Ethics of Science and Technology Assessment 47

Carl Friedrich Gethmann · Georg Kamp · Michèle Knodt · Wolfgang Kröger · Christian Streffer · Hans von Storch · Thomas Ziesemer

Global Energy Supply and Emissions

An Interdisciplinary View on Effects, Restrictions, Requirements and Options

Ethics of Science and Technology Assessment

Volume 47

Series Editors

Carl Friedrich Gethmann, Universität Siegen, Siegen, Nordrhein-Westfalen, Germany

Michael Quante, Philosophisches Seminar, Westfälische Wilhelms Universität, Münster, Nordrhein-Westfalen, Germany

Bjoern Niehaves, Universitaet Siegen, Siegen, Nordrhein-Westfalen, Germany

Holger Schönherr, Department of Chemistry and Biology, Universität Siegen, Siegen, Germany

The series *Ethics of Science and Technology Assessment* focuses on the impact that scientific and technological advances have on individuals, their social lives, and on the natural environment. Its goal is to cover the field of Science and Technologies Studies (STS), without being limited to it. The series welcomes scientific and philosophical reviews on questions, consequences and challenges entailed by the nature and practices of science and technology, as well as original essays on the impact and role of scientific advances, technological research and research ethics. Volumes published in the series include monographs and edited books based on the results of interdisciplinary research projects. Books that are devoted to supporting education at the graduate and post-graduate levels are especially welcome.

More information about this series at http://www.springer.com/series/4094

Carl Friedrich Gethmann · Georg Kamp · Michèle Knodt · Wolfgang Kröger · Christian Streffer · Hans von Storch · Thomas Ziesemer

Global Energy Supply and Emissions

An Interdisciplinary View on Effects, Restrictions, Requirements and Options

Carl Friedrich Gethmann Universität Siegen Forschungskolleg Siegen Siegen, Germany

Michèle Knodt Institut für Politikwissenschaft Technische Universität Darmstadt Darmstadt, Germany

Christian Streffer University Clinics Essen Essen, Germany

Thomas Ziesemer Maastrich University Maastrich, The Netherlands Georg Kamp Würselen, Nordrhein-Westfalen Germany

Wolfgang Kröger ETH Zürich Zürich, Switzerland

Hans von Storch Helmholtz Zentrum Geesthacht Institute of Coastal Research Geesthacht, Germany

 ISSN 1860-4803
 ISSN 1860-4811 (electronic)

 Ethics of Science and Technology Assessment
 ISBN 978-3-030-55354-8
 ISBN 978-3-030-55355-5 (eBook)

 https://doi.org/10.1007/978-3-030-55355-5
 ISBN 978-3-030-55355-5
 ISBN 978-3-030-55355-5

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

In 2012, the Institute for Advanced Study at the University of Siegen, Germany, began planning and started preliminary studies for the establishment of an interdisciplinary working group on questions of global energy supply. The intention was to broaden the energy policy perspective from a purely national German perspective to European and global view. As a interdisciplinary project group, "Societal challenges posed by the interactions between energy system transformation, raw material demand and climate change in a global perspective (GlobEn)" was funded.

The project group was composed of:

- Carl Friedrich Gethmann (University of Siegen; ethics of science) (chair)
- Georg Kamp (Research Centre Jülich; philosophy)
- Michèle Knodt (Technical University Darmstadt; political science)
- Wolfgang Kröger (ETH Zurich; mechanical engineering sciences)
- Hans von Storch (Institute for Coastal Research of the Helmholtz Centre Geesthacht; climate research)
- Christian Streffer (University Clinics Essen, medical faculty; medical radiobiology)
- Thomas Ziesemer (Maastricht University; environmental economics).

Furthermore, Harry van der Laan (University of Utrecht, astrophysics; climate research) and Karl Josef Koch (University of Siegen; economics) have participated in early stages of the discussion of the project group. At times, the project was supported by the research assistants Jan Mehlich, Jochen Sattler and Hendrik Kempt active.

The group held a total of 19 plenary meetings in Siegen, Cologne and Zurich in the years from 2013 to early 2018. The aim was to produce a monograph based on the concept of interdisciplinary cooperation with transdisciplinary objectives developed within the framework of the European Academy Bad Neuenahr-Ahrweiler.¹ The authors take responsibility for the text in collective

¹C.F. Gethmann, M. Carrier, G. Hanekamp, M. Kaiser, G. Kamp, S. Lingner, M. Quante, F. Thiele, *Interdisciplinary Research and Trans-disciplinary Validity Claims*, Heidelberg u.a. 2015.

authorship. Some of the members of the GlobEn working group had previously presented a study on nuclear disposal, among other things, within the framework of the Europäische Akademie Bad Neuenahr Ahrweiler.²

The authors would like to thank the Institute for Advanced Study of the University of Siegen for the financial support of the study and Springer-Publishers for their cooperation in preparing the publication of the study.

Inevitably, there has been a time gap between the end of the scientific work and the time of publication. At the same time, the subject area is developing at an accelerated rate. The authors have made every effort to keep the data stock up to date. However, not in every area could the latest developments be taken into account.

Siegen, Germany February 2020 On behalf of the authors: Carl Friedrich Gethmann

²C. Streffer, C.F. Gethmann, G. Kamp, W. Kröger, E. Rehbinder, O. Renn, K.-J. Röhlig, *Radioactive Waste. Technical and Normative Aspects of its Disposal*, Berlin: Springer 2011. Further preliminary work: U. Steger, W. Achterberg, K. Blok, H. Bode, W. Frenz, C. Gather, G. Hanekamp, D. Imboden, M. Jahnke, M. Kost, R. Kurz, H.G. Nutzinger, Th. Ziesemer, *Nachhaltige Entwicklung und Innovation im Energiebereich*, Berlin 2002 (*Sustainable Development and Innovation in the Energy Sector*, Berlin 2005); C. Streffer, C.F. Gethmann, K. Heinloth, K. Rumpff, A. Witt, *Ethische Probleme einer langfristigen Energieversorgung*, Berlin 2005; B. Droste-Franke, H. Berg, A. Kötter, J. Krüger, K. Mause, J.-C. Pielow, I. Romey, T. Ziesemer, *Brennstoffzellen und Virtuelle Kraftwerke. Energie-*, *umwelt- und technologiepolitische Aspekte einer effizienten Hausenergieversorgung*, Berlin 2009; B. Droste-Franke, P. Paal, C. Rehtanz, D. U. Sauer, J.-P. Schneider, M. Schreurs, T. Ziesemer, *Balancing renewable electricity. Energy Storage, Demand Side Management and Network Extension from an Interdisciplinary Perspective*, Berlin 2012; C.F. Gethmann, G. Kamp, "Globale Energiegerechtigkeit. Ethische Fragen", in: J. Nida-Rümelin, D. von Daniels, N. Wloka (Hgg), *Internationale Gerechtigkeit und institutionelle Verantwortung*, Berlin 2019, 311–340.

