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Preface to the Third Edition

The main motivation for having this third edition is the addition of an Appendix
which deepens and clarifies some of the concepts introduced and developed in the
core text. In the discussion of the breaking of continuous symmetries, the crucial
point of the dynamical delocalization of the relevant variables does not seem to be
sufficiently emphasized in the literature. Its impact on the local generation of a
continuous symmetry, at the basis of Goldstone theorem, has been discussed in
Part II, Sect. 25.2, but, in our opinion, this argument deserves more consideration,
since the Coulomb delocalization is the critical one and, as such, affects most
many-body systems and gauge theories of elementary particles. The main conse-
quence is the key role of the boundary conditions which give rise to volume effects,
in contrast with the standard case described by (essentially) local dynamical vari-
ables. The relevant physical result is the occurrence of energy gaps associated to the
spontaneous breaking of continuous symmetries, in contrast with the Goldstone
theorem. Examples are the Anderson model of superconductivity (close to the
molecular field approximation of the Heisenberg model), the electron gas in uni-
form background (with the plasmon energy gap derived by the breaking of the
Galilei group), the Higgs mechanism in the Coulomb gauge.

Other sections of the Appendix deal with the consequences and breaking of
global gauge symmetries. Invariance under a local gauge symmetry is critically
reviewed versus the validity of a local Gauss law on the physical states. This is
argued to be the relevant property responsible for important physical properties like
the Higgs mechanism in electroweak interactions, the topological group and the
chiral symmetry breaking in quantum chromodynamics.

In line with the approach adopted in the previous editions, attention is paid to the
main ideas and to the questions of principle leaving to the interested reader the task
and duty of further developing the technical mastership.

Lastly, this new edition benefits from the correction of misprints and some
refinements of the main text.

Pisa, Italy Franco Strocchi
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Preface to Previous Edition

The main motivation for such lecture notes is the importance of the concept and
mechanism of spontaneous symmetry breaking in modern theoretical physics and
the relevance of a textbook exposition at the graduate student level beyond the
oversimplified (non-rigorous) treatments, often confined to specific models. One
of the main points is to emphasize that the radical loss of symmetric behaviour
requires both the existence of non-symmetric ground states and the infinite
extension of the system.

The first Part on SYMMETRY BREAKING IN CLASSICAL SYSTEMS is
devoted to the mathematical understanding of spontaneous symmetry breaking on
the basis of classical field theory. The main points, which do not seem to appear in
textbooks, are the following.

i) Existence of disjoint Hilbert space sectors, stable under time evolution, in
the set of solutions of the classical (non-linear) field equations. They are the
strict analogs of the different phases of statistical mechanical systems and/or
of the inequivalent representations of local field algebras in quantum field
theory (QFT). As in QFT, such structures rely on the concepts of locality (or
localization) and stability, (see Chap. 5), with emphasis on the physical
motivations of the mathematical concepts; such structures have the physical
meaning of disjoint physical worlds, disjoint phases etc. which can be
associated to a given non-linear field equation. The result of Theorem 5.2
may be regarded as a generalization of the criterium of stability to infinite
dimensional systems and it links such stability to elliptic problems in Rn with
non-trivial boundary conditions at infinity (Appendix 10.5).

ii) Such structures allow to reconcile the classical Noether theorem with
spontaneous symmetry breaking, through a discussion of a mechanism
which accounts for (and explains) the breaking of the symmetry group (of the
equations of motion), in a given Hilbert space sector H, down to the sub-
group which leaves H stable (Theorem 7.2).

vii



iii) The classical counterpart of the Goldstone theorem is proved in Chap. 9,
which improves and partly corrects the heuristic perturbative arguments
of the literature.

The presentation emphasizes the general ideas (implemented in explicit exam-
ples) without indulging on the technical details, but also without derogating from
the mathematical soundness of the statements.

The second Part on “SYMMETRY BREAKING IN QUANTUM SYSTEMS”
tries to offer a presentation of the subject, which should be more mathematically
sounded and convincing than the popular accounts, but not too technical. The first
chapters are devoted to the general structures which arise in the quantum
description of infinitely extended systems with emphasis on the physical basis of
locality, asymptotic abelianess and cluster property and their mutual relations,
leading to a characterization of the pure phases.

Criteria of spontaneous symmetry breaking are discussed in Chap. 20 along
the lines of Wightman lectures at Coral Gables and their effectiveness and differ-
ences are explicitly worked ot and checked in the Ising model. The Bogoliubov
strategy is shown to provide a simple rigorous control of spontaneous symmetry
breaking in the free Bose gas as a possible alternative to Cannon and
Bratelli-Robinson treatment.

