Gabriella Panuccio · Miguel Rocha · Florentino Fdez-Riverola · Mohd Saberi Mohamad · Roberto Casado-Vara *Editors*

Practical Applications of Computational Biology & Bioinformatics, 14th International Conference (PACBB 2020)

Advances in Intelligent Systems and Computing

Volume 1240

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Advisory Editors

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India

Rafael Bello Perez, Faculty of Mathematics, Physics and Computing, Universidad Central de Las Villas, Santa Clara, Cuba

Emilio S. Corchado, University of Salamanca, Salamanca, Spain

Hani Hagras, School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK

László T. Kóczy, Department of Automation, Széchenyi István University, Gyor, Hungary

Vladik Kreinovich, Department of Computer Science, University of Texas at El Paso, El Paso, TX, USA

Chin-Teng Lin, Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan

Jie Lu, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia

Patricia Melin, Graduate Program of Computer Science, Tijuana Institute of Technology, Tijuana, Mexico

Nadia Nedjah, Department of Electronics Engineering, University of Rio de Janeiro, Rio de Janeiro, Brazil

Ngoc Thanh Nguyen, Faculty of Computer Science and Management, Wrocław University of Technology, Wrocław, Poland

Jun Wang, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong

The series "Advances in Intelligent Systems and Computing" contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent systems and computing such as: computational intelligence, soft computing including neural networks, fuzzy systems, evolutionary computing and the fusion of these paradigms, social intelligence, ambient intelligence, computational neuroscience, artificial life, virtual worlds and society, cognitive science and systems, Perception and Vision, DNA and immune based systems, self-organizing and adaptive systems, e-Learning and teaching, human-centered and human-centric computing, recommender systems, intelligent control, robotics and mechatronics including human-machine teaming, knowledge-based paradigms, learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents, intelligent decision making and support, intelligent network security, trust management, interactive entertainment, Web intelligence and multimedia.

The publications within "Advances in Intelligent Systems and Computing" are primarily proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicable character. An important characteristic feature of the series is the short publication time and world-wide distribution. This permits a rapid and broad dissemination of research results.

** Indexing: The books of this series are submitted to ISI Proceedings, EI-Compendex, DBLP, SCOPUS, Google Scholar and Springerlink **

More information about this series at http://www.springer.com/series/11156

Gabriella Panuccio · Miguel Rocha · Florentino Fdez-Riverola · Mohd Saberi Mohamad · Roberto Casado-Vara Editors

Practical Applications of Computational Biology & Bioinformatics, 14th International Conference (PACBB 2020)

Editors
Gabriella Panuccio
Enhanced Regenerative Medicine
Istituto Italiano di Tecnologia
Genoa, Genova, Italy

Florentino Fdez-Riverola Computer Science Department University of Vigo Vigo, Spain

Roberto Casado-Vara Biotechnology, Intelligent Systems and Educational Technology (BISITE) Research Group University of Salamanca Salamanca, Salamanca, Spain Miguel Rocha Department de Informática Universidade do Minho Braga, Portugal

Mohd Saberi Mohamad Institute for Artificial Intelligence and Big Data (AIBIG) Universiti Malaysia Kelantan, Kampus Kota Kota Bharu, Malaysia

ISSN 2194-5357 ISSN 2194-5365 (electronic) Advances in Intelligent Systems and Computing ISBN 978-3-030-54567-3 ISBN 978-3-030-54568-0 (eBook) https://doi.org/10.1007/978-3-030-54568-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

There are diverse sequencing techniques, and new technologies emerge continually, making it possible to obtain a large amount of multi-omics data. Bioscience is progressively turning into a kind of computer science, as it has begun to rely on computer science applications. As a result, bioinformatics and computational biology are fields that encounter new challenges as they attempt to analyze, process, assimilate, and get insight into data. To be able to overcome those challenges, it is necessary to develop new algorithms and approaches in fields such as databases, statistics, data mining, machine learning, optimization, computer science, machine learning, and artificial intelligence. A new generation of interdisciplinary researchers, with extensive background in biological and computational sciences, work on meeting those needs.

The International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB) is an annual international event dedicated to applied research and challenges in bioinformatics and computational biology. Building on the success of previous events, this volume gathers the contributions for the 14th PACBB Conference. All submissions have been thoroughly reviewed and selected by an international committee, which includes members from 21 different countries. The PACBB'20 technical program includes 21 papers of authors from many different countries (Australia, Colombia, Egypt, Germany, India, Malaysia, Portugal, Saudi Arabia, Slovakia, South Korea, Spain, Switzerland, Turkey, United Arab Emirates, UK, and USA) and different subfields in bioinformatics and computational biology. There will be special issues in JCR-ranked journals, such as Interdisciplinary Sciences: Computational Life Sciences, Integrative Bioinformatics, Information Fusion, Neurocomputing, Sensors, Processes, and Electronics. Therefore, this event will strongly promote the interaction among researchers from international research groups working in diverse fields. The scientific content will be innovative, and it will help improve the valuable work that is being carried out by the participants.

