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Preface

In 2012, the Institute for Advanced Study at the University of Siegen, Germany,
began planning and started preliminary studies for the establishment of an inter-
disciplinary working group on questions of global energy supply. The intention was
to broaden the energy policy perspective from a purely national German perspective
to European and global view. As a interdisciplinary project group, “Societal
challenges posed by the interactions between energy system transformation, raw
material demand and climate change in a global perspective (GlobEn)” was funded.

The project group was composed of:

• Carl Friedrich Gethmann (University of Siegen; ethics of science) (chair)
• Georg Kamp (Research Centre Jülich; philosophy)
• Michèle Knodt (Technical University Darmstadt; political science)
• Wolfgang Kröger (ETH Zurich; mechanical engineering sciences)
• Hans von Storch (Institute for Coastal Research of the Helmholtz Centre

Geesthacht; climate research)
• Christian Streffer (University Clinics Essen, medical faculty; medical

radiobiology)
• Thomas Ziesemer (Maastricht University; environmental economics).

Furthermore, Harry van der Laan (University of Utrecht, astrophysics; climate
research) and Karl Josef Koch (University of Siegen; economics) have participated
in early stages of the discussion of the project group. At times, the project was
supported by the research assistants Jan Mehlich, Jochen Sattler and Hendrik
Kempt active.

The group held a total of 19 plenary meetings in Siegen, Cologne and Zurich in
the years from 2013 to early 2018. The aim was to produce a monograph based on
the concept of interdisciplinary cooperation with transdisciplinary objectives
developed within the framework of the European Academy Bad Neuenahr-
Ahrweiler.1 The authors take responsibility for the text in collective

1C.F. Gethmann, M. Carrier, G. Hanekamp, M. Kaiser, G. Kamp, S. Lingner, M. Quante, F. Thiele,
Interdisciplinary Research and Trans-disciplinary Validity Claims, Heidelberg u.a. 2015.
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authorship. Some of the members of the GlobEn working group had previously
presented a study on nuclear disposal, among other things, within the framework
of the Europäische Akademie Bad Neuenahr Ahrweiler.2

The authors would like to thank the Institute for Advanced Study of the
University of Siegen for the financial support of the study and Springer-Publishers
for their cooperation in preparing the publication of the study.

Inevitably, there has been a time gap between the end of the scientific work and
the time of publication. At the same time, the subject area is developing at an
accelerated rate. The authors have made every effort to keep the data stock up to
date. However, not in every area could the latest developments be taken into
account.

On behalf of the authors:
Siegen, Germany
February 2020

Carl Friedrich Gethmann

2C. Streffer, C.F. Gethmann, G. Kamp, W. Kröger, E. Rehbinder, O. Renn, K.-J. Röhlig,
Radioactive Waste. Technical and Normative Aspects of its Disposal, Berlin: Springer 2011.
Further preliminary work: U. Steger, W. Achterberg, K. Blok, H. Bode, W. Frenz, C. Gather, G.
Hanekamp, D. Imboden, M. Jahnke, M. Kost, R. Kurz, H.G. Nutzinger, Th. Ziesemer,
Nachhaltige Entwicklung und Innovation im Energiebereich, Berlin 2002 (Sustainable
Development and Innovation in the Energy Sector, Berlin 2005); C. Streffer, C.F. Gethmann,
K. Heinloth, K. Rumpff, A. Witt, Ethische Probleme einer langfristigen Energieversorgung,
Berlin 2005; B. Droste-Franke, H. Berg, A. Kötter, J. Krüger, K. Mause, J.-C. Pielow, I. Romey,
T. Ziesemer, Brennstoffzellen und Virtuelle Kraftwerke. Energie-, umwelt- und technologiepoli-
tische Aspekte einer effizienten Hausenergieversorgung, Berlin 2009; B. Droste-Franke, P. Paal, C.
Rehtanz, D. U. Sauer, J.-P. Schneider, M. Schreurs, T. Ziesemer, Balancing renewable electricity.
Energy Storage, Demand Side Management and Network Extension from an Interdisciplinary
Perspective, Berlin 2012; C.F. Gethmann, G. Kamp, “Globale Energiegerechtigkeit. Ethische
Fragen”, in: J. Nida-Rümelin, D. von Daniels, N. Wloka (Hgg), Internationale Gerechtigkeit und
institutionelle Verantwortung, Berlin 2019, 311–340.
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Chapter 1
Introduction

1.1 Initial Situation

A secure and at the same time cost-effective, environmentally friendly and resource-
saving energy supply is an important prerequisite both for the further development
of the countries of Asia, South America and Africa and for maintaining living condi-
tions in the industrialized countries. This entails a wide range of national and regional
design tasks, but also those which, in view of the competition for resources on a glob-
alized market and in view of the consequences of the release of emissions during the
production and consumption of useful energy, can only be adequately considered in
the light of global developments. At the same time, there is a need to broaden the
view of more complex interrelationships that go far beyond energy supply issues.
For example, the provision of energy in dry zones close to the coast allows the
extraction of fresh water, which can be used for agricultural purposes and to develop
settlement areas. This is expected to have an impact on social, economic, political,
and demographic developments, which may have a direct impact on living condi-
tions in industrialized countries in the form of a reduction in migration movements
and an increase in trade activities. At the same time, the type and extent of energy
production and use have an impact on climatic developments, which, according to
the current state of knowledge, will in turn influence the expansion and distribution
of dry zones, among other things. This means that national energy policy decisions
and measures, if they are to be taken not just for the sake of short-term effects but
prudently and responsibly, must be based on a foundation that goes far beyond the
technical interrelationships and the respective requirements of regional markets and
incorporates ideas of longer-term global development.