The Goldstone theorem is critically discussed in Chap. 25, especially for
non-relativistic systems or more generally for systems with long range delocal-
ization. Such analysis, which does not seem to appear in textbooks, provides a
non-perturbative explanation of symmetry breaking with energy gap in
non-relativistic Coulomb systems and in the Higgs phenomenon and in our
opinion puts in a more convincing and rigorous perspective the analogies proposed
by Anderson. The Swieca conjecture about the role of the potential fall off is
checked by a perturbative expansion in time. Such an expansion also supports the
condition of integrability of the charge density commutators, which seems to be
overlooked in the standard treatments and plays a crucial role for the energy
spectrum of the Goldstone bosons. As a result of such an explicit analysis, the
critical decay of the potential for allowing “massive” Goldstone bosons turns out to
be that of the Coulomb potential, rather than the one power faster decay predicted
by Swieca condition.

The non-zero temperature version of the Goldstone theorem, discussed in
Chap. 26, corrects some wrong conclusions of the literature. An extension of the
Goldstone theorem to non-symmetric Hamiltonians is discussed in Chap. 28 with
the derivation of non-trivial (non-perturbative) information on the energy gap of the
modified Goldstone spectrum.

The symmetry breaking in gauge theories, in particular the Higgs phenomenon
which is at the basis of the standard model of elementary particles, is analyzed in
Chap. 29. The problems of the perturbative explanation of the evasion of the
Goldstone theorem are pointed out and a non-perturbative account is presented. In
the local renormalizable gauges, the absence of physical Goldstone bosons follows
from the Gauss law constraint or subsidiary condition on the physical states. In the

viii Preface to Previous Edition



Coulomb gauge, the full Higgs phenomenon is explained by the failure of relative
locality between the current and the Higgs field, by exactly the same mechanism
discussed in Chap. 25 for the non-relativistic Coulomb systems; in particular, the
Goldstone spectrum is shown to be given by the Fourier spectrum of the two point
function of the vector boson field, which cannot have a dðk2Þ contribution, since
otherwise the symmetry would not be broken.

The chapters marked with a * can be skipped in a first reading.
The second edition differs from the first by the correction of some misprints, by

an improved discussion of some relevant points and by a significantly expanded and
more detailed discussion of symmetry breaking in gauge theories.

Preface to Previous Edition ix
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Part I
SYMMETRY BREAKING
IN CLASSICAL SYSTEMS

Introduction

These notes essentially reproduce lectures given at the International School for
Advanced Studies (Trieste) and at the Scuola Normale Superiore (Pisa) on vari-
ous occasions. The scope of the short series of lectures, typically a fraction of a
one-semester course, was to explain on general grounds, also to mathematicians, the
phenomenon of Spontaneous Symmetry Breaking (SSB), a mechanism which seems
at the basis of most of the recent developments in theoretical physics (from Statistical
Mechanics to Many-Body theory and to Elementary Particle theory).

Besides its extraordinary success, the idea of SSB also deserves being discussed
because of its innovative philosophical content, and in our opinion it should be part of
the background knowledge for mathematical and theoretical physics students, espe-
cially those who are interested in questions of principle and in general mathematical
structures.

By the general wisdom of Classical Mechanics, codified in the classical Noether
theorem, one learns that the symmetries of the Hamiltonian or of the Lagrangian
are automatically symmetries of the physical system described by it, which does not
mean that the (equilibrium) solutions are symmetric, but rather that the symmetry
transformation commuteswith time evolution andhence is a symmetry of the physical
behaviour of the system. This belief therefore precludes the possibility of describing
systems with different dynamical properties in terms of the same Hamiltonian. The
realization that this obstruction does not a priori exist and that one may unify the
description of apparently different systems in terms of a single Hamiltonian and
account for the different behaviours by the mechanism of SSB, is a real revolution in
the way of thinking in terms of symmetries and corresponding properties of physical
systems. It is, in fact, non-trivial to understand how the conclusions of the Noether
theorem can be evaded and how a symmetry of the dynamics cannot be realized as
a mapping of the physical configurations of the system, which commutes with the
time evolution.

The standard folklore explanations of SSB, which one often finds in the literature,
is partly misleading, because it does not emphasize the crucial ingredient underlying
the phenomenon, namely the role of infinite degrees of freedom. Despite the many
popular accounts, the phenomenon of SSB is deep and subtle and it is not without
reasons that it has been fully understood only in recent times. The standard cheap
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explanation identifies the phenomenon with the existence of a degenerate ground (or
equilibrium) state, unstable under the symmetry operation, (ground state asymme-
try), a feature often present even in simple mechanical models (as, for example, a
free particle on a plane, each point of which defines a ground state unstable under
translations), but which is usually not accompanied by a non-symmetric behaviour.

As itwill be discussed in these lectures, the phenomenonof spontaneous symmetry
breaking in the radical sense of non-symmetric behaviour is rather related to the fact
that, for non-linear infinitely extended systems (therefore involving infinite degrees
of freedom), the solutions of the dynamical problem generically fall into classes
or “islands” or “phases”, each stable under time evolution and characterized by
the same behaviour at infinity of the corresponding solutions. Since all physically
realizable operations have an inevitable localization in space they cannot change such
a behaviour at infinity and therefore starting from the configurations of a given island
one cannot reach the configurations of a different island by physically realizable
modifications. The different islands can then be interpreted as describing physically
disjoint realizations or different phases, or disjoint physical worlds associated with
the given dynamics.