This symposium is organized by the University of L'Aquila with the collaboration of the University of Malaysia Kelantan, the University of Minho, the University of Vigo, and the University of Salamanca. We would like to thank all the

vi Preface

contributing authors, the members of the Program Committee, the sponsors (IBM, Indra, AEPIA, APPI, AIIS, EurAI, and AIR Institute). We thank for funding support to the project: "Intelligent and sustainable mobility supported by multi-agent systems and edge computing" (Id. RTI2018-095390-B-C32), and finally, we thank the Local Organization members and the Program Committee members for their valuable work, which is essential for the success of PACBB'20.

Gabriella Panuccio Miguel Rocha Florentino Fdez-Riverola Mohd Saberi Mohamad Roberto Casado-Vara

Organization

General Co-chairs

Gabriella Panuccio Miguel Rocha Florentino Fdez-Riverola Mohd Saberi Mohamad Roberto Casado-Vara University of Genoa, Italy University of Minho, Portugal University of Vigo, Spain Universiti Malaysia Kelantan, Malaysia University of Salamanca, Spain

Program Committee

Vera Afreixo Amparo Alonso-Betanzos Rene Alquezar Manuel Álvarez Díaz Jeferson Arango Lopez Joel Arrais

Julio Banga

Carlos Bastos Carole Bernon

Lourdes Borrajo Ana Cristina Braga Boris Brimkov

Guillermo Calderon

Rui Camacho José Antonio Castellanos

Garzón

Luis Fernando Castillo José Manuel Colom University of Aveiro, Portugal University of A Coruña, Spain

Technical University of Catalonia, Spain

University of A Coruña, Spain Universidad de Caldas, Colombia University of Coimbra, Portugal

Instituto de Investigaciones Marinas (C.S.I.C.),

Spain

University of Aveiro, Portugal

IRIT/UPS, France

University of Vigo, Spain University of Minho, Portugal

Rice University, USA

Autonomous University of Manizales, Colombia

University of Porto, Portugal University of Salamanca, Spain

Universidad de Caldas, Colombia University of Zaragoza, Spain viii Organization

Fernanda Brito Correia DETI/IEETA University of Aveiro and

DEIS/ISEC/Polytechnic Institute of Coimbra,

Portugal

Daniela Correia

Úniversity of Minho, Portugal

Ángel Martín del Rey

Roberto Costumero

Francisco Couto

University of Salamanca, Spain

Technical University of Madrid, Spain

University of Lisbon, Faculty of Sciences,

Portugal

Yingbo Cui National University of Defense Technology,

China

Masoud Daneshtalab KTH Royal Institute of Technology

in Stockholm, Sweden

Javier De Las Rivas University of Salamanca, Spain

Sergio Deusdado Technical Institute of Bragança, Portugal

University of Minho, Portugal University of Valladolid, Spain

Ramón Doallo Univ. A Coruña, Spain

Oscar Dias

Fernando Diaz

Xavier Domingo-Almenara Rovira i Virgili University, Spain

Pedro Ferreira Ipatimup: Institute of Molecular Pathology

and Immunology of the University of Porto,

Portugal

João Diogo Ferreira University of Lisbon, Faculty of Sciences,

Portugal

Nuno Filipe University of Porto, Portugal

Mohd Firdaus-Raih National University of Malaysia, Malaysia

Nuno A. Fonseca University of Porto, Portugal

Dino Franklin Federal University of Uberlandia, Spain

Alvaro Gaitan Café de colombia, Colombia

Narmer Galeano Universidad Catolica de Manizales, Colombia

Vanessa Maria Gervin
Rosalba Giugno
University of Verona, Italia
University Rovira i Virgili, Spain
Patricia Gonzalez
University of A Coruña, Spain

Consuelo Gonzalo-Martin
David Hoksza
University Karlova, Czech Republic
University of Salamanca, Spain
Natthakan Iam-On
Gustavo Isaza
University of Caldas, Colombia

Paula Jorge University of Minho, Portugal

Martin Krallinger National Center for Oncological Research, Spain

Rosalia Laza Universidad de Vigo, Spain Thierry Lecroq University of Rouen, France

Giovani Librelotto Federal University of Santa Maria, Portugal

Filipe Liu CEB, University of Minho, Portugal

Ruben Lopez-Cortes University of Vigo, Spain

Organization ix

Hugo López-Fernández Eva Lorenzo Iglesias Analia Lourenco Sara Madeira

Marcelo Maraschin Marcos Martinez-Romero Sérgio Matos Mohd Saberi Mohamad Loris Nanni José Luis Oliveira Maria Olivia Pereira

Alexandre Perera Lluna Martin Pérez Pérez Gael Pérez Rodríguez Cindy Perscheid Armando Pinho Ignacio Ponzoni Antonio Prestes Garcia Heri Ramampiaro

Juan Ranea Miguel Reboiro-Jato Jose Ignacio Requeno João Manuel Rodrigues Alejandro Rodriguez Alfonso Rodriguez-Paton Miriam Rubio Camarillo Gustavo Santos-Garcia Pedro Sernadela Amin Shoukry

