, elevated glucose, low HDL-C)

Chronic kidney disease

Chronic inflammatory conditions

History of premature menopause (before 40 years) and history of pregnancy-associated conditions (i.e., preeclampsia)

High-risk ethnicities (i.e., South Asian ancestry)

Elevated biomarkers (high-sensitivity C-reactive protein ≥ 2 mg/L; lipoprotein (a) ≥ 50 mg/dL or ≥ 125 nmol/L; apo B ≥ 130 mg/dL)

Ankle-brachial index < 0.9

Based on data from Ref. [75]

ASCVD atherosclerotic cardiovascular disease, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, apoB apolipoprotein B

Reimbursement System (PQRS) measures) can increase awareness of gaps in care and may lead to improvements in reaching these quality metrics [79, 80]. Similarly, the CASCADE FH Registry provides similar data among FH patients with the goal of improving detection and care of FH patients [62].

5 Bucket 3: Community-Wide Prevention

5.1 Public Policy

Public policy and legislation are perhaps the most powerful tools that can help promote cardiovascular health on the local and national level [81]. A key set of public policies that have an outsized impact on cardiovascular health pertains to taxation of unhealthy consumables, particularly cigarettes [81]. Previous research has shown that higher cigarette taxes are associated with a decrease in consumption, especially among young individuals [82]. Simulation experiments suggest that a 40% taxinduced increase in cigarette prices would reduce smoking prevalence from 21% in 2004 to 15.2% in 2025 [83]. This change would translate into 13 million quality-adjusted life-years gained and \$682 billion in total savings [83]. In addition to cigarette taxes, banning public smoking, improving access to healthy affordable foods, taxing sugar-sweetened beverage, restricting trans-fat use, and mandating calorie counts on chain restaurant menus are important public policy avenues that can help promote cardiovascular health.

5.2 Public Health Initiatives

Several public health initiatives geared toward promoting cardiovascular health are operational at the local and national level. Among these, Million Hearts®, a national initiative co-led by the Centers for Disease Control and Prevention (CDC) and the Centers for Medicare and Medicaid Services (CMS), is one of the most ambitious. The initiative has set a goal of preventing one million heart attacks and strokes within 5 years by focusing on a small set of priorities selected for their ability to reduce heart disease, stroke, and related conditions [84]. These priorities include (1) keeping people healthy by reducing daily sodium consumption, prevalence of tobacco use, and physical inactivity; (2) optimizing care by increasing appropriate aspirin use, blood pressure control, cholesterol management, smoking cessation, and cardiac rehabilitation use; and (3) focusing on priority populations such as African Americans with hypertension, people aged 35–64 years, patients with a history of heart attack or stroke, and patients with mental or substance use disorders that consume tobacco [85]. Other publicly focused initiatives like the Let's Move campaign, AHA Go Red for Women, and National Institutes of Health's Heart Truth are focused on promoting cardiovascular health in specific populations.

5.3 Mass Media Campaigns

Mass media campaigns have the ability of promoting cardiovascular health by impacting large population segments. Smoking cessation campaigns are perhaps the best studied and have been associated with increased quitting rates among smokers [86]. Additionally, the Stanford Heart Disease Prevention Program and the Minnesota Heart Health Program were two large studies conducted focused on preventing CVD [86]. The results of these studies suggest that media campaigns can not only promote physical activity and healthy diet but also help increase CVD awareness [86].

5.4 Environmental Interventions

Environmental interventions are important methods for promoting cardiovascular health because building designs and city plans can encourage and facilitate physical activity among residents [81]. For instance, the Task Force on Community Preventive Services has observed that creating or improving access to places where physical activity is feasible results in a 25% increase in the proportion of people who are physically active at least three times a week [87]. Physical activity can be fostered through innovative land use and community design interventions to make it safe and convenient to be physically active [88]. Places for physical activity can be created or developed using existing spaces through enhanced access via shared use agreements [89]. Designing a community to support physical activity through activity-friendly routes to everyday destinations is a critical intervention in a country where over one-fourth (28%) of US adults aged 35–64 state they are not engaging in even 10 min or more of leisure-time physical activity per day [28].

5.5 School-Based Interventions

Schools can play an instrumental role in promoting cardiovascular health at an early age, as nearly 55 million American children spend a majority of their time in schools [81]. The structured framework in schools can be leveraged to provide health education and encourage children to participate in healthy activities on a daily basis. The SPARK (Sports, Play, and Active Recreation for Kids) and CATCH (Coordinated Approach To Child Health) programs are prime examples of such school-based interventions [90, 91]. In addition to promoting physical health, these programs have been shown to improve academic performance and decrease disciplinary problems [92, 93]. The programs are generally cost-effective and lead to an overall improvement in school environment.

5.6 Workplace Interventions

Employee healthcare costs are an important cause of financial strain for employers and improving employee cardiovascular health serves as a significant financial incentive. Several workplace interventions such as smoke-free zones, healthy food and beverage options, worksite wellness programs, and treadmill workstations can be helpful for promoting cardiovascular health at the workplace [94].

6 Conclusion

Improvements in health promotion and disease prevention are critical to turning the tide of rising cardiovascular mortality. Although technological and therapeutic advancements will accelerate, relying on these alone will be inadequate without addressing the main drivers of ASCVD. Despite significant challenges, there is tremendous opportunity for preventive cardiologists and cardiovascular preventive specialists to be at the forefront of new care models, important partnerships, and initiatives. Integrated strategies that encompass each of the three buckets of prevention are essential to the health of individuals and communities and to reducing the burden of cardiovascular diseases on society.