The spontaneous breaking of a symmetry (of the dynamics) in a given phase or
physical world can then be explained as the result of the instability of the given
island under the symmetry operation. In fact, in this case one cannot realize the
symmetry within the given island, namely one cannot operationally associate with
each configuration the one obtained by the symmetry operation.

The existence of such structures is not obvious and in general it involves a math-
ematical control of the non-linear time evolution of systems with infinite degrees of
freedom and the mathematical formalization of the concept of physical disjointness
of different islands. For quantum systems, where the mathematical basis of SSB has
mostly been discussed, the physical disjointness has been ascribed to the existence
of inequivalent representations of the algebra of local observables.

The scope of Part I of these lectures is to discuss the general mechanism of SSB
within the framework of classical dynamical systems, so that no specific knowledge
of quantum mechanics of infinite systems is needed and the message may also be
suitable for mathematical students. More specifically, the discussion will be based on
the mathematical control of the non-linear evolution of classical fields, with locally
square integrable initial datawhichmaypossibly havenon-vanishing limits at infinity.

The mathematical formalization of physical disjointness relies on the constraint
of essential localization in space of any physically realizable operation. One can
in fact show that an island can be characterized by some bounded (locally “regu-
lar”) reference configuration, having the meaning of the “ground state”, and its H 1

perturbations. Each island is therefore isomorphic to a Hilbert space (Hilbert space
sector).

The stability under time evolution is guaranteed by the condition that the reference
configuration satisfies a generalized stationarity condition, i.e. it solves some elliptic
problem. Such a condition is in particular satisfied by the time-independent solutions
and a fortiori by the minima ϕ̄ of the potential which define Hilbert space sectors
Hϕ̄ of the form {ϕ̄ + χ,χ ∈ H 1}. The existence of minima of the potential unstable
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under the symmetry therefore gives rise to phases or disjoint physical worlds in
which the symmetry cannot be realized or, as one says, is spontaneously broken.
This mechanism of symmetry breaking crucially involves both the asymmetry of
the ground state and the infinite extension of the system, with no analog in the
finite-dimensional case.

This phenomenon is deeply rooted in the non-linearity of the problem and the
fact that infinite degrees of freedom are involved. A simple prototype is given by the
non-linear wave equation for a Klein–Gordon field ϕ: Rs → Rn , with “potential”
U (ϕ) = λ(ϕ2−a2)2. Themodel displays someanalogywith themechanicalmodel of
a particle in Rn subject to the potentialU (q) = λ(q2 − a2)2, which can be regarded
as the higher dimensional version of the one-dimensional double well potential.
But the differences are substantial: in the infinite-dimensional case of the Klein–
Gordon field, each point q has actually become infinite dimensional and, in fact,
each absolute minimum ϕ̄, with |ϕ̄| = a identifies the infinite set of configurations
which have this point as asymptotic limit, namely the Hilbert space of configurations
which are H 1 modifications of ϕ̄. Whereas in the finite-dimensional case there is no
physical obstruction or “barrier”, which prevents the motion from one minimum to
the other, in the infinite-dimensional case there is no physically realizable operation
which leads from the Hilbert space sector defined by one minimum to that defined by
another minimum, because this would require to change the asymptotic limit of the
configurations and this is not possible by means of essentially localized operations,
the only ones which are physically realizable. Pictorially, one could say that one
cannot change the boundary conditions of the “universe” or of the (infinite volume)
thermodynamical phase in which one is living.

The realization of the above structures allows to evade part of the conclusions of
the standard textbook presentations of Noether’s theorem and to account for sponta-
neous symmetry breaking; the point is that the standard presentations of the theorem
do not consider the possibility of disjoint sectors unstable under the symmetry of the
Hamiltonian and implicitly assume that the solutions vanish at infinity. In fact, one
may prove that the local conservation law, ∂μ jμ(x) = 0, associated with a given
symmetry of the Hamiltonian or of the Lagrangian, gives rise to a global conserva-
tion law or to a conserved “charge", which acts as the generator of the symmetry
transformations for all the elements of a given Hilbert space sector H−

ϕ
, only if the

symmetry leaves the sector invariant. Thus, only the stability subgroup of the given
phase admits time-independent generators in that phase, given by the charges of the
corresponding Noether currents.

Clearly, if G is the (concrete) group of transformations which commutes with the
time evolution, the whole set of solutions of the non-linear dynamical problem can
be classified in terms of irreducible representations (or multiplets) of G, but if G
is spontaneously broken in a given island defined by the Hilbert space sector Hϕ̄,
the latter cannot be the carrier of a representation of the symmetry group G, and in
particular the elements of Hϕ̄ cannot be classified in terms of multiplets of G.