Naresh Singhal Ana Margarida Sousa Niclas Ståhl Carolyn Talcott Mehmet Tan

Rita Margarida Teixeira Ascenso Mark Thompson Antonio J. Tomeu-Hardasmal Alicia Troncoso

Turki Turki

University of Vigo, Spain
University of Vigo, Portugal
University of Vigo, Spain
University of Lisbon, Faculty of Sciences,
Portugal

Fortugal
Federal University of Santa Catarina, Brazil
Stanford University, USA
IEETA, Universidade de Aveiro, Portugal
University Teknologi Malaysia, Spain
University of Padua, Italy
University of Aveiro, Portugal
University of Minho, Centre of Biological
Engineering, Portugal

Technical University of Catalonia, Spain University of Vigo, SING group, Spain University of Vigo, SING group, Spain Hasso-Plattner-Institut, Denmark University of Aveiro, Portugal National South University, Argentina Universidad Politécnica de Madrid, Spain Norwegian University of Science and

Technology, Norway
University of Malaga, Spain
University of Vigo, Spain
University of Zaragoza, Spain
DETI/IEETA, University of Aveiro, Portugal
Universidad Politécnica de Madrid, Spain
Universidad Politécnica de Madrid, Spain
National Center for Oncological Research, Spain
Universidad de Salamanca, Spain

University of Aveiro, Portugal
Egypt Japan Univ of Science and Technology,
Egypt

University of Auckland, New Zealand University of Minho, Portugal University of Skovde, Sweden SRI International, USA

TOBB University of Economics and Technology, Turkey

ESTG - IPL, Portugal

LUMC, Netherland University of Cadiz, Spain Universidad Pablo de Olavide, Spain New Jersey Institute of Technology, USA х Organization

Eduardo Valente Alfredo Vellido Jorge Vieira Alejandro F. Villaverde

Pierpaolo Vittorini

IPCB, Portugal

Technical University of Catalonia, Spain

University of Porto, Portugal

Instituto de Investigaciones Marinas (C.S.I.C.),

Spain

University of L'Aquila - Department of Life, Health, and Environmental Sciences, Italy

Organizing Committee

Juan M. Corchado Rodríguez

Roberto Casado Vara Fernando De la Prieta Sara Rodríguez González Javier Prieto Tejedor

Pablo Chamoso Santos Belén Pérez Lancho Ana Belén Gil González Ana De Luis Reboredo Angélica González Arrieta Emilio S. Corchado Rodríguez Ángel Martín del Rey

Ángel Luis Sánchez Lázaro Alfonso González Briones Yeray Mezquita Martín Enrique Goyenechea

Javier J. Martín Limorti Alberto Rivas Camacho Ines Sitton Candanedo Elena Hernández Nieves Beatriz Bellido María Alonso Diego Valdeolmillos Sergio Marquez Jorge Herrera Marta Plaza Hernández David García Retuerta Guillermo Hernández González

University of Salamanca, Spain AIR Institute, Spain

University of Salamanca, Spain University of Salamanca, Spain University of Salamanca, Spain University of Salamanca, Spain AIR Institute, Spain

University of Salamanca, Spain University of Salamanca, Spain University of Salamanca, Spain University of Salamanca, Spain University of Salamanca, Spain University of Salamanca, Spain

University of Salamanca, Spain University of Salamanca, Spain University Complutense of Madrid, Spain University of Salamanca, Spain

University of Salamanca, Spain AIR Institute, Spain

University of Salamanca, Spain University of Salamanca, Spain University of Salamanca, Spain University of Salamanca, Spain University of Salamanca, Spain University of Salamanca, Spain

AIR Institute, Spain

University of Salamanca, Spain University of Salamanca, Spain University of Salamanca, Spain University of Salamanca, Spain

AIR Institute, Spain

Organization xi

Luis Carlos Martínez
de Iturrate
Ricardo S. Alonso Rincón
Javier Parra
Niloufar Shoeibi
Zakieh Alizadeh-Sani
University of Salamanca, Spain

Local Organizing Committee

Pierpaolo Vittorini University of L'Aquila, Italy
Tania Di Mascio University of L'Aquila, Italy
Giovanni De Gasperis University of L'Aquila, Italy
Federica Caruso University of L'Aquila, Italy
Alessandra Galassi University of L'Aquila, Italy

PACBB 2020 Sponsors

Contents

Identification of Antimicrobial Peptides from Macroalgae with Machine Learning Michela Caprani, Orla Slattery, Joan O'Keeffe, and John Healy	1
A Health-Related Study from Food Online Reviews. The Case of Gluten-Free Foods Martín Pérez-Pérez, Anália Lourenço, Gilberto Igrejas, and Florentino Fdez-Riverola	12
The Activity of Bioinformatics Developers and Users in Stack Overflow Roi Pérez-López, Guillermo Blanco, Florentino Fdez-Riverola, and Anália Lourenço	23
ProPythia: A Python Automated Platform for the Classification of Proteins Using Machine Learning	32
Inferences on Mycobacterium Leprae Host Immune Response Escape and Antibiotic Resistance Using Genomic Data and GenomeFastScreen Hugo López-Fernández, Cristina P. Vieira, Florentino Fdez-Riverola, Miguel Reboiro-Jato, and Jorge Vieira	42
Compi Hub: A Public Repository for Sharing and Discovering Compi Pipelines Alba Nogueira-Rodríguez, Hugo López-Fernández, Osvaldo Graña-Castro, Miguel Reboiro-Jato, and Daniel Glez-Peña	51
DeepACPpred: A Novel Hybrid CNN-RNN Architecture for Predicting Anti-Cancer Peptides	60

