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Preface

Mycoremediation is a process of bioremediation in which fungal-based technology 
is used to decontaminate the environment. Fungi have been confirmed to be a very 
cost-effective and environmentally sound way for helping to remove an extensive 
array of contaminants from damaged environments or wastewater. The contami-
nants include heavy metals, persistent organic pollutants [polycyclic aromatic 
hydrocarbons (PAHs), pesticides, and herbicide], textile dyes, leather tanning indus-
try chemicals and wastewater, petroleum fuels, pharmaceuticals, and personal care 
products. The by-products of the remediation can be appreciated constituents them-
selves, such as enzymes (like laccase) and edible or medicinal mushrooms, making 
the remediation process even lucrative. Mycoremediation practices involve placing 
of mycelium into contaminated soil and placing mycelial mats over toxic sites or a 
combination of these techniques in one or more treatments. Toxins in our food chain 
(including heavy metals, PCBs, and dioxins) become more concentrated at each 
step, with those at the top being contaminated by ingesting toxins consumed by 
those lower on the food chain. Fungal mycelia can destroy these toxins in the soil 
before they enter our food supply.

Fungi are among the primary saprotrophic organisms in an ecosystem, as they 
are efficient in the decomposition of material. Wood-decay fungi, especially white 
rot, secrete extracellular enzymes and acids that break down lignin and cellulose. 
Fungi feature among nature’s most vital agents for the decomposition of waste mat-
ter and are crucial components of the soil food web, providing nourishment for the 
supplementary biota that live in the soil environment. The degree of sustainability 
of the physical environment is an index of the survival and well-being of the all- 
inclusive components in it. Additionally, it is not sufficient to try disposing toxic/
deleterious substances with any known method. The best method of sustaining the 
environment is to return all the components (wastes) in a recyclable way so that the 
waste becomes useful and helps the biotic and abiotic relationship to maintain an 
aesthetic and healthy equilibrium that characterizes an ideal environment.

This book should be immensely valuable for researchers, technocrats, policy 
makers, and scientists of fungal biology and those who are interested in environ-
mental sustainability. We are honored that leading scientists who have extensive, 
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in-depth understanding and expertise in fungal biology and environmental concern 
took the time and effort to develop these outstanding chapters. Each chapter is writ-
ten by globally recognized academicians, so the reader is given an up-to-date and 
detailed account of our knowledge of the fungal system and numerous applications 
of fungi.

We are indebted to the many people who helped bring this book to light. The 
Editors wish to thank Series Editors Dr. Vijai Kumar Gupta and Dr. Maria G. Tuohy 
as well as Dr. Eric Stannard, Senior Editor, Botany, Springer, for their generous 
assistance, constant support, and patience in initializing the volume. Editors in par-
ticular are very thankful to Springer’s Nicholas DiBenedetto, Anthony Dunlap, and 
Rahul Sharma (Project Coordinator) for the kind care and constant encouragement 
received. Ram Prasad thanks honorable Vice Chancellor Dr. Sanjeev Kumar for 
continuous support and inspiration in putting everything together. Special thanks 
are due to our well-wishers and friends.

Motihari, Bihar, India Ram Prasad
Mysore, India S. Chandra Nayak
Varanasi, India Ravindra Nath Kharwar
Varanasi, India Nawal Kishor Dubey
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1.1  Introduction