Contents

1	Intr	oduction	1
	1.1	Initial Situation.	1
	1.2	Energy Policy and Climate Targets	2
	1.3	Energy Management and Energy Technologies	3
	1.4	Regional Specifics	4
	1.5	Collective Action Problems of Global Scope	5
	1.6	Problems of International Distributive Justice	8
2	Exe	cutive Summary	9
	2.1	Power Engineering	9
	2.2	Environment	11
	2.3	Energy and Climate	12
	2.4	Energy and Economy	13
	2.5	International Relations	14
	2.6	International Distributive Justice	15
3	Rec	ommendations	19
	3.1	Preliminary Remarks	19
	3.2	Energy Technology and Environment	19
	3.3	Energy and Climate	20
	3.4	Energy and Economy	20
	3.5	Politics/International (Bilateral and Multilateral) Relations	21
	3.6	Global Energy Justice	22
4	Stra	tegic Energy Requirements—Technological	
	Dev	elopments	23
	4.1	Baseline Situation	23
	4.2	Strategic Goals, Evaluation Patterns	27
	4.3	Scenario Analysis, Consideration of Technologies	34
	4.4	Status and Future Prospects of Key Technologies	36
		4.4.1 Overview	36
		4.4.2 Solar Power	43

		443	Wind Power	55
		444	Geothermal Energy	59
		445	Hydropower	60
		4.4.6	Biomass	63
		4.4.7	Coal and Gas Power Plants.	67
		4.4.8	Fracking	70
		4.4.9	Carbon Capture and Sequestration (CCS)/Carbon	
			Capture and Utilization (CCU)	73
		4.4.10	Nuclear Fission	76
		4.4.11	Nuclear Fusion	92
		4.4.12	Power Storage	97
		4.4.13	Power Transmission Grids/Intelligent Grids	99
	4.5	Conclu	sions, Recommendations	104
5	Asp	ects of E	Environmental Compatibility of Energy Systems	107
	5.1	Introdu	ction	107
	5.2	The Re	gulative Idea of Sustainability	108
	5.3	Enviror	nmental Problems Caused by Burning of Fossil Fuels	110
		5.3.1	Release of Green House Gases	112
		5.3.2	Health Damage Caused by Pollutant Emissions	113
		5.3.3	Immission Damage to Plants	121
	5.4	Nuclear	r Energy	122
		5.4.1	Environmental Problems Caused by Nuclear Energy,	
			Introduction	122
		5.4.2	Fundamental Processes of Radiation Exposure	
			and Epidemiological Data on Causation of Cancer	
			and Genetic Changes After Radiation Exposure	123
		5.4.3	Exposure to Radiation from Natural Sources	
			and Medicine and Other Sources	130
		5.4.4	Major Reactor Accidents—Release of Radioactive	
			Substances, Radiation Exposure and Damage to Health	132
		5.4.5	Summary of Radiation Exposures in Germany	134
	5.5	Enviror	imental and Health Risks from Renewable Energies	135
6	Kno	wledge	About Climate Change: Significance for Energy	1.00
	Issu	es		139
	6.1	The ID	CC's Current Assessment of Knowledge	139
	0.2	Ine IP	station Detection and Attribution	1.39
	0.5	Torract	Station, Detection and Attribution	144
	0.4	Target	value: Globally Averaged Temperature	148
	0.3	Taiking	ADOUL FULURES: SCENARIOS	151
	0.0	Delitic	annues	155
	0.7	POlitici	zauon	100

7	Eco	nomic H	Problems of Energy Transitions, Resource Scarcity	150
	7 1	Introdu	ation: Droblems, Solutions, Droblems from Solutions	159
	7.1	Global	Energy Problems	160
	1.2		Broblem 1: Electricity Access in Developing	100
		1.2.1	Countries	160
		7 2 2	Problem 2: Growth Enhances Emissions of CO.	100
		1.2.2	and Other Greenhouse Gases, the Global Link	
			1960_2010	161
		723	World CO ₂ Trend Disaggregated	162
		724	Problem 3: Clean Electricity Is not Enough	164
		725	Problem 4: Emissions from International Transport	166
	73	Solutio	ons: Public Investment Markets Policies International	100
	1.5	Agreen	ments	167
		731	Basic Principles	167
		7.3.2	Access to Electricity	168
		7.3.3	CO ₂ Emission Reduction	169
		7.3.4	Taxes and Permit Markets	169
		7.3.5	Positive Incentives	170
		7.3.6	National Policies or International Agreements	
			or Both?	171
	7.4	Proble	ms with the Solutions	172
		7.4.1	Resistance to Taxation and Public Investment	172
		7.4.2	Scarce Resources Undermining Technical Progress	
			May Limit the Market and Policy Forces: Rare Earths,	
			Silicon,?	172
		7.4.3	Policy Interference Weakens CO ₂ Reductions	173
		7.4.4	The Impact of Electricity Prices on Foreign Direct	
			Investment in the EU	174
	7.5	Fluctua	ations and Global Trade in Electric Currents	176
8	Coo	peratio	n in Energy Governance Between China, India, Brazil	
	and	the Eu	ropean Union/Germany	183
	8.1	China.		186
	8.2	India .		192
	8.3	Brazil'	's Energy Policy	195
	8.4	EU En	ergy Governance	199
	8.5	EU-Ch	nina Energy Dialogue	208
	8.6	EU-Inc	dia Energy Dialogue	218
	8.7	EU-Br	azil Energy Dialogue	226
	8.8	Recom	mendations for Future International Energy Relations	234

Contents

9	Que	stions of Distributive Justice	239
	9.1	Introductory Remarks	239
	9.2	Challenges of a Global Energy Justice	241
	9.3	The Subjects of Distribution	248
	9.4	Distributional Constellations	251
	9.5	Distribution and Participation	253
	9.6	Distribution Postulates	255
	9.7	Universal Principles and Their Global Application	259
	9.8	Questions of Justice-Oriented Rationality of Action	264
	9.9	Supranational and Internal Conflicts	269
Ap	pend	ix A: Strategic Energy Requirements	273
Ар	Appendix B: Network Actors		
Re	References		

About the Authors

Carl Friedrich Gethmann, studied philosophy at Bonn, Innsbruck and Bochum and obtained a lic. phil. in 1968 from Institutum Philosophicum Oenipontanum-Universität Innsbruck. He obtained his Dr. phil. from the Ruhr-Universität Bochum in 1971. In 1978, he completed the habilitation in philosophy at the University of Konstanz. In 2003, he received the honorary degree of doctor of philosophy (Dr. phil, h.c.) from the Humboldt-Universität Berlin. In 2009, he was appointed as an Honorary Professor at the University of Cologne. During his career, he has served as a scientific assistant (1968), Professor of Philosophy at the University of Essen (1972), a private lecturer at the University of Konstanz (1978) and as Professor for philosophy at the University of Essen (1979). He also held numerous lectures at the universities of Düsseldorf and Göttingen. Invited to join the Board of Directors at the Akademie für Technikfolgenabschätzung Baden-Württemberg and to receive a full professorship of Philosophy in 1991, he refused. He refused full professorship offers from other universities. In 1991, he accepted the offer of Full Professorship at the University of Essen. Since March 2013, Gethmann has served as Professor at the Institute for Advanced Study at the University of Siegen. Between 1996 and 2012, he was Director of the Europäische Akademie zur Erforschung von Folgen wissenschaftlich-technischer Entwicklungen GmbH, Bad Neuenahr-Ahrweiler, Germany. He has also been Member of the Academia Europaea (London), of the Berlin-Brandenburgische Akademie der Wissenschaften and of the German National Academy of Sciences Leopoldina (Deutsche Akademie der Naturforscher). Between 2000 and 2013. Professor Gethmann has served as a member of the Bioethics Commission of Rhineland-Palatinate, Germany. From 2006 to 2008, he was President of the German Association for Philosophy "Deutsche Gesellschaft für Philosophie e.V.". Since 2008, he has been a member of the German Academy of Science and Engineering (German: Deutsche Akademie der Technikwissenschaften) "Acatech." He is currently a member of the German Ethics Council (2013–2021). His main fields of research include: linguistic philosophy and philosophy of logic; phenomenology and practical philosophy, ethics of medicine, ethics of environment and technology assessment.