xiv Contents

Cardiac Well-Being Indexes	70
Fuzzy Matching for Cellular Signaling Networks in a Choroidal Melanoma Model Adrián Riesco, Beatriz Santos-Buitrago, Merrill Knapp, Gustavo Santos-García, Emiliano Hernández Galilea, and Carolyn Talcott	80
Towards A More Effective Bidirectional LSTM-Based Learning Model for Human-Bacterium Protein-Protein Interactions Huaming Chen, Jun Shen, Lei Wang, and Yaochu Jin	91
Machine Learning for Depression Screening in Online Communities	102
Towards Triclustering-Based Classification of Three-Way Clinical Data: A Case Study on Predicting Non-invasive Ventilation in ALS Diogo Soares, Rui Henriques, Marta Gromicho, Susana Pinto, Mamede de Carvalho, and Sara C. Madeira	112
Searching RNA Substructures with Arbitrary Pseudoknots	123
An Application of Ontological Engineering for Design and Specification of Ontocancro Jéssica A. Bonini, Matheus D. Da Silva, Rafael Pereira, Bruno A. Mozzaquatro, Ricardo G. Martini, and Giovani R. Librelotto	134
Evaluation of the Effect of Cell Parameters on the Number of Microtubule Merotelic Attachments in Metaphase Using a Three-Dimensional Computer Model	144
Reconciliation of Regulatory Data: The Regulatory Networks of Escherichia coli and Bacillus subtilis	155
A Hybrid of Bat Algorithm and Minimization of Metabolic Adjustment for Succinate and Lactate Production Mei Yen Man, Mohd Saberi Mohamad, Yee Wen Choon, and Mohd Arfian Ismail	166
Robustness of Pathway Enrichment Analysis to Transcriptome-Wide Gene Expression Platform Joanna Zyla, Kinga Leszczorz, and Joanna Polanska	176

Contents xv

Hypoglycemia Prevention Using an Embedded Model Control with a Safety Scheme: In-silico Test	186
Bidirectional-Pass Algorithm for Interictal Event Detection	197
Towards the Reconstruction of the Genome-Scale Metabolic Model of Lactobacillus acidophilus La-14 Emanuel Cunha, Ahmad Zeidan, and Oscar Dias	205
Author Index	215

Identification of Antimicrobial Peptides from Macroalgae with Machine Learning

Michela Caprani^{1(⊠)}, Orla Slattery¹, Joan O'Keeffe¹, and John Healy²

Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology, Galway, Ireland michela.caprani@research.gmit.ie, {orla.slattery,joan.okeeffe}@gmit.ie
Department of Computer Science and Applied Physics, Galway-Mayo Institute of Technology, Galway, Ireland john.healy@gmit.ie

Abstract. Antimicrobial peptides (AMPs) are essential components of innate host defense showing a broad spectrum of activity against bacteria, viruses, fungi, and multi-resistant pathogens. Despite their diverse nature, with high sequence similarities in distantly related mammals, invertebrate and plant species, their presence and functional roles in marine macroalgae remain largely unexplored. In recent years, computational tools have successfully predicted and identified encoded AMPs sourced from ubiquitous dual-functioning proteins, including histones and ribosomes, in various aquatic species. In this paper, a computational design is presented that uses machine learning classifiers, artificial neural networks and random forests, to identify putative AMPs in macroalgae. 42,213 protein sequences from five macroalgae were processed by the classifiers which identified 24 putative AMPs. While initial testing with AMP databases positively identifies these sequences as AMPs, an absolute determination cannot be made without in vitro extraction and purification techniques. If confirmed, these AMPs will be the first-ever identified in macroalgae.

Keywords: Antimicrobial peptides · Macroalgae · Pseudo Amino Acid Composition (PseAAC) · Machine learning classifiers

1 Introduction

Since the introduction of antibiotics, the development of microbial resistance to conventional antibiotics has progressed, prompting complications for the treatment of infectious disease. Antimicrobial peptides (AMPs, host defense peptides or innate immune peptides) are recognized as an alternative therapeutic agent to address the emergence of resistant strains [1]. AMPs are gene-coded short amino acid sequences (<50 amino acids) that carry a net cationic charge (+2 to +9), with an amphipathic structure [2]. AMPs are further classified by their diverse sequence

[©] The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

G. Panuccio et al. (Eds.): PACBB 2020, AISC 1240, pp. 1-11, 2021.

composition and secondary structure including α -helical, β -sheet, or extended linear peptides [3]. These features exhibit antimicrobial activity by selectively disrupting microbial membranes, causing cellular death by loss of electrochemical gradient, leakage of contents and disruption of metabolic processes [4].

