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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications
and numerical implementation, but richness and relevance of applications and
implementation depend fundamentally on the structure and depth of theoretical
underpinnings. Thus, from our point of view, the interleaving of theory and
applications and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental rela-
tionship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis, but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish with the scope and interaction that such a host of
issues demands.
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viii ANHA Series Preface

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications
Digital signal processing Sampling theory

Fast algorithms Spectral estimation
Gabor theory and applications Speech processing
Image processing Time-frequency and

Numerical partial differential equations Time-scale analysis
Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important problems
in mathematics and the sciences. Historically, Fourier series were developed in
the analysis of some of the classical PDEs of mathematical physics; these series
were used to solve such equations. In order to understand Fourier series and the
kinds of solutions they could represent, some of the most basic notions of analysis
were defined, e.g., the concept of “function.” Since the coefficients of Fourier
series are integrals, it is no surprise that Riemann integrals were conceived to deal
with uniqueness properties of trigonometric series. Cantor’s set theory was also
developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers, but also
provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the



ANHA Series Preface ix

adaptivemodeling inherent in time-frequency-scalemethods such as wavelet theory.
The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’étre of the ANHA series!

University of Maryland John J. Benedetto
College Park Series Editor



Preface

The second international conference entitled “Aspects of Time-Frequency Analysis
(ATFA19)” took place in the period of 25-27 June 2019, at DISMA, Politecnico di
Torino, see http://www.atfal9.polito.it/. The local organizing committee consisted
of people from both university institutions of the city: Tommaso Bruno, Fabio
Nicola, Anita Tabacco, and Maria Vallarino (Politecnico di Torino) and Paolo
Boggiatto, Elena Cordero, and Alessandro Oliaro (Universita di Torino).

The present volume collects ten contributions, mostly from invited speakers at
the conference. These articles cover a good selection of topics of current interest in
the field. They appear in alphabetic order of the first author, but let us review them
following the topics they address in this short summary.

Let me start with those contributions that connect the area of time-frequency
analysis with real-world applications. The first article to be mentioned here is the
contribution by Leon Cohen, entitled “Time-Frequency Analysis: What We Know
and What We Don’t”. It is a great opportunity to hear from the author of a well-
known book in the area [2] about his current view on the field. In fact, there is a
surprising little overlap of the list of references in his book, as well as in the book of
B. Boashash [1] with the same title, with the standard references in the mathematical
literature, specifically [4] and [3]. This indicates that there is more need to establish
better connections and interactions between engineers and mathematicians.

The connection to physics plays an important role in the contributions of
J.P. Gazeau and C. Habonimana, entitled “Signal Analysis and Quantum Formalism:
Quantizations with No Planck Constant” and M. de Gosson’s “Generalized Anti-
Wick Quantum States”. Both establish the connection to quantum theory, which from
the very beginning was one of the motivations of time-frequency analysis, in terms
of the well-known coherent states.

The article by S.1. Trapasso “A Time-Frequency Analysis Perspective on Feynman
Path Integrals” shows how to make use of the modulation space theory to establish
rigorous mathematical statements inspired by the ideas of R. Feynman concerning
path integrals. However, one finds in the article written by D. Labate, B.R. Pahari,
S. Hoteit, and M. Mecati “Quantitative Methods in Ocular Fundus Imaging:
Analysis of Retinal Microvasculature” how time-frequency analysis methods find
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a concrete application in the medical sciences, via the example of the anatomic
structure of the retina. This article also describes practical issues of data handling or
the segmentation of retinal vessels.

A somewhat more abstract viewpoint, still related to data handling, is provided
by the article “Data Approximation with Time-Frequency Invariant Systems” by
D. Barbieri, C. Cabrelli, E. Herndndez, and U. Molter. It is explained in the article
how an optimal system (within a given TF framework) can be determined, for a
given data set.

The contribution by F. Bartolucci, S. Pilipovié, and N. Teofanov on “The Shearlet
Transform and Lizorkin Spaces” describes specific aspects of the mathematical
foundation of shearlet theory, namely the correct choice of the space of test
functions to be used, connecting modern shearlet theory with a construction going
back to Lizorkin (in his studies of inhomogeneous Besov spaces, if we use
modern terminology), also related to the setting of Triebel-Lizorkin spaces in the
terminology of H. Triebel’s universe of the “Theory of Function Spaces” [6-8].

There is also a strong group theoretic connection shown in the opening article
“Radon Transform: Dual Pairs and Irreducible Representations” by S. Alberti,
F. Bartolucci, F. De Mari, and E. De Vito. This contribution connects in a very
interesting way wavelet transform theory with group representations in the spirit of
S. Helgason (see, e.g., [5]).

Finally, let us mention two further articles related to anti-Wick (respectively,
Toeplitz) operators in the time-frequency context: F. Bastianoni reports in “Time-
Frequency Localization Operators: State of the Art”, while R. Corso and F. Tschinke
report in “Some Notes About Distribution Frame Multipliers”. They treat different
aspects of operators, which are realized as multiplication operators on the transform
domain. While the first one covers the case of the STFT (short-time Fourier
transform) and results in anti-Wick-type operators, the second concentrates on a
theme, again close to mathematical physics, where one has a continuous family of
distributions forming a kind of continuous basis. Here, the family (8y)scr or the
family of pure frequencies are prototypical examples.