One might think of grouping together solutions corresponding to initial data of
the form ϕ̄ + gχ, g ∈ G, which might look like candidates for multiplets of G. As
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a matter of fact, such sets of initial data do correspond to representations of a group
of transformations which is isomorphic to G, but which does not commute with the
dynamics, and therefore the above form of the initial data does not extend to arbitrary
times; thus the above identification of multiplets at the initial time is not stable under
time evolution. As a matter of fact, the group of transformations which commute
with the time evolution corresponds to ϕ̄ + χ → gϕ̄ + gχ, g ∈ G, which, however,
does not leave Hϕ̄ stable.

Within this approach, it is possible to prove a classical counterpart of the so-called
Goldstone theorem, according to which there are massless modes (i.e. solutions of
the free wave equation) associated to each broken generator. The theorem proved
here provides a mathematically acceptable substitute of the heuristic arguments and
improves the conclusions based on the quadratic approximation of the potential
around an absolute minimum.

Explicit examples which illustrate how these ideas work in concrete models are
discussed in Chap. 8.

The discussion of symmetry breaking in classical systems relies, with some addi-
tions, on papers written jointly with Cesare Parenti and Giorgio Velo, to whom I
am greatly indebted (see the references at the relevant points). An attempt is made
to reduce the mathematical details to the minimum required to make the arguments
self-contained and also convincing for a mathematically minded reader. The required
background technical knowledge is kept to a rather low level, in order that the lec-
tures be accessible also to undergraduate students with a basic knowledge of Hilbert
space structures.

http://dx.doi.org/10.1007/978-3-662-62166-0_8


Chapter 1
Symmetries of a Classical System

The realization of symmetries in physical systems has proven to be of help in the
description of physical phenomena: it makes it possible to relate the behaviour of
similar systems and therefore it leads to a great simplification of the mathematical
description of Nature.

The simplest concept of symmetry occurs at the geometrical or kinematical level
when the shape of an object or the configuration of a physical system is invariant
or symmetric under geometric transformations like rotations, reflections, etc. At the
dynamical level, a system is symmetric under a transformation of the coordinates or
of the parameters which identify its configurations, if correspondingly its dynamical
behaviour is symmetric in the sense that the action of the symmetry transformation
and of time evolution commute.

To formalize the concept of dynamical symmetry, we first recall that the descrip-
tion of a classical physical system consists in

i) the identification of all its possible configurations {Sγ}, with γ running over an
index set of coordinates or parameters which identify the configuration Sγ ;

ii) the determination of their time evolution

αt : Sγ → αt Sγ ≡ Sγ(t). (1.1)

A symmetry g of a physical system is a transformation of the coordinates (or of
the parameters) γ, g: γ → gγ, which

1) induces an invertible mapping of configurations

g : Sγ → gSγ ≡ Sgγ (1.2)

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2021
F. Strocchi, Symmetry Breaking, Theoretical and Mathematical Physics,
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6 1 Symmetries of a Classical System

2) does not change the dynamical behaviour,1 namely

αt gSγ = αt Sgγ ≡ S(gγ)(t) = Sgγ(t) = gαt Sγ . (1.3)

The above condition states that the symmetry transformation commutes with
time evolution. For classical canonical systems, this amounts to the invariance of the
Hamiltonian under the symmetry g (symmetric Hamiltonian).

The realization of a symmetry which relates (the configurations of) two seemingly
different systems clearly leads to a unification of their description. In particular, the
solution of the dynamical problem for one configuration automatically gives the
solution for the symmetry related configuration (see (1.3)).

Example 1.1, double well potential. Consider a particle moving on a line, subject
to a double well potential, i.e. described by the following Hamiltonian

H = 1
2 p

2 + 1
4λ(q2 − a2)2, (1.4)

with q, p the canonical coordinates which label the configurations of the particle.
The reflection g : q → −q, p → −p leaves the Hamiltonian invariant and is a
symmetry of the system; obviously, it maps solutions (of the Hamilton equations)
into solutions.

Now, consider the two classes �± of solutions corresponding to initial conditions
in the neighbourhoods of the two absolute minima q0 = ±a, with p0 <

√
λa2/2,

respectively, and suppose that by some (artificial) ansatz, in the preparation of the
initial configurations one cannot dispose of energies greater than λa4/4. This means
that the two classes of solutions describe two disjoint realizations of the system, in the
sense that by fiat no physically realizable operation allows to change a configuration
from one class to the other. In this way, one gets a picture similar to the case of
the thermodynamical phases, which are physically disjoint in the thermodynamical
limit, but nevertheless described by the same Hamiltonian and related by a symmetry
which is not implementable in each phase. Clearly, the existence of such a symmetry,
even if devoid of physical operational meaning, provides a unified description of the
two “phases”.

For a particle moving on a plane, the analog of the double well potential defines a
Hamiltonian which is invariant under rotations around the axis (through the origin)
orthogonal to the plane and one has a continuous group of symmetries. There is
a continuous family of absolute minima lying on the circle |q0|2 = a2. Since such
minima are not separated by any energy barrier, one cannot associate with them
different systems by some artificial ansatz as above.