Georg Kamp, carried out an apprenticeship and worked as a retail salesman between 1979 and 1984. During 1987–1993, he was studying philosophy, German literature and linguistics in Bochum, Duisburg and Essen. From 1993 to 1998, he served as a scientific assistant at the Institut für Philosophie at the Universität Duisburg-Essen. In 1998, he completed his Ph.D. studies at the University of Essen with a thesis about logics in normative contexts. From 1999 to 2002, he served as a member of the scientific staff of the Europäische Akademie zur Erforschung von Folgen wissenschaftlich-technischer Entwicklungen GmbH, in Bad Neuenahr-Ahrweiler, Germany. During 2002–2005, he worked as a freelance consultant, lecturer and editor. During 2005–2006, he attended a cooperative education program on "Master of Mediation" at the Fernuniversität Hagen. During 2007–2012, he worked as an assistant lecturer in philosophy at the University of Duisburg-Essen. Since 2005, he has been active as a scientific coordinator, participant and manager of numerous interdisciplinary projects on sustainability and energy topics. Moreover, he was a staff member of the Niederrhein University of Applied Sciences (2005-2006) and of the Europäische Akademie in Bad Neuenahr-Ahrweiler (2006–2015). Since 2015, he has been a staff member of the Jülich Research Centre.

Michèle Knodt studied political sciences at Technische Universität Darmstadt (TU Darmstadt) and completed there her Master in political science in 1992. She received her Dr. phil. from the University of Mannheim in 1997 and worked as a research assistant at the Mannheim Center for European Social Research (MZES) (1997–2000). She completed her habilitation in political sciences in 2005 at the University of Mannheim. In 2000, she was appointed Assistant Professor at the University of Mannheim. In 2005, she obtained Full Professorship from TU Darmstadt, where she has been serving as Professor for Comparative Politics and European Integration to date. She was a guest professor at University of Massachusetts Boston, USA (1998), at the Institut d'Etudes Politiques de Lille, University of Lille, France (2003), at the Institute for Advanced Studies (IHS), University of Vienna, Austria (2007) and at the University of Pondicherry, India (2010). In 2011, Prof. Knodt was awarded with a Jean Monnet Chair ad personam from the European Commission. She is Director of the Jean Monnet Centre of Excellence "EU in Global Dialogue" (CEDI), Vice-Director of the Energy Center (German: Profilbereich Energiesysteme der Zukunft) at TU Darmstadt, Co-Leader of the Loewe Centre of Excellence "emergenCITY" at TU Darmstadt as well as Co-Leader of the DFG Research Training Group (GRK) KRITIS. She is currently leading the Cost Action ENTER "EU Foreign Policy Facing new Realities" (17,119). She is also President of the German European Community Studies Association (ECSA-Germany) and has been leading several international and interdisciplinary projects supported by DFG, VW foundation, EU Commission, BMBF, BMWI, among others. She published around 50 peer-reviewed journal articles, co-authored 8 monographs, co-edited 16 books and wrote more than 100 chapters in edited volumes. Her main fields of research include energy governance, EU multi-level governance, energy transition and participation.

Wolfgang Kröger studied mechanical engineering, specializing on nuclear technology, at the RWTH Aachen. He completed his diploma degree in 1972, his doctoral degree in 1974 and the habilitation in 1986. From 1974 to 1989, he worked at the Institute for Nuclear Safety Research at the German Research Center Jülich. leading research projects aimed at the development of advanced reactor concepts, and on related methods for comprehensive safety assessment. In 1990, he became Full professor of safety technology at the ETH Zurich. Simultaneously, he was appointed director of the Research Department on Nuclear Energy and Safety at the Swiss National Paul Scherrer Institut (PSI). At ETH, as director of the Laboratory of Safety Analysis, he contributed to the development of risk and vulnerability analysis methods of complex cyber-physical systems, including energy supply infrastructure. He has been approaching risk assessment and interdependence issues in a multidisciplinary, trans-sectorial way, and shaped the concept of sustainability and resilience. On his initiative, the International Risk Governance Council was established in Geneva in 2003, and he became Founding Rector. After his retirement in 2011, he was nominated Executive Director of the ETH Risk Center.

Professor Kröger is currently working as a senior scientific advisor and member of distinguished national and international committees, such as the Swiss Academy of Engineering Sciences (SATW), the International Review Group of the Japanese Nuclear Safety Institute (JANSI), and the project of "energy systems of the future" (ESYS). Senior Fellow of the Institute for Advanced Sustainability Studies (IASS) Potsdam, Distinguished Affiliated Professor at TU Munich, he is also author and co-author of numerous publications, including books.

Christian Streffer studied chemistry and biochemistry at the universities of Bonn, Tübingen, Munich, Hamburg and Freiburg. He received his Ph.D. in biochemistry in 1963. He was a postdoctoral fellow at the Department of Biochemistry, University of Oxford. In 1971, he was appointed Professor for Radiobiology at the University of Freiburg, Germany. From 1974 to 1999, he served as a full Professor for medical radiobiology at the University of Essen. During 1988-1992, he was Vice-Chancellor of the same university and received the title of Emeritus in 1999. He was Guest Professor at the University of Rochester, N.Y., USA, in 1985, and at the University of Kyoto, Japan, in 2000. As an Honorary Member of several scientific societies, he received an Honorary Doctor from the University of Kyoto in 1995. Professor Streffer is a member of the Institute for Science and Ethics of the University of Bonn and an Emeritus member of the International Commission on Radiological Protection (ICRP). He received several scientific awards, such as: the Roentgen Plakette (English: Roentgen Medal) by the City of Remscheid (1985), a prize awarded to people who have made great contributions to the progress and usage of X-ray in science and practice; the Bacq-Alexander Award of the European Society for Radiation Biology in 1996; the Sievert Award of the International Radiation Protection Association (IRPA) in 2008; and the Distinguished Service Award of the Radiation Research Society, USA, in 2009.

Professor Streffer's main research interests include: radiation risk, especially during the prenatal development of mammals; genomic instability after radiation exposure; combined effects of radiation and chemical substances; and experimental radiotherapy of tumors and especially individualization of cancer therapy by radiation.