All those who have contributed to this volume are grateful to the Proceedings
team and to the publisher (Birkhduser) for organizing this book in their prestigious
ANHA (Applied and Numerical Harmonic Analysis) series. We acknowledge their
patience and perseverance in keep reminding some of us, to finally come up with
this interesting collection of articles.

Given the fact that this was already the second conference in this series, the
participants (and those who missed the opportunity of joining us this time) may
hope for another event like this in Torino in the years to come, even though Italy is
hit by a pandemic crisis at the time of writing of this preface. Thus, we also wish
Italy and especially our colleagues in Torino a good and prompt recovery. We are
looking forward to visit Italy in the not too distant future and enjoy another topical
conference there.

Wien, Austria Hans G. Feichtinger
27 March 2020
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Radon Transform: Dual Pairs m)
and Irreducible Representations G

Giovanni S. Alberti, Francesca Bartolucci, Filippo De Mari,
and Ernesto De Vito

Abstract We illustrate the general point of view we developed in an earlier paper
(SIAM J. Math. Anal., 2019) that can be described as a variation of Helgason’s
theory of dual G-homogeneous pairs (X, Z) and which allows us to prove
intertwining properties and inversion formulae of many existing Radon transforms.
Here we analyze in detail one of the important aspects in the theory of dual pairs,
namely the injectivity of the map label-to-manifold & — £ and we prove that it is
a necessary condition for the irreducibility of the quasi-regular representation of G
on L%(Z). We further explain how our construction applies to the classical Radon
and X-ray transforms in R3.

Keywords Homogeneous spaces - Radon transform - Dual pairs -
Square-integrable representations - Inversion formula - Wavelets - Shearlets

1 Introduction

The circle of ideas and problems that may be collectively named “Radon transform
theory” was born at least a century ago [17] but still abounds with questions and new
perspectives that range from very concrete computation-oriented tasks to geometric
or representation theoretic issues. We may describe the heart of the matter by
paraphrasing Gelfand [8]:

“Let X be some space and in it let there be given certain manifolds which we
shall suppose to be analytic and dependent analytically on parameters &1, . . ., &,
that is {é &) = é(él, ..., &)}. With a function fon X we associate its integrals
over these manifolds:
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RFE) = / £ ()dme ().
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We then ask whether it is possible to determine f knowing the integrals Z f (§).”

Among the many generalizations and theorems that may be subsumed in
this basic, yet profound, mathematical sketch, it is certainly worth mentioning
Helgason’s contribution, inspired [12] by work of Fritz John’s, in turn triggered
by Radon’s original result [17] dating back to 1917. In particular, Helgason
developed the notion of dual pairs and double fibrations, whereby (Lie) groups
and homogeneous spaces thereof stand at center stage. His basic observation
comes by inspecting John’s inversion formula for the integral transform—nowadays
the prototypical Radon transform—defined by integration over planes in R3. The
inversion takes the form

fx = —#Ax(f%f(n,n-x)dn),
S2

where (n, 1) — Zf(n, 1) is the function on §2 x R given by the integral of f
over the plane i:f(n, 1) ={x e R :n-x = t}, Acis the Laplacian, and dn is
the Riemannian measure on the sphere S2. This formula, observes Helgason [12],
“involves two dual integrations, Z f is the integral over the set of points in a plane
and then dn, the integral over the set of planes through a point.” Furthermore, the
domain X on which the functions of interest are defined (here X = R3) and the
set & of relevant manifolds (here the two-dimensional planes) are homogeneous
spaces of the same group G, namely the group of isometries of R3, and enjoy a sort
of duality, well captured by the differential-geometric notion of incidence that was
introduced by Chern [5].

Helgason proceeds on developing this duality in group-theoretic terms, empha-
sizing a remarkable formal symmetry, according to which the objects of interest
come naturally in pairs, one living in X and its twin in &. Most notably, each
point £ € & (the pair (£1,&) = (n,t) in our basic example) labels one of
the actual submanifolds & of X on which the relevant integrals are to be taken
(the plane é(n, t)). Conversely, with each point x € X it is natural to associate
the “sheaf ” of planes passing through it. In the example above, this is precisely the
setX = {é (n,x-n) : n € S%} over which the integral of Z f is taken.