Disclosures None for any of the co-authors.

Funding DSD and AM are supported by the Abraham J. & Phyllis Katz Foundation (Atlanta, GA).

References

- Ford ES, Ajani UA, Croft JB, et al. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N Engl J Med. 2007;356(23):2388–98.
- Ford ES, Capewell S. Coronary heart disease mortality among young adults in the U.S. from 1980 through 2002: concealed leveling of mortality rates. J Am Coll Cardiol. 2007;50(22):2128–32.
- Vaughan AS, Ritchey MD, Hannan J, Kramer MR, Casper M. Widespread recent increases in county-level heart disease mortality across age groups. Ann Epidemiol. 2017;27(12):796–800.
- 4. Sidney S, Quesenberry CP Jr, Jaffe MG, et al. Recent trends in cardiovascular mortality in the United States and public health goals. JAMA Cardiol. 2016;1(5):594–9.
- McClellan M, Brown N, Califf RM, Warner JJ. Call to action: urgent challenges in cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2019;139(9):e44–54.
- 6. Centers for Disease Control and Prevention. National Diabetes Statistics Report. 2017.
- Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth: United States, 2015–2016. NCHS data brief, no 288. Hyattsville: National Center for Health Statistics; 2017.

12

- 8. Schneider E., Sarnak D., Squires D., Shah A., Doty MM. Mirror, mirror 2017: international comparison reflects flaws and opportunities for better U.S. Health Care. The Commonwealth Fund, July 2017. https://interactives.commonwealthfund.org/2017/july/mirror-mirror/.
- American Heart Association, American Stroke Association. Cardiovascular disease: a costly burden for America (projections through 2035). Washington, DC: American Heart Association; 2017. https://healthmetrics.heart.org/wp-content/uploads/2017/10/Cardiovascular-Disease-A-Costly-Burden.pdf. Accessed Nov 2019.
- Cutler DM, McClellan M. Is technological change in medicine worth it? Health Aff. 2001;20(5):11–29.
- 11. Cutler DM, McClellan M, Newhouse JP, Remler D. Are medical prices declining? Evidence from heart attack treatments*. O J Econ. 1998:113(4):991–1024.
- Cutler D, McClellan M, Newhouse J. The costs and benefits of intensive treatment for cardiovascular disease. National Bureau of Economic Research. 1998. https://www.nber.org/papers/ w6514. Accessed Nov 2019.
- 13. Lloyd-Jones DM, Hong Y, Labarthe D, et al. Defining and setting national goals for cardio-vascular health promotion and disease reduction: the American Heart Association's strategic impact goal through 2020 and beyond. Circulation. 2010;121(4):586–613.
- Younus A, Aneni EC, Spatz ES, et al. A systematic review of the prevalence and outcomes of ideal cardiovascular health in US and non-US populations. Mayo Clin Proc. 2016;91(5):649–70.
- Yang Q, Cogswell ME, Flanders WD, et al. Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among US adults. JAMA. 2012;307(12):1273–83.
- Knapper JT, Ghasemzadeh N, Khayata M, et al. Time to change our focus: defining, promoting, and impacting cardiovascular population health. J Am Coll Cardiol. 2015;66(8):960–71.
- 17. Auerbach J. The 3 buckets of prevention. J Public Health Manag Pract. 2016;22:215-8.
- 18. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol. A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;73(24):25709.
- Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease. J Am Coll Cardiol. 2019;74(10):26029.
- Maddox TM, Borden WB, Tang F, et al. Implications of the 2013 ACC/AHA cholesterol guidelines for adults in contemporary cardiovascular practice: insights from the NCDR PINNACLE registry. J Am Coll Cardiol. 2014;64(21):2183–92.
- Arnold SV, Spertus JA, Masoudi FA, et al. Beyond medication prescription as performance measures. Optimal secondary prevention medication dosing after acute myocardial infarction. J Am Coll Cardiol. 2013;62(19):1791–801.
- 22. Salami JA, Warraich H, Valero-Elizondo J, et al. National trends in statin use and expenditures in the US adult population from 2002 to 2013: insights from the medical expenditure panel survey. JAMA Cardiol. 2017;2(1):56–65.
- Hirsh BJ, Smilowitz NR, Rosenson RS, Fuster V, Sperling LS. Utilization of and adherence to guideline-recommended lipid-lowering therapy after acute coronary syndrome: opportunities for improvement. J Am Coll Cardiol. 2015;66(2):184–92.
- 24. Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97.
- 25. Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350(15):1495–504.
- 26. de Lemos JA, Blazing MA, Wiviott SD, et al. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes phase Z of the A to Z trial. JAMA. 2004;292(11):1307–16.
- Turin A, Pandit J, Stone NJ. Statins and nonadherence: should we RELATE better? J Cardiovasc Pharmacol Ther. 2015;20(5):447–56.
- Wall HK, Ritchey MD, Gillespie C, Omura JD, Jamal A, George MG. Vital signs: prevalence of key cardiovascular disease risk factors for million hearts 2022 – United States, 2011-2016. MMWR Morb Mortal Wkly Rep. 2018;67(35):983–91.