Hans von Storch is Director Emeritus of the Institute of Coastal Research of the Helmholtz Zentrum Geesthacht (HZG), Professor at the University of Hamburg and Guest Professor at the Ocean University of China (Qingdao). From 1987 to 1995, he was Senior Scientist and leader of the Statistical Analysis and Modelling Group at the Max Planck Institute for Meteorology. He also served as Director of the Institute of Coastal Research. His research interests included climate diagnostics and statistical climatology, and regional climate change and its transdisciplinary context. He published twenty books, including "Statistical Analysis in Climate Research," co-authored with Francis Zwiers and "Die Klimafalle" (English: The Climate Trap), co-authored with the ethnologist Werner Krauss. He also authored numerous articles. Editor-in-chief of the Oxford Research Encyclopedia of Climate Science, Oxford University Press, he is also a member of a number of editorial and advisory boards. He was the lead author of Working Group I of the Third Assessment Report and of Working Group II of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) and chaired the efforts for a climate change assessment for the Baltic Sea Catchment (BACC II). Professor Hans von Storch is also a foreign member of the Polish Academy of Sciences and holds an honorary doctorate from the University of Göteborg. The significance of his work was also recognized with the Order of Merit of the Federal Republic of Germany in 2019.

Thomas Ziesemer has been serving as Associate Professor of Economics at Maastricht University, the Netherlands, since December 1996. After studying economics at the universities of Kiel (1974–1975) and Regensburg (1975–1978), in Germany, he was employed at the University of Regensburg (1982–1989), where he completed his doctoral dissertation on the topic of "Economic Theory of Underdevelopment" in 1985. Starting in December 1989, he has been successively appointed Assistant Professor of International Economics, Associate Professor of Microeconomics and Associate Professor of Economics, from the School of Business and Economics at Maastricht University. In November 1996, he completed his "Habilitation" at the Freie Universitaet Berlin. He also serves as Senior Researcher at United Nations University—Maastricht Economic and Social Research Institute on Innovation and Technology UNU-MERIT. His fields of interest include development, international and environmental economics, growth and technical change.

Fig. 4.1	Global Energy and Population (brown line): history of energy transitions for almost 200 years (Mearns 2014)	24
Fig. 4.2	Primary energy use by sector. CO ₂ emissions by sector.	24
118. 1.2	and final energy by fuel in 2011 (IEA 2014).	25
Fig. 4.3	Total annual anthropogenic greenhouse gas (GHG) emissions	
0	by groups of gases 1970–2010 (IPCC 2014b)	26
Fig. 4.4	Number and proportion of people without access to electricity	
U	in 2010 and 2050 in both scenarios; the size of the circles	
	is proportional to the population (PSI 2013)	26
Fig. 4.5	Regional primary energy demand profiles in the 2 °C scenario	
-	(IEA 2015a)	27
Fig. 4.6	EU Decarbonization scenarios—2030 and 2050 range of fuel	
	shares in primary energy consumption compared with 2005	
	outcome (in %) (European Commission 2012)	28
Fig. 4.7	Greenhouse gas (GHG) emissions of selected technologies	
	(Hirschberg and Burgherr 2015). CC stands for combined	
	cycle, CCS for carbon capture and sequestration, PV for	
	photovoltaic, CHP for combined heat and power	29
Fig. 4.8	Production of medium and high-level radioactive wastes	
	and special chemical wastes stored in underground	
	repositories (Hirschberg and Burgherr 2015)	30
Fig. 4.9	Electricity generation costs of selected technologies	
	(Hirschberg and Burgherr 2015)	30
Fig. 4.10	Health effects of normal operation in terms of mortality	
	measured in years of life lost (YOLL) per GWh	
	(Hirschberg and Burgherr 2015)	31
Fig. 4.11	Expected fatality rates due to severe accidents and maximum	
	consequences per accident (Hirschberg and Burgherr 2015)	31

Fig. 4.12	Chart of the multi-criteria analysis process (subjective	
	elements in red and objective steps in blue)	
	(Hirschberg and Burgherr 2015)	32
Fig. 4.13	Average indicator weights for technology assessment,	
	obtained via online survey from stakeholders engaged	
	in the European energy sector (not representative of the	
	overall population) (Hirschberg and Burgherr 2015)	33
Fig. 4.14	Average MCDA ranking of future (year 2050) technologies	
	compared with total costs. The figure shows a subset of the 26	
	subsystems evaluated. GHG low/high values represent low	
	and high estimates of damage costs due to climate capture and	
	storage; MC, molten carbonate; PV, photovoltaics	
	(Hirschberg and Burgherr 2015)	34
Fig. 4.15	Intensity at direct solar radiation (solar spectrum) as a function	
	of wavelength. https://commons.wikimedia.org/wiki/File:	
	Sonne_Strahlungsintensitaet.svg. The original uploader was	
	Degreen at German Wikipedia. Improved Baba66 (opt	
	Perhelion) on request; En. translation Locusta Fr. translation	
	Eric Bajart Nl. translation BoH (https://commons.wikimedia.	
	org/wiki/File:Sonne_Strahlungsintensitaet.svg), "Sonne	
	Strahlungsintensitaet", https://creativecommons.	
	org/licenses/by-sa/2.0/de/legalcode	43
Fig. 4.16	World Map of Global Horizontal Irradiation. Period	
	1994–2015. © 2017 The World Bank, solar resource data:	
	Solargis. URL: https://globalsolaratlas.info/download/world	
	(accessed 13-Dec-2019)	44
Fig. 4.17	World Map of Direct Normal Irradiation. Period 1994–2015.	
	© 2017 The World Bank, solar resource data: Solargis. URL:	
	https://globalsolaratlas.info/download/world (accessed	
	13-Dec-2019)	45
Fig. 4.18	Schematics of the four solar concentrating technologies	
	currently applied at commercial concentrated solar power	
	(CSP) plants. © Greenpeace International. https://energypedia.	
	info/wiki/Concentrating_Solar_Power_(CSP)Technology	
F : 4.40	(accessed 13-Dec-2019)	46
Fig. 4.19	Evolution of the use of CSP. The next generation of	
	technologies allows surpassing 1000 °C and enables higher	
	efficiencies via Brayton and combined cycles, as well as	
	the thermochemical production of solar fuels	40
F ' 4.00	(Komero and Steinfeld 2012)	48
Fig. 4.20	Structure of a (distributed) photovoltaic system	49
F1g. 4.21	worldwide installed PV capacity (2004–2014)	40
	(KEN21 2015)	49