The marine environment is known to be one of the richest sources of AMPs, identified throughout aquatic life. Additional to AMPs, ubiquitous proteins not previously associated with immunity namely, histone and ribosomal families have shown potent antimicrobial activities from fish, crustacean and mollusks species [5–8]. For decades, marine macroalgae including, Chlorophyta (green), Rhodophyta (red) and Phaeophyta (brown) have been established as sustainable candidate raw materials for generating novel bioactive compounds. Macroalgae are found in intertidal regions that are ubiquitously exposed to diverse chronic stressors such as osmotic stress, excess levels of ultraviolet radiation, salinity, and invasive microbial or pathogenic species, thereby, assisting in the stimulation of innate immune responses [9,10]. These abiotic factors have contributed to macroalgae development of secondary metabolites, primarily from fatty acids, polysaccharides, or phenolic compounds. Despite their allelopathy and rich protein composition (10% to 50% dry weight), the discovery of innate antimicrobial protein and peptides activity remains limited.

Computational approaches have the capacity to identify encoded AMPs, or antimicrobial compounds from marine macroalgae. Conventionally, in vitro purification techniques such as, enzymatic hydrolysis and chromatography approaches have been successful in the isolation of AMPs. However, such methods are costly, laborious and time-consuming. The identification of unannotated AMPs by bioinformatic tools has increased the distribution and evolution of antimicrobial drug discovery by recognising suitable candidates prior to experimental proceedings. Supervised machine learning classifiers such as Support Vector Machines (SVM), Hidden Markov Models (HMM), Random Forests (RF) and Artificial Neural Networks (ANN) have been shown to be effective in mining and identifying AMPs from complex biological data [11]. Computational models can further characterize AMPs by physiochemical descriptors. The Pseudo Amino Acid Composition model (PseAAC) introduced by Chou [12], integrates information effectively through discrete numerical vector analysis by analysing the physiochemical and biochemical properties of protein and peptide sequences.

Challenges in genomic sequencing, decoding protein sequences and analysing genetic features such as protein-coding genes have hindered the understanding of biosynthesis of antimicrobial compounds in macroalgae [13]. Although whole genomes of macroalgae remain functionally unannotated, researchers have decoded the majority of protein sequences from different phyla types including, (red) Chondrus crispus, Palmaria palmata, Gracilariopsis lemaneiformis, and (brown) Ectocarpus siliculosus and Saccharina japonica. This paper describes an effective method for the identification of AMPs from annotated macroalgae protein sequences by exploiting machine learning classifiers, including random forests and artificial neural networks. The technique presented in this paper was successfully used to identify AMPs for each of the above macroalgae. If confirmed, these AMPs will be the first ever identified in a macroalgae.

2 Methods

Protein sequences from five macroalgae were downloaded from the National Centre of Bioinformatic Information (NCBI) database. These annotated seaweed protein sequences included the brown macroalgae, *E.siliculosus* (24,202 sequences) and *S.japonica* (838 sequences), and the red macroalgae, *C.crispus* (15,320 sequences), *P.palmata* (937 sequences) and *G.lemaneifromis* (886 sequences). These sequences were augmented with proteins obtained from the Uniprot database including 13,492 uncharacterized protein sequences and 37 histone sequences.

2.1 Training and Testing Datasets

The training and testing datasets used in this study were extracted from sequences taken from the Antimicrobial Peptide Database (APD) [14], the AntiBP Server [15] and Uniprot. The positive AMP dataset consisted of 2,338 APD sequences and 1,209 from the AntiBP Server. The latter set consists of processed and clipped APD protein sequences and provided the training data with a different representation of some of the positive AMPs.

The negative dataset of 6,332 sequences consisted of 1,207 taken from the AntiBP Server and 6,332 from Uniprot. Using the approach described by Veltri et al. [16] and the UniProt Consortium [17], the negative Uniprot dataset was filtered for sequences with experimentally validated cytoplasmic localization and excluded any with antimicrobial, antibiotic, antiviral or antifungal properties. The combined positive and negative AMP dataset contained a total of 11,086 sequences.

2.2 Classifier Configuration

The Statistical Machine Intelligence and Learning Engine (Smile v1.5.2) [18] was utilised to create neural network and random forest classifiers for the identification of AMPs in the macroalgae protein sequences.

The neural network topology consisted of an input layer of 200 nodes, a single hidden layer and an output layer of two nodes. Although deep neural networks have become increasingly popular in bioinformatics [19], one and two hidden layers have been shown to be sufficient for any continuous and discontinuous function respectively [20]. We used the formula $N_h = \frac{|D|}{\alpha \times (N_i + N_o)}$ from Hagan et al. [21] to compute the number of nodes, N_h , in the hidden layer, where |D| is the size of the training dataset, N_i and N_o are the number of nodes in the input and output layers respectively, and α is a scaling value in the range [0..2]. This formula helps prevent overfitting by limiting the number of free parameters in the neural network architecture to a small portion of the dimensions that exist in the training dataset.