1To simplify the discussion, here we do not consider the more general case in which the dynamics
transform covariantly under g (like, e.g. in the case of Lorentz transformations). For a general
discussion of symmetries and of their relevance in physics, see R.M.F. Houtappel, H. Van Dam and
E.P. Wigner, Rev. Mod. Phys. 37, 595 (1965).



Chapter 2
Spontaneous Symmetry Breaking

One of the most powerful ideas of modern theoretical physics is the mechanism of
spontaneous symmetry breaking. It is at the basis of most of the recent achievements
in the description of phase transitions in Statistical Mechanics as well as of collective
phenomena in solid state physics. It has also made possible the unification of weak,
electromagnetic and strong interactions in elementary particle physics. Philosophi-
cally, the idea is very deep and subtle (this is probably why its exploitation is a rather
recent achievement) and the popular accounts do not fully do justice to it.

Roughly, spontaneous symmetry breaking is said to occur when a symmetry of
the Hamiltonian, which governs the dynamics of a physical system, does not lead
to a symmetric description of the physical properties of the system. At first sight,
this may look almost paradoxical. From elementary courses on mechanical systems,
one learns that the symmetries of a system are displayed by the symmetries of the
Hamiltonian, which describes its time evolution; how can it then be that a symmetric
Hamiltonian gives rise to an asymmetric physical description of a dynamical system?

The cheap standard explanation is that such a phenomenon is due to the existence
of a non-symmetric absolute minimum or “ground state”, but the mechanism must
have a deeper explanation, since the symmetry of the Hamiltonian implies that an
asymmetric stable point cannot occur by alone, (the action of the symmetry on it will
produce another stable point). Now, the existence of a set of absolute minima related
by a symmetry (or “degenerate ground states”) does not imply a non-symmetric phys-
ical description. One actually gets a symmetric picture, if the correct correspondence
is made between the configurations of the system (and their time evolutions), and
such a correspondence is physically implementable if for any physically realizable
configuration its transformed one is also realizable.

The way out of this argument is to envisage a mechanism by which, given a non-
symmetric absolute minimum (or “ground” state) S0, there are physical obstructions
to reach its transformed one, g S0, by means of physically realizable operations, so
that effectively one gets confined to an asymmetric realization of the system. The

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2021
F. Strocchi, Symmetry Breaking, Theoretical and Mathematical Physics,
https://doi.org/10.1007/978-3-662-62166-0_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62166-0_2&domain=pdf
https://doi.org/10.1007/978-3-662-62166-0_2


8 2 Spontaneous Symmetry Breaking

purpose of the following discussion is to make such a rather vague and intuitive
picture more precise.

For a classical finite-dimensional dynamical system, two configurations may be
said to be relatedbyphysically realizable operations if there is nophysical obstruction
for operationally changing one into the other, e.g. if they are connected by a contin-
uous path of configurations, all with finite energy. In this way, one gets a partition of
the configurations into classes and given a configuration S, the set of configurations
which can be reached from it, by means of physically realizable operations, will be
called the phase ΓS , or the “physical world”, to which S belongs.

A symmetry g will be said to be physically realized (or implementable or unbro-
ken), in the phase Γ , if it leaves Γ stable.

In the mechanical example of the double well potential discussed above, there
is no natural and physically reasonable way of isolating the solutions in the neigh-
bourhoods of the two minima, since an artificial limitation of the available energies
looks rather unphysical. Actually, according to the above definitions, there is only
one phase and the reflection symmetry is physically implementable or unbroken.

In order to further illustrate the above definitions,we consider a particlemoving on
a line, subject to a deformed double well potential, still invariant under the reflection
g : q → −q, with two absolute minima at q0 = ±a, but going to infinity as q → 0.

Consider now two kinds of (one-dimensional) creatures, one living in the valley
with bottom q0 = a and the other in the valley with bottom q0 = −a. The infinite
potential barrier prevents going from one valley to the other (tunnelling is impossi-
ble); then, e.g. the people living in the r.h.s. valley do not have access to the l.h.s.
valley, neither by action on the initial conditions of the particle nor by time evolu-
tion. Thus, the operations which are physically realizable (by each of the two kinds
of people) cannot make the transition from one valley to the other and the particle
configurations get divided into two phases, labelled by the two minima Γa, Γ−a ,
respectively.

The reflection symmetry is not physically realized in each of the two phases. As a
matter of fact, even if the particlemotion is describedby a symmetricHamiltonian, the
particle physical world will look asymmetric to each kind of creatures: the symmetry
is spontaneously broken.

The somewhat artificial example of spontaneous symmetry breaking discussed
above is made possible by the infinite potential barrier between the two absolute
minima. Clearly, such a mechanism is not available in the case of a continuous
symmetry, since then the (absolute)minima are continuously related by the symmetry
group and no potential barrier can occur between them (for a concrete example see the
two-dimensional doublewell discussed above). Thus, for finite-dimensional classical
dynamical systems, a continuous symmetry of the Hamiltonian is always unbroken
(even if the ground state is degenerate and non-symmetric).