Fig. 4.22	Structure and absorbed spectrum of a multijunction cell. Fh-ISE; Ncouniot (https://commons.wikimedia.org/wiki/File:	
	StructureMJetspectre.png), "StructureMJetspectre", https://	
	creativecommons.org/licenses/by-sa/3.0/legalcode	53
Fig. 4.23	Outlook for regional electricity production (TWh)	
U	and installed capacity from solar PV (IEA 2014a: 60)	55
Fig. 4.24	Top 10 cumulative capacity as of December 2015	
0	(GWEC 2016)	56
Fig. 4.25	Development in size and power of wind turbines, 1990–2016.	
0	© energytransition.org. URL: http://wiki.energytransition.	
	org/the-book/technology-for-sustainability/wind-power/	
	(accessed: 13-Dec-2019)	58
Fig. 4.26	Schematic view of a hydropower plant with Francis turbine.	
0	© Tennessee Valley Authority: SVG version by Tomia	
	(https://commons.wikimedia.org/wiki/File:	
	Hydroelectric dam.svg), "Hydroelectric dam", https://	
	creativecommons.org/licenses/by-sa/3.0/legalcode	62
Fig. 4.27	Structure of a turbine. © U.S. Army Corps of Engineers	
0	(Vector image: Gothika, Edit: Bammesk) (https://commons.	
	wikimedia.org/wiki/File:Water turbine - edit1.svg), "Water	
	turbine—edit1", marked as public domain, more details	
	on Wikimedia Commons: https://commons.wikimedia.	
	org/wiki/Template:PD-US	63
Fig. 4.28	Bioenergy conversion pathways (REN21 2015)	64
Fig. 4.29	Shares of biomass in total final energy consumption	
U	and in final energy consumption by end-use sector in 2014	
	(REN21 2016)	64
Fig. 4.30	Overview of current status of conversion and combustion	
	technologies (IEA 2012)	66
Fig. 4.31	Coal-fired steam power plant, schematic	
-	(Bennauer et al. 2009)	68
Fig. 4.32	Gas and steam turbine power plants (CCGT),	
-	schematic (Bennauer et al. 2009)	69
Fig. 4.33	Schematic representation of conventional (left)	
	and unconventional deposits (right). MagentaGreen	
	(https://commons.wikimedia.org/wiki/File:(Non)	
	_Conventional_Deposits.svg), https://creativecommons.	
	org/licenses/by-sa/4.0/legalcode	70
Fig. 4.34	Schematic representation of the potential environmental	
	risks of a well. Mikenorton (https://commons.wikimedia.	
	org/wiki/File:HydroFrac2.svg), "HydroFrac2", https://	
	creativecommons.org/licenses/by-sa/3.0/legalcode	71

Fig. 4.35	Principle of geothermal use from hot, dense rock (HDR).	
	"Signer Dragehild" http://www.signers.com/dom/signer	
	Stemens Pressedild http://www.stemens.com/defivative	
	work: FischA (talk) Geothermie_Prinzip01.jpg: Stemens	
	Pressebild http://www.siemens.com/derivative/work:	
	Y trottier (talk) (https://commons.wikimedia.org/wiki/File:	
	EGS_diagram.svg), "EGS diagram", https://creativecommons.	70
F ' 4 2 C	org/licenses/by-sa/3.0/legalcode	72
Fig. 4.36	Schematic representation of the terrestrial and geological	
	storage of CO_2 emissions from a fossil power plant. LeJean	
	Hardin and Jamie Payne derivative work: Jarl Arntzen (talk)	
	(https://commons.wikimedia.org/wiki/File:	
	Carbon_sequestration-2009-10-07.svg), "Carbon	
	sequestration-2009-10-07", https://creativecommons.	
	org/licenses/by-sa/3.0/legalcode	73
Fig. 4.37	Dependence of specific CO_2 emissions on electrical efficiency	
	in power supply with various fossil fuels (VDI 2013)	74
Fig. 4.38	Subdivision of the different process routes (VDI 2013)	74
Fig. 4.39	Nuclear power plants worldwide, status 31.12.2018	
	(Nuklearforum Schweiz 2019)	77
Fig. 4.40	Concept approaches for the further development of light water	
	reactors (LWR) (Prasser 2014a)	78
Fig. 4.41	Containment design of the EPR with core catcher and active	
	cooling system. Areva NP (https://commons.wikimedia.	
	org/wiki/File:CHRS_EPR_catcher_flooding.jpg), "CHRS	
	EPR catcher flooding", marked as public domain, more details	
	on Wikimedia Commons: https://commons.wikimedia.	
	org/wiki/Template:PD-shape	79
Fig. 4.42	Passive systems for reactor pressure relief, core flooding	
	and containment cooling (Prasser 2014a)	80
Fig. 4.43	Schema of very-high temperature reactor (VHTR)	80
Fig. 4.44	Schema of a molten salt reactor (MSR)	81
Fig. 4.45	Schema of a sodium-cooled fast reactor (SFR)	81
Fig. 4.46	Schema of a super-critical water-cooled reactor (SCWR)	82
Fig. 4.47	Schema of a gas-cooled fast reactor (GFR)	83
Fig. 4.48	Schema of a lead-cooled fast reactor (LFR)	84
Fig. 4.49	Worldwide development of small modular reactors	
	(following IAEO: Advances in Small Modular Reactors	
	Technology Developments, September 2014, updated)	85
Fig. 4.50	Fuel assemblies for helium-cooled high-temperature	
	reactors	87
Fig. 4.51	Design of a salt smelting reactor in open pool design	
	with continuous discharge of gaseous fission products	
	and fuel preparation close to the reactor	88

Fig. 4.52	Nuclide map with uranium-plutonium and thorium- uranium-233 cycle	89
Fig 4 53	Principle of an ADS ("Rubbiatron") A strong proton beam	07
1 19. 1.55	is fired at a liquid metal target consisting of heavy elements.	
	The spallation reaction produces about 20 high-energy	
	neutrons per proton. They trigger fissions in the surrounding	
	fuel elements, whereby actinide isotopes that cannot	
	be fissioned with thermal neutrons are also burnt.	
	The surrounding reactor core increases the neutron flux	
	by a factor of 20–50, i.e. the majority of available neutrons	
	are fast fission neutrons (Yan et al. 2017)	90
Fig. 4.54	Schematic representation of the fusion of tritium and	
	deuterium: the kinetic energy of the neutron (80%) is used	
	for energy generation (notential electricity generation), the	
	charged helium nucleus (α -particles) remains in the plasma	
	and heats the plasma with its kinetic energy. Wykis contribs	
	(https://commons.wikimedia.org/wiki/File:Deuterium-	
	tritium fusion.svg), "Deuterium-tritium fusion", marked	
	as public domain, more details on Wikimedia Commons:	
	https://commons.wikimedia.org/wiki/Template:PD-self	93
Fig. 4.55	Section through the torus-shaped plasma vessel of ITER	
0	with an outer radius of 6.2 m and an inner radius of 2 m and a	
	height of 6.7 m (with a person as scale in the lower right-hand	
	corner): the volume is 837 m^3 , which allows a thermal fusion	
	power of 500 MW at a density of 1020 particles per m ³ .	
	The deuterium-tritium mixture is inductively heated to over	
	150 million °C and is to form a stable plasma which is	
	generated by strong magnetic fields from the wall using	
	superconducting coils. No machine-readable author provided.	
	KentZilla assumed (based on copyright claims).	
	(https://commons.wikimedia.org/wiki/File:	
	ITER-img 0237 II.jpg), "ITER-img 0237 II", https://	
	creativecommons.org/licenses/by-sa/3.0/legalcode	94
Fig. 4.56	Phases of the ITER project in Cadarache, France. https://	
0	www.iter.org/proj/inafewlines#6 (accessed 13-Dec-2019)	95
Fig. 4.57	Schematic representation of a fusion power plant according	
C	to the stellarator concept	96
Fig. 4.58	Comparison of storage technologies (Sterner and	
	Stadler 2018)	97
Fig. 4.59	Diagram of an adiabatic air reservoir (AA-CAES)	
C	(Meyer 2007)	98