Soil pollution is a serious global threat and, hence, an effective remediation technol-
ogy is of great importance (Abioye et al. 2019). Rapid industrialization along with 
increasing population has resulted in a wide accumulation of chemicals (Aransiola 
et al. 2013). The recurrence and enormous utilization of ‘xenobiotic’ chemicals have 
prompted an amazing push toward new innovations in order to reduce or eliminate 
these contaminants from the environment. The techniques traditionally used for the 
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remediation of polluted sites (e.g., recycling, landfilling, pyrolysis, and incineration) 
affect the environment as well, which can cause the release of toxic intermediates 
(Debarati et al. 2005; Prasad 2021). Moreover, these techniques are expensive and 
sometimes difficult to execute, particularly in broad agricultural areas (Jain et  al. 
2005). One promising technique is bioremediation which exploits the capacity of 
microorganisms to expel toxins from polluted environment, an option that is viable, 
negligibly hazardous, economical, flexible, and environmentally friendly (Finley et al. 
2010). Pesticides have turned into an unavoidable part of present-day agriculture 
because of their need in economical pest management and in the enhancement of 
product quality (Gouma 2009). Be that as it may, increased use of pesticide signifi-
cantly affects climate, around 90% of pesticides applied by farmers failed to com-
pletely achieved the set objectives as it affect farmers health directly, escaped into the 
soil, air and washed into water bodies. Out of the aggregate unpredictable outflow to 
nature, 63% are pesticides (Yates et al. 2011). Overall, their capacity to collect into the 
tissues of living beings prompting bioaccumulation is the real concern. Each of these 
factors contributes to environmental contamination and significant strides are taken to 
handle this issue. The conventional methods utilized for the treatment of these con-
taminants are compelling and additionally have certain disadvantages; for example 
they are expensive and the quality of these procedures is low. Likewise, most of the 
time, these systems are not adequate (Dixon 1996). Pesticide management should 
essentially maintain soil quality which is of high concern. Pesticides constitute the key 
control system for crop pest and disease management. Nonstop application of these 
pesticides to the soil and aquatic system poses risks to well- being and results in envi-
ronmental contamination, which has activated much open concern. Consistence appli-
cation of these pesticides throughout the years has brought about issues created by 
their cooperation with the biological framework in nature. Despite the risks, pesticides 
will continue to be a crucial component in agriculture in years to come as there is no 
reasonable other option to absolutely supplant them. Considering the lethal impact of 
the pesticides, it is fundamental to expel them from the environment with appropriate 
remediation measures. Bioremediation is one of the current methods utilized for envi-
ronmental cleanup. In this process, heterotrophic microorganisms are used to separate 
carbon and other vital compounds from perilous mixtures. Organophosphorous com-
pounds alone compensate for 70% of the pesticides utilized around the world.

It has been found that microorganisms can alter and degrade xenobiotics; 
researchers have been investigating different microbial qualities, especially around 
polluted environments looking for microorganisms that can help in the remediation 
of an extensive variety of contaminations. Subsequently, biotransformation of envi-
ronmental contaminants in the regular habitat has been widely considered to com-
prehend microbial ecology, physiology, and development because of their 
bioremediation potential (Mishra et al. 2001; Kumar M et al. 2017; Kumar V et al. 
2017). The biochemical and genetic basis of microbial degradation has gotten 
impressive consideration. A few genes/enzymes, which furnish microorganisms 
with the capacity to remediate organopesticides, have been recognized and por-
trayed. In this manner, microorganisms has proved to be a better and safer option in 
the biodegradation of pesticides. The capacity of these microorganisms to degrade 
xenobiotics is specifically connected to their adaptation to conditions where these 
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compound exist. Also, genetic engineering might be utilized to upgrade the proper-
ties of such microorganisms that have the desirable characteristics required for bio-
degradation (Schroll et al. 2004). Around 30% of agricultural produce is lost because 
of pests. Consequently, increased utilization of pesticides has turned out to be irre-
placeable in agribusiness and has become a part of agribusiness. Nonetheless, the 
unpredictable utilization of pesticides also poses serious threats and issues to people 
and the biodiversity (Gavrilescu 2005; Hussain et al. 2009). Environmental pollu-
tion caused by pesticides is also noted in regions where pesticides are not used. The 
agricultural pesticides applications gets to the soil and can diffuse quickly until it 
reaches the water table at noticeable concentration which affects different catego-
ries of living organisms. Therefore, the fate of pesticides is unpredictable and they 
can degrade different regions apart from where they were initially utilized. Hence, 
cleaning pesticide-contaminated zones becomes an extremely complex errand 
(Gavrilescu 2005).