The often-quoted example of a particle in a two-dimensional double well potential
is a somewhat misleading example of spontaneous breaking of continuous symmetry
(it is also an incorrect example in one dimension, unless the potential is so deformed
to produce an an infinite barrier between the two minima). Actually, most of the
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claimed simple mechanical examples of spontaneous symmetry breaking discussed
in the literature are equally misleading.

Even if the existence of non-symmetric minima is a rather peculiar phenomenon
which deserves special interest, it does not imply spontaneous symmetry breaking
in the radical sense of its realization in elementary particle physics, many-body
systems, statistical mechanics, etc., where a symmetry of the dynamics is not shared
by physical realizations or disjoint phases of the system. This is a much deeper
phenomenon than the mere existence of non-symmetric minima.

The relevance of the distinction between non-symmetric minima or ground states
and spontaneous symmetry breaking appears clear if one considers, e.g. a free par-
ticle on a line, where each configuration (q0 ∈ R, p0 = 0) is a minimum of the
Hamiltonian and it is not stable under translations, but nevertheless one does not
speak of symmetry breaking; in fact, according to our definition, there is only one
phase stable under translations.

The two concepts of symmetry breaking coincide for infinitely extended systems,
since in this case, as we shall see below, different ground states define different
phases or disjoint worlds; therefore their asymmetry necessarily leads to symmetry
breaking in the radical sense of a non-symmetric physical description (see Chap. 7
below).

Similar considerations apply to classical systems which exhibit bifurcation2 for
which, strictly speaking, one does not have spontaneous symmetry breaking as long
as the multiple solutions are related by physically realizable operations. As we shall
see later, the latter property may fail if one considers the infinite volume (or thermo-
dynamical) limit, and in this way spontaneous symmetry breaking may occur.

2D.H. Sattinger, Spontaneous Symmetry Breaking: mathematical methods, applications and prob-
lems in the physical sciences, in Applications of Non-Linear Analysis, H. Amann et al. eds., Pitman
1981.



Chapter 3
Symmetries in Classical Field Theory

As the previous discussion indicates, it is impossible to realize the phenomenon of
(spontaneous) breaking of a continuous symmetry in classical mechanical systems
with a finite number of degrees of freedom described by canonical variables. We are
thus led to consider infinite-dimensional systems, like classical fields.

Our main purpose is to recognize the existence of disjoint “phases”, in the set of
solutions of the classical field equations, with the interpretation of possible disjoint
realizations of the system (Chap. 5). The phenomenon of spontaneous symmetry
breaking in a given “phase” will then be explained by its instability under the sym-
metry transformation.

To simplify the discussion, we will focus our attention to the standard case of the
non-linear equation

�ϕ +U ′(ϕ) = 0, (3.1)

where � ≡ (∂t )
2 − �, ϕ = ϕ(x, t), x ∈ Rs, t ∈ R, is a field taking values in Rn ,

(an n-component field),U (ϕ) is the potential, which for the moment will be assumed
to be sufficiently regular, and U ′ denotes its derivative.

Equation (3.1) can be derived by the stationarity of the following action integral

A(ϕ, ϕ̇) =
∫

dsx dt
[− 1

2 (∇ϕ)2 + 1
2 ϕ̇

2 −U (ϕ)
]
.

A typical prototype is given by

U (ϕ) = 1
4λ(ϕ2 − a2)2 (3.2)

which is the infinite-dimensional version of the double well potential discussed in
Chap. 1.
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12 3 Symmetries in Classical Field Theory

Quite generally, (3.1) occurs in the description of non-linear waves in many
branches of physics like non-linear optics, plasma physics, hydrodynamics, elemen-
tary particle physics etc.3 The above equation (3.1) will be used to illustrate general
structures likely to be shared by a large class of non-linear hyperbolic equations.

The solution of the Cauchy problem for the (in general non-linear) equation (3.1),
with given initial data

ϕ(x, t = 0) = ϕ0(x), ∂tϕ(x, t = 0) = ψ0(x), (3.3)

provides the corresponding classical field ϕ(x, t) described by (3.1).
In analogy with the previous discussion of the finite-dimensional systems, a

description of the system (3.1) consists in the identification of the class of initial
conditions, for which the time evolution is well defined. Deferring the mathematical
details, we will now denote by X the functional space within which the Cauchy
problem is well posed, i.e. such that for any initial data

u0 =
(

ϕ0

ψ0

)
∈ X (3.4)

there is a unique solution u(x, t) continuous in time (in the topology of X , see below)
and belonging to X for any t , briefly u(x, t) ∈ C0(X, R).