We capped the number of decision trees in the random forest at 128, as this recommended figure represents the upper limit before diminishing returns reported by Oshiro *et al.* [22].

M. Caprani et al.

4

The training and testing of the classifiers and the subsequent analysis of macroalgae protein sequences was undertaken on an OSX 10.13.2 platform, with a 1.8 GHz Intel Core i7 processor, 16 GB of RAM and an instance of the Open-JDK 12.0.1 64-bit Java Virtual Machine.

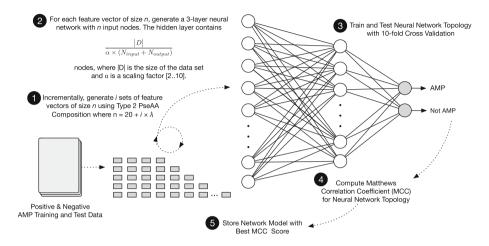


Fig. 1. Feature selection and training of the neural network. A similar approach was used to train the random forest.

2.3 Incremental Feature Selection

Selecting a feature set that is simultaneously informative and discriminating is essential for training a classifier with a high degree of accuracy. We selected 36 features from the AAindex [23,24] that are highly correlated with AMPs. The AAindex contains a matrix of published physicochemical and biochemical properties of amino acids and amino acid pairs that can be easily mapped to an input vector for a classifier.

In order to exploit their amphiphilic and other salient properties, the variable-length protein sequences used in this study were transformed into fixed-sized feature vectors from their Type 2 Pseudo Amino Acid Composition (PseAAC) [12] with $\lambda=5$ and a weight w=0.05. For an amino acid feature set of size n, a protein sequence will contain $20+n\times\lambda$ Type 2 PseAAC features, regardless of the number of amino acid residues in the sequence. In addition to exploiting the amphiphilic relationships between its amino acid elements, PseAAC enables protein sequences of different sizes to be translated into the fixed-length vectors required by most machine learning classifiers. In this absence of this, a more complex recursive neural network would be required instead of the multilayer perceptron used for this research.

Employing a similar approach to that described by Wang et al. [14] and Li et al. [25], starting with just 4 features, the feature set was iteratively expanded. For each feature set expansion, a neural network and random forest topology was

generated to match the feature set size and then trained, tested and scored. AMP properties in the ranked feature list were added one-by-one in order to determine an optimal feature set, i.e. a new feature set was constructed when one new feature was added. Consequently, a total of 31 feature sets were created, with the minimal set of 4 features generating a PseAAC vector of length $20 + 4 \times 5 = 40$ and the upper limit of 36 features generating a $20 + 36 \times 5 = 200$ length input vector. Both the neural network and random forest were trained and tested using 10-fold cross validation.

The accuracy, sensitivity and specificity of each trained neural network and random forest configuration was calculated using the Matthews Correlation Coefficient (MCC) shown below:

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP) \times (TP + FN) \times (TN + FP) \times (TN + FN)}}$$
(1)

where TP, TN, FP and FN denote true positive, true negative, false positive and false negative respectively. The MCC metric has a range of [-1...1], where -1 indicates an incorrect binary classifier and +1 an entirely correct classifier. The MCC is regarded as a more balanced measure where there exists a significant discrepancy between the cardinality of each class in a dataset [26].

3 Results and Discussion

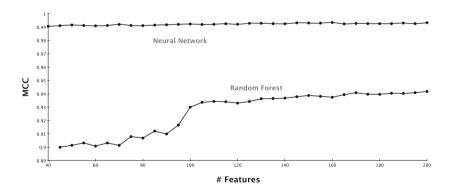


Fig. 2. MCC scores v/s Feature number

Figure 2 depicts the MCC score for the neural network and random forest classifiers as each AMP feature taken from the AAindex [23,24] was added to the feature set. In contrast with the random forest classifier, the overall performance of the artificial neural network was consistently good in terms of accuracy, sensitivity, and specificity with a smaller number of features. The model reached

Palmaria palmata: 3 AMP sequences	AMP Homology	Туре	AMP DB
${\tt MKVRASVKKMCDKCRVIRRHRRVMVICINPKHKQRQG}$	50%	Defensin $(A.aurita)$	CAMP
MVEPLLSGIVLGLIPITIAGLLVAAYIQYRRGNQFGL	35%	β -defensin (B. Taurus)	CAMP
MPAIQQLVRLPRQKAVKKTKSPALKACPQRRGVCTRV YTTTPKKPNSALRKVQESITSG	32%	Ubiquicidin (H.sapiens)	APD

Table 1. Homology of 3 peptides from the 230 Mbps *P.palmata*.

the maximum value of 0.9933 when 36 features were added to the neural network. The random forest model also produced its optimal MCC value of 0.9418 after all 36 features were added. The high MCC scores confirmed the decision to restrict the training and testing dataset sets to amino acid features that are highly correlated to AMPs.