In the abstract setting developed by Helgason, the whole construction enjoys
natural properties as long as the mappings & £ and x — X are both
injective, requirement that is then built into the definition of dual pair and expressed
algebraically. Note that in the above example, the map (n, ¢) £(n, 1) is two-to-
one and this lack of injectivity is reflected by the fact that Z f is an even function.
The central object is of course the Radon transform

RFE) = / F ) dme (x)
:

for integrable functions on X, where m is a suitable measure on é .
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Utilizing a variation of this framework, which is recalled in full detail below, we
have addressed [1] some issues that are naturally expressed in this language. Our
main contribution (see Theorem 1) is a general result concerning the “unitarization”
of # from L2(X, dx) to L%(Z, d¢) and the fact that the resulting unitary operator
intertwines the quasi-regular representations 7 and # of G on L*(X,dx) and
L*(Z, d&), respectively. This unitarization really means first pre-composing the
closure of % with a suitable pseudo-differential operator and then extending
this composition to a unitary map, as is done in the existing and well-known
predecessors of Theorem 1, such as those in [11] and in [21]. The representations
7 and 7 play of course a central role and are assumed to be irreducible, and &
is assumed to be square-integrable (see Assumptions (A4) and (AS) below). The
combination of unitary extension and intertwining leads to an interesting inversion
formula for the true Radon transform, see Theorem 2.

Compared to [1], the present article adopts a slightly different, though fully
compatible, formalism in the sense that we take here the point of view that seems
most natural in applications. Indeed, the space X where the signals of interest are
defined and the set of submanifolds of X where integrals are to be taken are both
in the foreground, and the group G of geometric actions that one wants to consider
comes next, tailored to the problem at hand. In this regard, it is important to observe
that, in principle, there are many different realizations of X as homogeneous space,
and the choice of G is tantamount to choosing the particular set of transformations
(or symmetries) that one wants to focus on. In this context, it is of course important
that there are sufficiently many of these transformations. As for the submanifolds,
we observe that in most applications one has in mind a prototypical submanifold £o.
We thus choose and fix éo, which we refer to as the root submanifold, as the image
of the base point xg € X under the action of some closed subgroup H of G. Thus
éo = H[xo], and the other submanifolds are obtained by exploiting the fact that X is
a transitive G-space. This entails that X is covered with all the shifted versions of £
by means of the geometric transformations given by the elements of G. Incidentally,
in this way one often achieves families of foliations, and in most cases this leads to
a natural splitting of the parameters in &, those that label the foliation and those that
select the leaf in the foliation.

Although largely inspired by the work of Helgason, our approach is different
in several ways that are discussed in detail in Sect.2. His construction rests not
only on the strict invariance of the measures on X, =, and éo (versus relative
invariance as in our construction) but also on the fact that the correspondence £ — é
between “labels” in the transitive G-space & and submanifolds of X is assumed to
be injective. In the present article we investigate this issue in detail and focus on the
subgroup H of G that fixes &, in principle larger than H. We find (Proposition 1)
that the map £§ — £ is injective if and only if H = H and we further show in
Theorem 3 that, under reasonable assumptions on H, if this equality fails, then 7
cannot be irreducible. This implies that in order for Assumption (A5) to be fulfilled,
one must choose H as large as possible among those subgroups of G that fill out £



4 G. S. Alberti et al.

by acting on xg. Our theory is then illustrated with the help of two examples, namely
the classical Radon transform and the X-ray transform in R3, both analyzed with the
group SIM(3) of rotations, dilations, and translations. Again, this is different from
Helgason’s standard choice, the isometry group M(3).

The paper is organized as follows. In Sect. 2 we set up the context and recall the
main results of [1]. In Sect. 3 we present a rather detailed analysis of the relations
existing between the objects naturally arising from an arbitrary choice of H and
those that come from the maximal choice H. This leads to the main contribution
of this work, namely the fact that a gap between H and H implies that the quasi-
regular representation 7 of G on L*(Z) cannot be irreducible. Section 4 illustrates
our theory with two classical examples in three-dimensional Euclidean space.

2 The Framework

In this section we introduce the setting and the main result of [1].

2.1 Notation

We briefly introduce the notation. We set R* = R \ {0} and RT = (0, +00). The
Euclidean norm of a vector v € R is denoted by |v| and its scalar product with
w € RY by v - w. Forany p € [1, +00] we denote by L?(R?) the Banach space of
functions f: R?Y — C that are p-integrable with respect to the Lebesgue measure
dx and, if p = 2, the corresponding scalar product and norm are (-, -) and || - ||,
respectively. If E is a Borel subset of R, |E| denotes its Lebesgue measure. The
Fourier transform is denoted by .% both on LZ(R?) and on L'(RY), where it is
defined by

Ffw) = / FEeMevdr,  feL'®Y).
Rd

If G is a locally compact second countable (Icsc) group, we denote by L%(G, ug)
the Hilbert space of square-integrable functions with respect to a left Haar measure
ug on G. If X is a lcsc transitive G-space with origin xg, we denote by g[x] the
action of G on X. A Borel measure v on X is relatively invariant if there exists a
positive character & of G such that for any measurable set E € X and g € G it holds
V(g[E]) = a(g)v(E), see, e.g., [19]. Furthermore, a Borel section is a measurable
map s: X — G satisfying s(x)[xg] = x and s(xg) = e, with e the neutral element
of G; a Borel section always exists since G is second countable [22, Theorem 5.11].
We denote the (real) general linear group of size d x d by GL(d, R).