Thus, X can be regarded as describing the initial configurations of the system
(3.1) and it is stable under time evolution.4

In analogy with the finite-dimensional case, a symmetry of the system (3.1) is an
invertible mapping Tg of X onto X , which commutes with the time evolution. To
simplify the discussion,wewillmake the technical assumption that Tg is a continuous
mapping (in the X topology) of the form

Tg

⎛
⎝ ϕ(x)

ψ(x)

⎞
⎠ =

⎛
⎝ g(ϕ(x))

Jg(ϕ(x))ψ(x)

⎞
⎠ , (3.5)

3See, e.g. G.B. Whitham, Linear and Non-Linear Waves, J. Wiley, New York 1974; R. Rajaraman,
Phys. Rep. 21C, 227 (1975); S. Coleman, Aspects of Symmetry, Cambridge Univ. Press 1985,
Chap. 6.
4For an extensive review on the mathematical problems of the non-linear wave equation see
M. Reed, Abstract non-linear wave equation, Springer-Verlag, Heidelberg 1976. For the solution of
the Cauchy problem for initial data not vanishing at infinity, a crucial ingredient for discussing spon-
taneous symmetry breaking, see C. Parenti, F. Strocchi and G. Velo, Phys. Lett. 59B, 157 (1975);
Ann. Scuola Norm. Sup. (Pisa), III, 443 (1976), hereafter referred as I. A simple account with
some addition is given in F. Strocchi, in Topics in Functional Analysis 1980-81, Scuola Normale
Superiore Pisa, 1982. For a beautiful review of the recent developments see W. Strauss, Nonlinear
Wave Equations, Am. Math. Soc. 1989.
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with g a diffeomorphism of Rn of class C2 and Jϕ the Jacobian matrix of g. Such
symmetries are called internal symmetries, since they commute with space and time
translations.5

Under general regularity assumptions on the potential, such that for infinitely
differentiable initial data the corresponding solution of (3.1) is of class C2 in the
variables x and t , one gets a characterization of the internal symmetries of the system
(3.1).

Theorem 3.1 6Under the above assumption on U, any internal symmetry of the
system (3.1) is characterized by a g which is an affine transformation

g(z) = Az + a, (3.6)

where a, z ∈ Rn and A is an n × n invertible matrix. Furthermore, the invariance
of the action integral up to a scale factor requires

AT A = λ1, (3.7)

with AT the transpose of A and λ a suitable constant. A, a, λ, which depend on g,
satisfy the following condition

U (Az + a) = λU (z) +U (a). (3.8)

Proof. The condition that Tgαt u0 = αt Tgu0 be a solution of (3.1), for any initial
data u0, implies7

0 = �gk(ϕ) +U ′
k(g(ϕ)) =

= ∂2gk
∂zi∂z j

(ϕ)∂μϕi∂μϕ j − ∂gk
∂zi

(ϕ)U ′
i (ϕ) +U ′

k(g(ϕ)). (3.9)

Choosing the initial data such that ϕ0(x) = const ≡ c, ψ0(x) = 0, for x in some
region of Rs , the first term of (3.9) vanishes there and one gets

− ∂gk
∂zi

(c)U ′
i (c) +U ′

k(g(c)) = 0. (3.10)

Since c is arbitrary, the sum of the last two terms vanishes for any ϕ. Choosing now
ϕ0(x) = c, ψ0(x) = const = b, x ∈ V ⊂ Rs , one gets

5For the discussion of more general symmetries see C. Parenti, F. Strocchi and G. Velo, Comm.
Math. Phys. 53, 65 (1977), hereafter referred to as II; Phys. Lett. 62B, 83 (1976).
6Ref. II (see footnote 4).
7Weuse the convention bywhich sumover dummy indices is understood; furthermore the relativistic
notation is used: μ = 0, 1, 2, 3, ∂0 = ∂/∂t, ∂i = ∂/∂xi , i = 1, 2, 3, ∂μ = gμν∂ν , g00 = 1 =
−gii , gμν = 0 if μ �= ν.
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∂2gk
∂zi∂z j

(c) = 0, ∀c ∈ Rn, i.e. g(z) = Az + a.

Equation (3.9) then becomes

∂

∂zl
U (Az + a) = (AT A)li

∂

∂zi
U (z).

The invariance of the action integral up to a scale factor requires AT A = λ1 and
U (Az + a) = λU (z)+ const; the normalization U (0) = 0 identifies the latter con-
stant as U (a).

Having characterized the possible symmetries of (3.1), we may now ask whether
symmetry breaking can occur. For continuous groups this possibility seems to be in
conflict with Noether’s theorem.

Theorem 3.2 8Let G be an N parameter Lie group of internal symmetries for the
classical system (3.1), then there exist N conserved currents

∂μ Jaμ (x, t) = 0, a = 1, . . . , N (3.11)

and N conserved quantities

Qa(t) =
∫

ds x J a0 (x, t) = Qa(0), (3.12)

which are the generators of the corresponding one-parameter subgroups {gaα,α ∈ R}
of symmetry transformations

δau ≡ dgaα(u)/dα|α=0 = {u, Qa}, (3.13)

where the curly brackets denote the Poisson brackets.