Organochlorine pesticides were generally in use during the 1970s, especially in 
the United States. Although their utilization has been ousted in numerous nations, 
they are still used in many developing countries. Organochlorine pesticides get 
aggregated in living beings and pose interminable risks to well-being, for example, 
cancer, neurological, and teratogenic impacts (Vaccari et al. 2006). Numerous xeno-
biotic compounds are unmanageable and resistant to biodegradation, especially 
organochlorine pesticides (Chaudhry and Chapalamadugu 1991; Dua et al. 2002). As 
a result, these exceedingly dangerous and cancer-causing compounds hold on in the 
environment for a relatively long time. But in reality organophosphorus pesticides 
are generally utilized in the United States. These pesticides affect the nervous system 
of insects and humans, in addition to influencing the reproductive system (Colosio 
et al. 2009; Jokanovic and Prostran 2009). Increased utilization of organophosphorus 
in agribusiness has begun to result in different environmental issues (Singh and 
Walker 2006). In spite of the fact that these pesticides degrade rapidly in water, there 
is a possibility that the buildups and by-products of these pesticides remain in unsafe 
levels in living beings (Silva et al. 1999; Ragnarsdottir 2000). Carbamate pesticides 
are imperative in the farming because of their wide movement range. Notwithstanding 
an extensive variety of compound, they are moderately pollute the environment and 
for the most part are less harmful to people (Wolfe et al. 1978). Nonetheless, they 
interfere with the activity of enzyme acetylcholinesterase, thereby inhibiting the 
hydrolysis of acetylcholine (AcH) which results in the accumulation of AcH. This 
leads to different manifestations, for example, sweating, lacrimation, hypersaliva-
tion, and convulsion of extremities (Suzuki and Watanabe 2005). Hence, this class of 
pesticides are considered lethal. Cleaning the pesticide- infested environment is a 
troublesome matter and can be exorbitant. Indeed, the negative effects from pesti-
cides in the environment are for all intents and out-weighed its usefulness. Any mea-
sure used to diminish the impacts of pesticides on the environment will only be a 
palliative measure and not a solution. Unfortunately, there is a constant threat to the 
organisms and environment, for instance, the annihilation of the avian species and 
microorganisms on the planet. Organic strategies are more reliable to disinfect 
regions that have been contaminated by pesticides. These techniques use a large 
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number of microorganisms in the environment, whose specific end goal is to elimi-
nate pesticides from the contaminated zone. Numerous native microorganisms 
develop complex and viable metabolic pathways that allow the biodegradation of 
pollutants that are discharged into nature. In spite of the fact that the metabolic pro-
cedure is long, it is considered a more suitable option for evacuating the wellsprings 
of xenobiotic compound and the contamination they cause (Diaz 2004; Schoefs et al. 
2004; Finley et al. 2010). By virtue of the deadly dangers synthetic pesticides stance 
to the living beings, there is an unending quest for environmentally friendly pesti-
cides that can support agricultural enterprise. Organic pesticides depend on common 
exacerbates that viably control the invasion of bugs in agribusiness. As opposed to 
synthetic pesticides, organic pesticides are advantageous in that they are efficient and 
do not cause inadvertent blowback (Gerhardson 2002; Raaijmakers et  al. 2002; 
Fravel 2005). This chapter discusses the degradation of pesticides using microorgan-
isms and their metabolites. This topic is infinite, and we are going to underscore the 
most recent points, including studies on the biodegradation of organochlorine, 
organophosphorus, and carbamate pesticides by microbiological processes.

1.2  Pesticides

A pesticide can be defined as any substance or mixture of substances that counter-
act, devastate, repulse, or destruct any pest (e.g., nematodes, insects, parasites, rats, 
weeds). Pesticides like herbicides, fungicides, and insecticides and different materi-
als are utilized to control pests (EPA 2015).

Every year, millions of tons of pesticides are used throughout the world. The 
expenditures on pesticides were 35.8 billion in 2006, which increased to 39.4 billion 
US dollars in 2007. One of the essential concerns is to limit hurtful impacts brought 
by organisms including viruses, bacteria, fungi and insects (Liu et al. 2001). The 
broad utilization of pesticides causes environmental worries, as just 5% or less from 
the applied pesticides achieve the objective living beings which brought about con-
tamination of soil and water bodies (major environmental problem of current age). 
Occasional utilization of pesticides results in the process of pesting. This redun-
dancy in the long time application without remediation, essentially prompts pesti-
cides and their deposits in the environments, endangering the whole populace by 
their multifaceted toxicity (Bouziani 2007).