Fig. 4.60	Integrative renewable power-methane concept	
D ' 1 (1	(following Sterner 2009)	99
Fig. 4.61	Vision of a European electricity grid with a high share	102
F '. 5 1	of renewable energies (Greenpeace 2011)	103
F1g. 5.1	Lotal deaths attributable to nousehold air pollution in 2012,	111
E. 50	Appused region (WHO 2014)	111
Fig. 3.2	in India (for those with access) 2013 (IEA 2016a India)	111
Eig 52	Total electricity generation in India by fuel Note "Other	111
Fig. 5.5	renewables" includes solar DV and wind	
	(IEA 2016c India)	112
Fig 54	Global anthropogenic energy related greenhouse gas	112
1 lg. J.+	emissions by type Notes " CO_2 – carbon dioxide	
	CH_{1} = methane $N_{2}O$ = nitrous oxide CH_{1} has a global	
	warming potential of $28-30$ times that of CO_2 while the global	
	warming potential of N_2O is 265 times higher than that	
	of CO ₂ " (IEA 2016a, World)	112
Fig. 5.5	Global energy-related CO_2 emissions by sector and region.	
8	<i>Notes</i> "Other' includes agriculture, non-energy use	
	(except petrochemical feedstock), oil and gas extraction	
	and energy transformation. International bunkers are included	
	in the transport sector at the global level but excluded	
	from the regional data" (IEA 2016a, World)	113
Fig. 5.6	Change in energy-related CO ₂ emissions by selected region,	
-	2013–2014 (IEA 2015)	114
Fig. 5.7	Premature deaths of coal-fired power plants in the respective	
	countries where the power plants are located (Europe's	
	Cloud 2016)	120
Fig. 5.8	Categories of dose response relationships, a dose response	
	relationship with threshold dose, (non-stochastic-	
	deterministic—effects), b dose response relationship without	
	threshold dose (stochastic effects such as causation of cancer	
-	and genetic effects) (ICRP 1991; Streffer et al. 2004)	123
Fig. 5.9	Deviation of cancer mortalities from the average (‰)	
	in 1996–2005 (SEER-USA) and radiation effect (ICRP).	
	The radiation effect $<100 \text{ mSv}$ is covered within the "noise"	105
E. 5.10	of the "spontaneous" cancers (Streffer 2009)	125
F1g. 5.10	DINA-damage by ionizing radiation: breaks of the	
	Proof or Cluster of DCP rlue SCP) and loss or demose	
	of DNA bases (Straffer 2000)	126
	of DINA-bases (Sheller 2009) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	120

Fig. 5.11	Permanent tumor cell culture MeWo—DNA-repair capacity after neutron and X-irradiation. DNA-repair is much less after	
Fig. 5.12	high LET than low LET radiation (Streffer 2009) DNA repair kinetics in human lymphocytes after irradiation	127
8	and subsequent recovery up to 180 min. DNA damage was	
	measured at different times after irradiation. DNA-repair is	
	considerably reduced by genetic disposition in "AT"-patient	
	and in patient with "severe side effects" (Streffer et al. 2004;	
	Streffer 2009)	127
Fig. 5.13	Dose response curves obtained by extrapolation of measured	
	values. Linear, supralmear and linear-square extrapolation and	
	assumption of a biopositive effect at very small radiation	100
Ex. 5.14	doses (normesis) (Streffer et al. 2004; Streffer 2009)	128
Fig. 5.14	and technical) sources as well as from natural sources	
	in Germany (BfS 2016)	131
Fig 5.15	Number of cases of thyroid cancer in children and adolescents	151
119. 5.15	(age groups: $0-6$, $7-14$ and $15-18$ years) at the time	
	of exposure in Belarus in the years 1986–2001	
	(Kenigsberg 2003)	133
Fig. 6.1	Example of an inhomogeneous climate series: Ten-year	
	frequency of storms (max wind forces greater than/equal	
	to 8 Beaufort) in Hamburg's weather statistics. After Heiner	
	Schmidt (cf. Stehr and von Storch 2010)	145
Fig. 6.2	Development of surface temperature in different regions of the	
	world, across all land and sea areas and globally, as proposed	
	by models that take into account the effect of only natural	
	factors (sun, volcanoes; blue) or the effect of anthropogenic	
	shown above are shown as a black line. 10 year means are	
	shown to reduce the effect of internal variability	
	(IPCC AR4)	147
Fig. 6.3	SPM-10 from IPCC (2014a: 28): Global mean air temperature	117
1.8. 010	increase at ground level as a function of cumulative global	
	carbon dioxide emissions. Results of ensembles of RCP	
	scenarios (see Sect. 6.5) up to 2100 are marked by colored	
	lines and dots. Results for the past ("historical") period (1860-	
	2010) are marked as a thick black line. The colored tubes	
	represent the range of variation in the RCP scenarios. The	
	ensemble of scenarios representing a 1% increase in CO ₂	
	concentrations is represented by a black line and a grey tube.	
	For further details see (IPCC 2014a)	150

Fig. 6.4	Estimates of possible future emission developments that are compatible with the Paris target of a maximum warming of	
	1.5-2 °C. The estimate uses the budget approach whereby	
	600 Gt of emissions are permitted in one case, and 800 Gt in a	
	second case. Here it is assumed that after a year with	
	maximum emissions in 2016, 2020 and 2025 a kind	
	of "emergency braking" will be triggered	
	(Figueres et al. 2017)	151
Fig 65	Sequential constructions of SRES scenarios (GDP – gross	151
11g. 0.5	national product: BC – carbon black: OC – organic carbon:	
	VOCs = volatile hydrocarbons: Moss et al. 2010; 752)	153
Fig 66	Parallel construction of RCP scenarios (Representative	155
1 lg. 0.0	Concentration Pathways: Moss et al. 2010: 752)	153
Fig 71	Countries with higher gross domestic product per capita for	155
116. 7.1	various years have a higher percentage of the population with	
	access to electricity. <i>Source</i> Authors' calculation	
	Observations of countries with Gross Domestic Product per	
	capita above \$10,000 are eliminated: method: nearest	
	neighbor fit	160
Fig 7.2	A higher gross product of the world leads to higher emissions	100
1 19. 7.2	Source World Development Indicators authors' calculation	161
Fig 73	Over time CO ₂ emissions of the world (WLD) USA Brazil	101
1 lg. 7.5	India Russia China South Africa (ZAF) and the OECD	
	(OED) increase, but not for Germany (DEU), and the	
	European Union (EUU). Source World Development	
	Indicators, CO_2 measured in kt. Natural logarithm	
	of emissions (not per capita): the slope is the growth rate	162
Fig. 7.4	CO_2 development for countries with high share of nuclear or	
	hydro power. <i>Source</i> World Development Indicators. CO ₂	
	measured in kt. Natural logarithm of emissions (not per	
	capita); the slope is the growth rate	163
Fig. 7.5	The share of alternatives and nuclear energy, AN, as a percent	
C	of world total energy use first increases in S-shaped form	
	and then decreases since 2001. Source World Development	
	Indicators	165
Fig. 7.6	The percentage share of world electricity production from	
	hydro power (ELCHYDRO) falls to almost that of nuclear	
	(ELCNUCL01), which first increases and then decreases;	
	renewables without hydro power (ELCRNWX) is lowest	
	but increasing. Source World Development Indicators	165