For the proof, we refer to any standard textbook.9,10

One should stress that for (3.12) some regularity properties of the solution are
needed, even if they are not spelt out in the standard accounts of the theorem.Actually,
the deep physical question of spontaneous breaking requires a more refined analysis
of the mathematical properties of the solutions and of their behaviour at infinity.
As we shall see, the problem of existence of “islands” or phases, stable under time

8E. Noether, Nachr. d. Kgl. Ges. d. Wiss. Göttingen (1918), p. 235.
9See, e.g. H. Goldstein,Classical Mechanics, 2nd. ed., Addison-Wesley 1980; E. L. Hill, Rev. Mod.
Phys. 23, 253 (1951); N.N. Bogoljubov and D.V. Shirkov, Introduction to the theory of quantized
fields, Interscience 1958, Sect. 2.5.
10For the representations ofLie groups and their generators in classical systems, seeD.G.Currie, T.F.
Jordan and E.C.G. Sudarshan, Rev. Mod. Phys. 35, 350 (1963); E.C.G. Sudarshan and N.Mukunda,
Classical Dynamics: A Modern Perspective, J. Wiley and Sons 1974.
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evolution (playing the role of the valleys of the example discussed in Chap. 2) and
characterized by a non-trivial behaviour at infinity of the corresponding solutions,
will require a sort of stability theory for the infinite-dimensional system (3.1).



Chapter 4
General Properties of Solutions
of Classical Field Equations

The first basic question is to identify the possible configurations of the systems (3.1),
namely the set X of initial data for which the time evolution is well defined andwhich
is mapped onto itself by time evolution. In the mathematical language, one has to
find the functional space X for which the Cauchy problem is well posed. In order to
see this, one has to give conditions onU ′(ϕ) and to specify the class of initial data or,
equivalently, the class of solutions one is interested in. Here one faces an apparently
technical mathematical problem, which has also deep physical connections.

In the pioneering work by Jörgens11 and Segal,12 the choice was made of con-
sidering those initial data (and, consequently, those solutions) for which the total
“kinetic” energy is finite13

Ekin ≡ 1
2

∫
[(∇ϕ)2 + ϕ2 + ψ2]dsx < ∞, ψ = ϕ̇. (4.1)

From a physical point of view, condition (4.1) is unjustified and it automatically
rules out very interesting cases, like the external field problem, the symmetry break-
ing solutions, the soliton-like solutions and, in general, all the solutions which do
not decrease sufficiently fast at large distances to make the above integral (4.1) con-
vergent. Actually, there is no physical reason why Ekin should be finite, since even
the splitting of energy into a kinetic and a potential part is not free of ambiguities.

11K. Jörgens, Mat. Zeit. 77, 291 (1961).
12I. Segal, Ann. Math. 78, 339 (1963).
13Strictly speaking, the kinetic energy should not involve the term ϕ2. Our abuse of language is
based on the fact that the bilinear part of the total energy corresponds to what is usually called the
“non-interacting” theory (whose treatment is generally considered as trivial or under control by an
analysis in terms of normal modes). The remaining term in the total energy is usually considered
as the true interaction potential.
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Therefore, we have to abandon condition (4.1) and we only require that the initial
data are locally smooth in the sense that

∫
V
[(∇ϕ)2 + ϕ2 + ψ2]dsx < ∞ (4.2)

for any bounded region V (locally finite kinetic energy).
As it is usual in the theory of second-order differential equations, one may write

(3.1) in first order (or Hamiltonian) formalism, by grouping together the field ϕ(t)
and its time derivative ψ(t) = ϕ̇(t) in a two-component vector

u(t) =
(

ϕ(t)
ψ(t)

)
≡

(
u1(t)
u2(t)

)
.

Equation (3.1) can then be written in the form

du

dt
= Ku + f (u), (4.3)

with the initial condition

u(0) = u0 =
(

ϕ0

ψ0

)
, (4.4)

where

K =
(
0 1
� 0

)
, f (u) =

(
0

−U ′(ϕ)

)
. (4.5)

One of the two components of (4.3) is actually the statement that ψ = ϕ̇.
It is more convenient to rewrite (4.3) as an integral equation which incorpo-

rates the initial conditions. To this purpose, we introduce the one-parameter contin-
uous group W (t) generated by K and corresponding to the free wave equation (see
Appendix10.1)

W (0) = 1, W (t + s) = W (t) W (s) ∀t, s.

Then, the integral form of (4.3) is

u(t) = W (t)u0 +
∫ t

0
W (t − s) f (u(s))ds. (4.6)

Themain advantage of (4.6) is that, in contrast to (4.3), it does not involve derivatives
of u and, as we will see, it is easier to give it a precise meaning.

In first-order formalism, the condition that the kinetic energy is locally
finite reads: u1 = ϕ ∈ H 1

loc(R
s), (i.e. |∇ϕ|2 + |ϕ|2 is a locally integrable function);

u2 = ψ ∈ L2
loc(R

s) . Thus, we assume the following local regularity condition of the
initial data