Tables 1, 2, 3, 4 and 5 show the AMPs identified by the classifiers after protein sequences from *P.palmata*, *C.crispus*, *E.siliculosus S.japonica* and *G.lemaneifromis* were processed. Each of the putative AMPs listed were positively identified by both the neural network and random forest. Exploration of AMPs from marine algae is highlighted as an important alternative to mammal and invertebrate antimicrobial compounds. The results reported in this study indicate that the classification method can be very effective at identifying AMPs from selected macroalgae species. The iterative feature selection technique and construction of the Type 2 PseAAC feature vector, coupled with simplified neural network and random forest topologies, identified 24 putative AMPs from the set of macroalgae. Red algae species *C.crispus* was the most abundant source, containing 12 AMPs. The model identified 3 AMPs in each of the species, *P. palmata*, *E. siliculosus*, *S. japonica* and *G.lemaneifromis*.

In order to determine the origin of the AMPs identified from the macroalgae protein data, each sequence was subject to a BLAST [28] search. This application determined that the AMPs were sourced from ribosomal subunits and uncharacterized protein regions. Three AMPs from the *S. japonica* species were identified as the 50S ribosomal proteins L19, L34 and L36. The 3 AMPs identified from *P. palmata* were characterized as the 50S ribosomal proteins L14, L34 and L36. Furthermore, the 3 AMPs from *G. lemaneifromis* were classified as 30S and 50S ribosomal subunits S5, L34, and L36. While ribosomal proteins are known to possess dual-functioning properties in assembly and protein translation, it is also evident that such protein types putatively play an essential role in innate host defense. Previous studies have successfully identified and purified several AMPs derived from ribosomal protein subunits, displaying a range of antimicrobial capacities in various pathogens and bacterial species [5,8,27].

Furthermore, to determine homology with known AMPs, the macroalgal AMP sequences were compared with the Collection of Antimicrobial Peptide (CAMP) [29] and Antimicrobial Peptide Database [14] using a sequence alignment search. The AMPs from each macroalgal species contained partial homology with defensins and histone-derived AMPs. For example, the peptide sequence

AMP AMP DB Chondrus crispus AMP sequences Туре Homology MSKHARPCCLKGGPEA 35% H6-Histone APD (O.mykiss) MVLRRILTVVFRSRVCATTRCLLQICVTIRLLLL 32% Hyposin-H3 APD (P.hypochondrialis) MERHMGDLDNSMPRSTRKTLPENGSILTSTMTCGTN 30% Cryptdin-1 APD (M.musculus) MSIEIPTGATKSSNFWCRSKNRNQISRIWFGWSLFDY 33% Defensin CAMP (P.hamadryas)MPSPNSANVGVLHRAALMSRALCTSRTGSGAGREHKR 35% Tenecin APD QKRT (defensin) (T.molitor) MWGRIIALHGNNGHVRAKFRNQLPPNSIGKGVRVMLY 31% β -defensin 13 APD (B. Taurus) MHAVVGILDRRETLVISRQIPHRCTFGGKPFRSTNRT 34% β -defensin 11 APD CTTGLSRVIKQRLSEPNS (B. Taurus)MVPSLPTSRIVKKIATEPQSIVEGRSLCVGMLAATGT 33% AdDLP (defensin) CAMP IVQQCRRMISKNPACHNCL (A.dehalogenans) MSVCNDKCQSYIGYFCKFVTFEFGRCAPVDAVLAPCR 31% Gallinacin 6 CAMP KHPQLPLCKNLCTCHLAKATQLYEAPLCRLLS defensin) (chicken) MVIVNRGCCSDLNRPRWHSGACSSLYLPLSESLSLLP 32% gcDefb1(β-CAMP LLVAVCRCLLSLVFSQRGRGRFASTLGVANCCCGVGT defensin) SCV (C.Idella) MQSNSLPQRLPHVINAVMFAIQGLTAALGPGLCSSTS Apl-AvBD16 29% CAMP CKGYFILPGKYGKYTGEYIIGFTFTHKRVLSRSIQAC (β-defensin) DVPCSRKTTTNTGQNDTNAQRF (A.platyrhynchos)MWGRIIAPHGNNGHVRAKFRNQLPPNSIGKGVRVMLY Buforin I Histone 41% APD

Table 2. Homology of 12 peptides from the 106.4 Mbps *C. crispus*.

from *P. palmata* had a 50% identity to *Aurelia aurita* (Moon jellyfish) defensin seen in Fig. 3. Moreover, AMPs from other the algal species showed a 29–35% identity to peptides derived from the defensin family. These results show that, analogous to most kingdoms, macroalgae have likely accumulated defensins to play a key role in their immune defense against their extrinsic surroundings [30]. In addition to defensins, histone-derived AMP homology was observed in a number of sequences. The results determined that the AMPs from *C. crispus* possess a 35% sequence similarity to histone H6 from *Oncorhynchus mykiss* (Rainbow trout), a 32% similarity to Hyposin-H3 from *Phyllomedusa hypochondrialis* (Leaf frog) and 41% similarity to histone H2A Buforin from *Bufo bufo gargarizans* (Asiatic frog). Previous studies have shown that histone-derived AMPs isolated from both marine and terrestrial species have potent antimicrobial activity [7,31,32].