Fig. 8.1	China's energy consumption (2018) (BP Statistical Review of World Energy 2019)	187
Fig. 8.2	Chinese Energy Demand in million tons of oil equivalent	107
	(Mtoe, total primary energy demand) according to the New	
	Policy Scenario of the IEA (2016, 2017), (total primary	
	energy demand (TPED) is equivalent to power generation plus	
	other energy sectors excluding electricity and heat). (The New	
	Policies Scenario (NPS) represents the newest Scenario	
	by IEA. It "is the central scenario of this Outlook. In addition	
	to incorporating the policies and measures that affect energy	
	markets and that had been adopted as of mid-2016, it also	
	takes into account, in full or in part, the aims, targets and	
	intentions that have been announced, even if these have yet to	
	be legislated or fully implemented. The scenario includes the	
	greenhouse-gas (GHG) and energy-related targets of the	
	Nationally Determined Contributions (NDCs) pleaged under	100
E:- 0.2	In dia's a superstant (IEA 2016: 627)) (2017)	189
F1g. 8.3	of World Energy 2010)	102
Fig 84	Indian Energy Demand in million tons of oil equivalent	192
11g. 0.4	(Mtoe, total primary energy demand) according to 2040	
	Scenario IEA (2016, 2017) (total primary energy demand	
	(TPED) is equivalent to power generation plus other energy	
	sectors excluding electricity and heat)	193
Fig. 8.5	Brazil's energy consumption (2018) (BP Statistical Review	175
1 19. 0.0	of World Energy 2019)	197
Fig. 8.6	Brazilian Energy Demand in million tons of oil equivalent	
0	(Mtoe, total primary energy demand) according to 2040	
	Scenario IEA (2016, 2017), (total primary energy demand	
	(TPED) is equivalent to power generation plus other energy	
	sectors excluding electricity and heat)	198
Fig. 8.7	European Actors involved in the bilateral Energy dialogue	
-	with BICS (EnergyGov 2014)	204
Fig. 8.8	Importance network for China-EU energy cooperation;	
	importance data: unilateral (thin ties) and reciprocal relations	
	(bold ties). (EnergyGov 2014; Piefer et al. 2015a: 41;	
	for actors, please see Table B.1 in Appendix B)	211
Fig. 8.9	Importance and exchange network block matrices	
	(China-EU). $1 =$ Chinese public actors, $2 =$ Chinese non-state	
	actors, $3 = EU$ public, $4 = EU$ non-state (EnergyGov 2014;	
	Piefer et al. 2015a: 43)	213

Fig. 8.10	Perception of the EU's properties as a dialogue partner in the EU-China energy dialogue, means of all answers;	
	1 = "Strongly disagree"; 5 = "Strongly agree"	
	(EnergyGov 2014)	214
Fig. 8.11	Perception of China's properties as a dialogue partner	
	in the EU-China energy dialogue, means of all answers;	
	1 = "Strongly disagree"; 5 = "Strongly agree"	
	(EnergyGov 2014)	215
Fig. 8.12	Importance and exchange network block matrices (India-EU),	
	1 = Indian public actors, $2 =$ Indian non-state actors,	
	3 = EU public, $4 = EU$ non-state (EnergyGov 2014;	
	Piefer et al. 2015a: 49)	221
Fig. 8.13	Perception of India's properties as a dialogue partner	
	in the EU-India energy dialogue, means of all answers;	
	1 = "Strongly disagree"; 5 = "Strongly agree"	
	(EnergyGov 2014)	223
Fig. 8.14	Perception of the EU's properties as a dialogue partner	
	in the EU-India energy dialogue, means of all answers;	
	1 = "Strongly disagree"; 5 = "Strongly agree"	
	(EnergyGov 2014; Knodt et al. 2017: 222)	224
Fig. 8.15	Importance network for Brazil-EU energy cooperation,	
	importance data: unilateral (thin ties) and reciprocal relations	
	(bold ties) (EnergyGov 2014; Piefer et al. 2015a: 35;	
	for actors please see Table B.3 in Appendix B)	227
Fig. 8.16	Importance and exchange network block matrices	
	(Brazil-EU), 1 = Brazilian public actors, 2 = Brazilian	
	non-state actors, $3 = EU$ public, $4 = EU$ non-state	
	(EnergyGov 2014; Piefer et al. 2015a: 38)	230
Fig. 8.17	Perception of Brazil's properties as a dialogue partner;	
	means of all answers; 1 = "Strongly disagree";	
	5 = "Strongly agree" (EnergyGov 2014)	231
Fig. 8.18	Perception of the EU's properties as a dialogue partner;	
	means of all answers; 1 = "Strongly disagree";	
	5 = "Strongly agree" (EnergyGov 2014)	232
Fig. A.1	Conversion efficiencies (under standard condition) of best	
	research solar cells worldwide for various photovoltaic	
	technologies since 1976 [https://www.nrel.	
	gov/pv/cell-efficiency.html (accessed 13-Dec-2019)]	298
Fig. A.2	Efficiencies of different electricity storage systems	
	(Mahnke et al. 2014)	299
Fig. A.3	Capacities of different accumulators (Mahnke et al. 2014)	299

xxiv

List of Tables

Table 4.1	Summary of progress according to 2 °C scenario (2DS) (IEA 2016b)	37
Table 4.2	Interpretation of the results of the comparative scenario study (excerpt from Deutsch et al. 2011)	39
Table 4.3	Development estimated in selected technologies and sectors (Deutsch et al. 2011)	40
Table 4.4	Comparison of grid-development estimated in the studies (Deutsch et al. 2011)	41
Table 4.5	Main electricity and heat technologies available in the alternative scenarios (Deutsch et al. 2011)	42
Table 4.6	Characteristics of CSP systems	
	(Romero and Steinfeld 2012)	47
Table 4.7	List of key features of wafer-based and thin film cells	51
Table 4.8	Correlation between volcanic activity and theoretically usable geothermal energy in volcanic regions	
	(Stefansson 2005)	60
Table 4.9	Ten of the largest hydropower producers in 2019	61
Table 4.10	Typical characteristics of gas turbines and combined cycle power plants (VDI 2013).	69
Table 4.11	Characteristics of the six Generation IV Reactor Systems (Kelly 2014)	84
Table 4.12	Characteristic data for storage technologies with higher performance (Mahnke et al. 2014)	100
Table 5.1	Surveys of the Techa River Population	129
Table 5.2	Releases of radionuclides and the health damage observed	122
	to date for all three major reactor accidents.	132
Table 5.3	Exposures in Germany from medical procedures, at working places and to the population in the environment	
	(BfS: Bundesamt für Strahlenschutz, Germany)	135
Table 6.1	The four Representative Concentration Pathways (RCPs)	154

Table 7.1	Germany's exports of electric current 2007-2016	
	in \$1,000	178
Table 7.2	Germany's imports of electric current 2007–2016	
	in \$1,000	179
Table 7.3	Germany's trade surplus of electric current 2007–2016	
	in \$1,000	180
Table 8.1	The most important energy organizations (based on	
	Westphal 2015; Lesage et al. 2010, own modifications and	
	further additions)	185
Table 8.2	Top five actors in China-EU energy dialogue	
	(EnergyGov 2014; Piefer et al. 2015a: 41)	212
Table 8.3	Top five actors in Brazil-EU energy dialogue	
	(EnergyGov 2014; Piefer et al. 2015a: 36)	228
Table A.1	Environmental criteria and indicators established	
	in the NEEDS project (Hirschberger and Burgherr 2015)	274
Table A.2	Economics criteria and indicators established in the NEEDS	
	project (Hirschberger and Burgherr 2015)	276
Table A.3	Social criteria and indicators established in the NEEDS	
	project (Hirschberger and Burgherr 2015)	278
Table A.4	NEEDS technologies for year 2050 (Hirschberger and	
	Burgherr 2015)	280
Table A.5	Tendencies in the development of main variables in the	
	scenario studies (Deutsch et al. 2011)	291
Table A.6	Planned and realised geothermal plants (electricity	
	generation) in Central Europe	293
Table A.7	Hydropower plants with rated outputs above 5000 MW	297
Table B.1	Network actors China-EU energy dialogue	302
Table B.2	Network actors India-EU energy dialogue	304
Table B.3	Network actors Brazil-EU energy dialogue	305