1.2.1  Types of Pesticides

Synthetic pesticides (Table 1.1) offer many benefits to agriculture; however, as dis-
cussed before, they are lethal to other non-target life forms and cause environmental 
contamination. Therefore, research works are focusing on new pests control choices 
due to the impacts of these compounds on human well-being and on the environment. 
The persistence of pesticides in soil differs from 7 days to quite a while relying on the 
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structure of the pesticide and penetration through the soil. For instance, the exceedingly 
toxic phosphates do not hold on for more than 3 months, while chlorinated hydrocar-
bon insecticides like chlordane are known to continue in any event for 4–5 years and a 
few times over 15 years. Constancy of pesticides represents a danger to domesticated 
animals and human well-being. Longer aplications of pesticides prompts the amassing 
of its deposits in soil which may come about into the expanded bioaccumulation by 
plants to the level at which the utilization of plant items may demonstrate harmful to 

Table 1.1 Summary of types of pesticides and their effects

Pesticides Class Examples Health effects

Insecticides Organophosphates Parathion, malathion, methyl 
parathion, chlorpyrifos, 
diazinon, dichlorvos, phosmet, 
fenitrothion tetrachlorvinphos 
and azinphos methyl

Neuropathy, myopathy,
tremors, irritability,
convulsions, inhibiting the 
enzyme 
acetylcholinesterase, 
paralysis

Carbamates Aldicarb, carbofuran 
(Furadan),
fenoxycarb, carbaryl (Sevin), 
ethienocarb and fenobucarb

Inhibition of 
acetylcholinesterase
enzyme, paralysis

Organochlorines
(dichlorodiphenyle
thanes and 
cyclodienes)

DDT, dicofol, heptachlor, 
endosulfan,
chlordane, aldrin, dieldrin, 
endrin, mirex and 
pentachlorophenol

Stimulation of the nervous 
system by disrupting the 
sodium/potassium
balance of the nerve fiber, 
tremors,
irritability, convulsions,
hyperexcitable state of the 
brain, cardiac arrhythmiatic 
and reproductive problems

Herbicides Phenoxy and
benzoic acids,
triazines, ureas, and
Chloroacetanilides

Chlorophenoxy acids,
hexachlorobenzene (HCB), 
Picloram, atrazine, simazine, 
propazine, diquat, paraquat, 
oxyfluorfen, alachlor, 
fluroxypyr

Dermal toxicity, 
carcinogenic effect,
damage to the liver, 
thyroid, nervous system, 
bones, kidneys, blood and 
immune system.

Fungicides Substituted 
benzenes,
thiocarbamates,
thiophthalimides,
organomercury 
compounds, etc.

Chloroneb, chlorothalanil,
hexachlorobenzene, ferbam, 
metam
sodium, thiram, ziram, ethyl 
mercury

Damage to the liver, 
thyroid, nervous system, 
bones, kidneys, blood and 
immune system, 
carcinogenic property also

Rodenticides Coumarins,1,3- 
indandione

Warfarin, coumatetralyl, 
difenacoum, brodifacoum, 
flocoumafen, bromadiolone 
diphacinone, chlorophacinone, 
pindone

Nematicides Aldicarb, 
dibromochloropropane

Bactericides Metiram, difolatan
Botanicals Perethrin, permethrin
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human being and also animals. Pesticides buildups in different environmental frame-
works (soil and additionally water) have been reported around the world.

1.2.2  Biological Pesticides

As per the Environmental Protection Agency (EPA 2015), biopesticides are charac-
terized as naturally occurring pest control substances. They are categorized into 
three groups (Joshi 2006):

Microbial pesticides: a microbial living thing (microorganisms, protozoans, par-
asites) is the dynamic control agent

Plant pesticides: pesticidal substances produced by plants from presented genetic 
material (plant consolidated protectants)

Biochemical pesticides: naturally occurring substances that control pests by non- 
toxic components. These incorporate substances that meddle with development or 
mating, for example, pheromones.