If these challenges are to be met, then both the supranational steering possi-
bilities and the specific local conditions, the disparate goals and the diversity of
options, the unequal distribution of potential (e.g., technical, financial, social and
cognitive resources), and the unequal distribution of opportunities and risks must
be considered. For this purpose, scientific input on a broad interdisciplinary basis
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2 1 Introduction

is indispensable, which should be carried out from a scientific-technical, political,
social science, economic and philosophical perspective on the basis of represen-
tative selected regions (China, India, Brazil, and Europe), especially in the fields
of science, technology, politics, economics, and philosophy. For this, the following
outline will be followed: (i) critically reconstructing the target systems and the tech-
nical, economic, ecological, and social conditions for achieving the targets, (ii) devel-
oping and refining criteria, benchmarks and methods for responsible energy policy
decisions and their effective implementation, and (iii) developing cross-disciplinary,
coordinated, sustainable, and promising recommendations for action for a prudent
and long-term energy policy from the perspective of all disciplines involved.

The development of viable strategies for a sustainable energy supply raises not
only questions of technical feasibility and economic viability but alsomanifold ques-
tions of ethical justifiability and political responsibility, which extend far beyond
national borders and the present day and can often only be adequately answered on
a global scale and in an intergenerational long-term perspective.

1.2 Energy Policy and Climate Targets

The International Energy Agency (IEA) puts the total volume of energy-related CO2

emissions for 2018 at 33.1 Gt and gives a clear indication of the relevance of energy
policy and energy management decisions for climate change, which can only be
adequately considered a global phenomenon.1

This represents an increase ofmore than 40%over the 23.2Gt reported for the year
2000, and since 2005 emissions have risen by more than 22% despite the economic
downturn. The IEA has calculated an increase of 1.8% for 2018 alone. According
to the UNEP “Temperature Briefing” (2010) “there is a medium likelihood to stay
within the 2-degree limit if the following conditions are met:

• Global emissions peak sometime between 2015 and 2021.
• Global emissions in 2020 are approximately 40.0–48.3 Gt CO2 eq/yr.
• By 2050 global emissions decrease by 48–72% relative to 2000”.

According to the calculations of the Intergovernmental Panel on Climate Change
(IPCC), in order to meet the 1.5 °C target set by the Paris Agreement, which came
into force in 2016, there would even have to be negative emissions.2 The resulting

1“Global energy-related CO2 emissions grew 1.7% in 2018 to reach a historic high of
33.1 Gt CO2” https://www.iea.org/reports/global-energy-co2-status-report-2019/emissions#abs
tract (accessed 13-Dec-2019).
2“All pathways that limit global warming to 1.5 °C with limited or no overshoot project the use
of carbon dioxide removal (CDR) on the order of 100–1000 GtCO2 over the twenty-first century.
CDR would be used to compensate for residual emissions and, in most cases, achieve net negative
emissions to return global warming to 1.5 °C following a peak (high confidence). CDR deployment
of several hundreds of GtCO2 is subject to multiple feasibility and sustainability constraints (high
confidence). (IPCC 2018).
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problems become even more apparent when comparing the developments in OECD
countries and countrieswith accelerated catchup developments such asChina, Brazil,
or India: For the year 2019, the OECD countries’ share of energy-related emissions
is 35%.3 However, they contribute only 25% to the rate of increase, with increases
being recorded above all in non-OECD countries. Although their inhabitants produce
only a fraction of the per capita emissions for which OECD citizens are responsible
(10 t/a compared with 5.8 t/a in China, 1.9 t/a in Brazil or 1.6 t/a in India), in view
of the rapidly growing populations and the accelerated mechanization of these coun-
tries, compliance with the projected targets will not be possible, or not only through
abatement strategies within the OECD countries. Rather, energy policy measures
should also be geared towards the development, testing, and refinement of options
that offer competitive and attractive offers in the developing countries to achieve
their prosperity goals while at the same time reducing climatic and other risks.

1.3 Energy Management and Energy Technologies

The choice of technologies for energy production and use has a central influence on
climate development. At the same time, this raises questions of environmental protec-
tion and air pollution control, questions of resource availability and fair distribution,
and elementary questions of generating andmaintaining prosperity and development.
Questions of safe and efficient energy supply, as they arise for modern civilizations,
are particularly determined by over-complex decision situations. Even if the first
warning cries raised in the 1970s turned out to be too premature and dramatic, there
is no denying that in the long term, there will be a gradual shortage of essential
resources, be it oil or rare earths required for the development of highly efficient
turbines. At the same time, the world population has grown from about 1.6 billion
people (around 1900) to 7.6 billion in little more than a hundred years—not least
because of the progress made in many areas of life. The projections of the UN
(Department of Economic and Social Affairs, 2017 revision) fluctuate between a
shift of about 9.6 billion by the end of the century and a further increase in the world
population to 13.2 by 2100 and a further increase beyond that.

The course of development will also depend to a large extent on the availability of
energy: A secure and cheap availability of energy is necessary to turn the expected
billions of people into producers who can provide for themselves and their families
with what they produce and buy. Countries such as China, India or Brazil have in
some cases made breathtaking developments here in recent decades and have caught
up with the Western industrial nations, but have also increased the pressure on the
demand for energy sources and contributed to the further scarcity of resources, to
the increased volume of emissions and thus to an intensification of environmental
problems.

3http://www.oecd.org/environment/environment-at-a-glance/Climate-Change-Archive-December-
2019.pdfmber-2019.pdf (accessed 13-Dec-2019).
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