H2A (B.gargarizans)

PNAI

Ectocarpus siliculosus AMP sequences	AMP homology	Type	AMP DB
MGGFYGWQLSACWWRSAGCAPATW	32%	β -defensin 3 (C.floridanus)	APD
MRTAWRNTCAPPRSRPWLPGSGRTVTHPVARRRCAGL SEISWKHPVRARSWCALGRTQTTS	36%	Penaeidin-3a (P.vannamei)	APD
MVLYRQAANTVERWMGIRARTHMRCAVLATAAFVKAN	29%	WB Piscidin 5	CAMI

Table 3. Homology of 3 peptides from the 198.4 Mbps *E. siliculosus*.

Table 4. Homology of 3 peptides from the $551.5\,\mathrm{Mbps}$ S.japonica.

Saccharina japonica AMP sequences	AMP homology	Туре	AMP DB
VPALLAFRLGKTLYS	48%	H4-(86-100) Histone (Rat)	ADP
MKVRASVKKMCEKCRIIRRHGRVQVICTNLKHKQRQG	33%	β -defensin 10 (B. Taurus)	CAMP
${\tt MTKRTLGGTNRKVIAVSGFRARMKTKQGCKVINNRRR}\\ {\tt KKRKNLSI}$	21%	β -defensin $(S.salar)$	CAMP

Table 5. Homology of 3 peptides from the 91.2 Mbps G.lemaneifromis.

Gracilariopsis lemaneifromis AMP sequences	AMP	Type	AMP DB
	homology		
MKVRASVKKICDKCRIIRRHRKVIIICENAKHKQRQG	35%	Cryptdin-5	APD
		α -defensin	
		(M.musculus)	
MSQGIKNGTNRKQIKKSGFRARMSTYSGRKIINLRRR	31%	rhesus θ-	APD
KRRKKIVL		defensin-1	
		(R.Macaque)	
MKSVITTVISAADAAGRFPTSSDLESVQGNIQRAAAR	33%	Apl-AvBD16 β-	APD
LEAAEKLADNHEAVVKEAG		defensin	
		(A.platyrhynchos)	

```
Score = 20.0 bits (40), Expect = 2.3

Identities = 7/14 (50%), Positives = 10/14 (71%), Gaps = 0/14 (0%)

Query 1 MKVRASVKKMCDKC 14

+K+RA+ KK C C

Sbjct 27 VKLRANCKKTCGLC 40
```

Fig. 3. Sequence alignment of identified P.palmata AMP with 50% homology with $Aurelia\ aurita$ (Moon jellyfish) defensin.

In summary, the computational results suggest macroalgal immunity involves the use of ribosome and histone-derived AMPs and indicates their potential use of defensin-like AMPs. A range of *in vitro* methods such as chemical and enzymatic extractions, as well as chromatographic techniques namely, ion exchange, and High-Performance Liquid Chromatography (HPLC), have previously been utilized to isolate and characterize such AMP types [8,33,34]. Future work in relation to this study will utilize the sequence information to make informed decisions regarding the isolation and further characterization of these putative AMPs from the various macroalgal species. Therefore, the *in silico* model holds a strong potential to become a useful tool to identify novel AMPs prior to experimental processes.

4 Conclusion

In this study, we implemented a machine learning approach using artificial neural network and random forest models for the identification of AMPs from five macroalgae species. The approach identified 24 putative AMPs from the collected macroalgae protein sequences. The AMPs were derived from ribosomal subunits and uncharacterized protein, sharing regions of similarity to defensin and histone AMP families. It is possible that the identified AMPs may play a significant role in macroalgal host defense. If isolated by *in vitro* applications, these will be the first-ever identified AMPs from macroalgae. Consequently, this method can then be applied to organisms were AMP identity remains unknown.

Acknowledgements. This work is supported by a grant from the Enterprise Partnership Scheme, the Ireland Research Council (IRC) and This is Seaweed (https://thisisseaweed.com).

References

- Zasloff, M.: Antimicrobial peptides of multicellular organisms. Nature 415(6870), 389–395 (2002)
- Hancock, R.E., Lehrer, R.: Cationic peptides: a new source of antibiotics. Trends Biotechnol. 16(2), 82–88 (1998)
- Powers, J.P.S., Hancock, R.E.: The relationship between peptide structure and antibacterial activity. Peptides 24(11), 1681–1691 (2003)
- Bahar, A.A., Ren, D.: Antimicrobial peptides. Pharmaceuticals 6(12), 1543–1575 (2013)
- Fernandes, J.M., Smith, V.J.: A novel antimicrobial function for a ribosomal peptide from rainbow trout skin. Biochem. Biophys. Res. Commun. 296(1), 167–171 (2002)
- Fernandes, J.M., Kemp, G.D., Molle, M.G., Smith, V.J.: Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss. Biochem. J. 368(2), 611–620 (2002)
- Patat, S.A., Carnegie, R.B., Kingsbury, C., Gross, P.S., Chapman, R., Schey, K.L.: Antimicrobial activity of histones from hemocytes of the Pacific white shrimp. Eur. J. Biochem. 271(23–24), 4825–4833 (2004)