Chapter 1 Introduction

1.1 Initial Situation

A secure and at the same time cost-effective, environmentally friendly and resourcesaving energy supply is an important prerequisite both for the further development of the countries of Asia, South America and Africa and for maintaining living conditions in the industrialized countries. This entails a wide range of national and regional design tasks, but also those which, in view of the competition for resources on a globalized market and in view of the consequences of the release of emissions during the production and consumption of useful energy, can only be adequately considered in the light of global developments. At the same time, there is a need to broaden the view of more complex interrelationships that go far beyond energy supply issues. For example, the provision of energy in dry zones close to the coast allows the extraction of fresh water, which can be used for agricultural purposes and to develop settlement areas. This is expected to have an impact on social, economic, political, and demographic developments, which may have a direct impact on living conditions in industrialized countries in the form of a reduction in migration movements and an increase in trade activities. At the same time, the type and extent of energy production and use have an impact on climatic developments, which, according to the current state of knowledge, will in turn influence the expansion and distribution of dry zones, among other things. This means that national energy policy decisions and measures, if they are to be taken not just for the sake of short-term effects but prudently and responsibly, must be based on a foundation that goes far beyond the technical interrelationships and the respective requirements of regional markets and incorporates ideas of longer-term global development.

If these challenges are to be met, then both the supranational steering possibilities and the specific local conditions, the disparate goals and the diversity of options, the unequal distribution of potential (e.g., technical, financial, social and cognitive resources), and the unequal distribution of opportunities and risks must be considered. For this purpose, scientific input on a broad interdisciplinary basis

[©] Springer Nature Switzerland AG 2020

C. F. Gethmann et al., *Global Energy Supply and Emissions*, Ethics of Science and Technology Assessment 47, https://doi.org/10.1007/978-3-030-55355-5_1

is indispensable, which should be carried out from a scientific-technical, political, social science, economic and philosophical perspective on the basis of representative selected regions (China, India, Brazil, and Europe), especially in the fields of science, technology, politics, economics, and philosophy. For this, the following outline will be followed: (i) critically reconstructing the target systems and the technical, economic, ecological, and social conditions for achieving the targets, (ii) developing and refining criteria, benchmarks and methods for responsible energy policy decisions and their effective implementation, and (iii) developing cross-disciplinary, coordinated, sustainable, and promising recommendations for action for a prudent and long-term energy policy from the perspective of all disciplines involved.

The development of viable strategies for a sustainable energy supply raises not only questions of technical feasibility and economic viability but also manifold questions of ethical justifiability and political responsibility, which extend far beyond national borders and the present day and can often only be adequately answered on a global scale and in an intergenerational long-term perspective.

1.2 Energy Policy and Climate Targets

The International Energy Agency (IEA) puts the total volume of energy-related CO_2 emissions for 2018 at 33.1 Gt and gives a clear indication of the relevance of energy policy and energy management decisions for climate change, which can only be adequately considered a global phenomenon.¹

This represents an increase of more than 40% over the 23.2 Gt reported for the year 2000, and since 2005 emissions have risen by more than 22% despite the economic downturn. The IEA has calculated an increase of 1.8% for 2018 alone. According to the UNEP "Temperature Briefing" (2010) "there is a medium likelihood to stay within the 2-degree limit if the following conditions are met:

- Global emissions peak sometime between 2015 and 2021.
- Global emissions in 2020 are approximately 40.0–48.3 Gt CO₂ eq/yr.
- By 2050 global emissions decrease by 48–72% relative to 2000".

According to the calculations of the Intergovernmental Panel on Climate Change (IPCC), in order to meet the 1.5 °C target set by the Paris Agreement, which came into force in 2016, there would even have to be negative emissions.² The resulting

¹"Global energy-related CO₂ emissions grew 1.7% in 2018 to reach a historic high of 33.1 Gt CO₂" https://www.iea.org/reports/global-energy-co2-status-report-2019/emissions#abs tract (accessed 13-Dec-2019).

²"All pathways that limit global warming to 1.5 °C with limited or no overshoot project the use of carbon dioxide removal (CDR) on the order of 100–1000 GtCO₂ over the twenty-first century. CDR would be used to compensate for residual emissions and, in most cases, achieve net negative emissions to return global warming to 1.5 °C following a peak (high confidence). CDR deployment of several hundreds of GtCO₂ is subject to multiple feasibility and sustainability constraints (high confidence). (IPCC 2018).

problems become even more apparent when comparing the developments in OECD countries and countries with accelerated catchup developments such as China, Brazil, or India: For the year 2019, the OECD countries' share of energy-related emissions is 35%.³ However, they contribute only 25% to the rate of increase, with increases being recorded above all in non-OECD countries. Although their inhabitants produce only a fraction of the per capita emissions for which OECD citizens are responsible (10 t/a compared with 5.8 t/a in China, 1.9 t/a in Brazil or 1.6 t/a in India), in view of the rapidly growing populations and the accelerated mechanization of these countries, compliance with the projected targets will not be possible, or not only through abatement strategies within the OECD countries. Rather, energy policy measures should also be geared towards the development, testing, and refinement of options that offer competitive and attractive offers in the developing countries to achieve their prosperity goals while at the same time reducing climatic and other risks.

1.3 Energy Management and Energy Technologies

The choice of technologies for energy production and use has a central influence on climate development. At the same time, this raises questions of environmental protection and air pollution control, questions of resource availability and fair distribution, and elementary questions of generating and maintaining prosperity and development. Questions of safe and efficient energy supply, as they arise for modern civilizations, are particularly determined by over-complex decision situations. Even if the first warning cries raised in the 1970s turned out to be too premature and dramatic, there is no denying that in the long term, there will be a gradual shortage of essential resources, be it oil or rare earths required for the development of highly efficient turbines. At the same time, the world population has grown from about 1.6 billion people (around 1900) to 7.6 billion in little more than a hundred years—not least because of the progress made in many areas of life. The projections of the UN (Department of Economic and Social Affairs, 2017 revision) fluctuate between a shift of about 9.6 billion by the end of the century and a further increase in the world population to 13.2 by 2100 and a further increase beyond that.

The course of development will also depend to a large extent on the availability of energy: A secure and cheap availability of energy is necessary to turn the expected billions of people into producers who can provide for themselves and their families with what they produce and buy. Countries such as China, India or Brazil have in some cases made breathtaking developments here in recent decades and have caught up with the Western industrial nations, but have also increased the pressure on the demand for energy sources and contributed to the further scarcity of resources, to the increased volume of emissions and thus to an intensification of environmental problems.

³http://www.oecd.org/environment/environment-at-a-glance/Climate-Change-Archive-December-2019.pdfmber-2019.pdf (accessed 13-Dec-2019).