The good thing about biopesticides is their safety to non-target life form, biode-
gradability and their specificity, which allows the utilization of little measurements 
and power presentation, thus maintaining a strategic distance from contamination 
created by conventional pesticides (Rosell et al. 2008). Notwithstanding being less 
harmful than chemical pesticides, biopesticides are significantly utilized in inte-
grated pest management (IPM) procedures, where they incredibly diminish the uti-
lization of chemicals, thereby increasing harvest yields. The specificity of 
biopesticides varies widely depending on their chemical counterparts.

1.2.2.1  Organochlorine, Organophosphate, and Carbamate Pesticides

Organochlorine pesticides (Fig. 1.1) are being used widely throughout the world for 
public health and farming purposes. As of now, their utilization is being eliminated 
in light of their toxic quality, environmental industriousness and collection in the 
environmental way of life. Hexachlorocyclohexane (HCH) is a standout among the 
most widely used organochlorine pesticides for both agriculture and medical pur-
poses. Although the use of a specialized mixture containing eight stereoisomers of 
organochlorine compounds was restricted in a few developing countries in the 
1970s, many developed nations continue to use lindane (γ-HCH) for monetary rea-
sons. Hence, new destinations are consistently being polluted by γ-HCH and its 
stereoisomers (Blais et al. 1998; Iwata et al. 1993).

As of now, among the different groups of pesticides used around the world, 
organophosphorus pesticides are the major and most widely used, accounting for 
more than 36% of the total world market. The most utilized among these is methyl 
parathion. Its accumulation causes numerous health risks; therefore, its degradation 
becomes vital (Ghosh et al. 2010). Organophosphorus pesticides (OP) are esters of 
phosphoric acid, also called organophosphates, which includes aliphatic, phenyl, 
and heterocyclic derivatives (Fig. 1.2). Organophosphates are used to control the 
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Fig. 1.1 Structure of organochlorine pesticide

Fig. 1.2 Structure of organophosphate pesticide
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sucking, biting, and boring insects, arachnid, aphids, and pests that assault crops 
like cotton, sugarcane, peanuts, tobacco, vegetables and other products of the soil. 
Organophosphorus pesticides are advertised by a considerable lot of the world’s 
major agrochemical organizations. Few principal agricultural products are para-
thion, methyl parathion, chlorpyriphos, malathion, monocrotophos, diazinon, feni-
trothion, and dimethoate (Fig. 1.2).

Carbamates were introduced as pesticides in the early 1950s and are still used 
extensively in pest control due to their effectiveness and broad spectrum of biologi-
cal activity (insecticides, fungicides, herbicides). High polarity and solubility in 
water and thermal instability are typical characteristics of carbamate pesticides, as 
well as high acute toxicity. The carbamates are transformed into various products in 
consequence of several processes such as hydrolysis, biodegradation, oxidation, 
photolysis, biotransformation, and metabolic reactions in living organisms (Soriano 
et  al. 2001). Chemically, the carbamate pesticides are esters of carbamates and 
organic compounds derived from carbamic acid (Fig. 1.3). This group of pesticides 
can be divided into benzimidazole-, N-methyl-, N-phenyl-, and thiocarbamates. The 
compounds derived from carbamic acid are probably the insecticides with the wid-
est range of biocidic activities (Sogorb and Vilanova 2002).

1.2.3  Importance of Pesticides

The important goal of using pesticides in agricultural fields is to control vermins and 
disease vectors. This has been ponder upon as human efforts through research could 
be used in expanding agricultural yields and enhancing general wellbeing when 
pesticides are applied (Helweg 2003). Pesticides discharged into the environment 
may have a few unfriendly environmental impacts extending from long time impacts 
to numerous changes in biological community. In spite of the great consequences of 
utilizing pesticides in agriculture and public health, their utilization is typically with 
pernicious environmental and general well-being impacts. Pesticides are considered 
remarkable environmental contaminants because of their high organic toxicity 
(acute and chronic). Pesticides by definition are lethal compound operators. A pes-
ticide is normally equipped with harmful substances to all types of life other than the 
focused pests. Because of this property, they can be best defined as biocides (fit to 
destroy all forms of life). Albeit a few pesticides are produced to be specific in their 
method of action, that their scope of selectivity is just restricted to the targeted pest.

Fig. 1.3 General structures of carbamate pesticides
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