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Supervisor’s Foreword

Femtochemistry brings together researchers from a range of different disciplines;
however, those with a strong foundation in fundamental organic chemistry are
scarce and this is where the thesis of Dr. Bjørnholst bridges a gap. Organic
chemistry is rooted in the functional group, that is, the idea that reactivity can be
predicted and utilised based on specific structural units in a molecule.
Femtochemistry, on the other hand, is often approached on a case-to-case basis with
a slightly more fundamental assessment starting from quantum chemical calcula-
tions. The overarching idea behind the dynamophore, a term coined by the Stolow
group where Dr. Bjørnholst spent time during his studies, is that functional groups
or combinations thereof will determine the initial nuclear motions (the dynamics) of
molecules that are electronically excited. These initial motions are predetermining
for the chain of events that follow the absorption of a photon, and therefore the aim
is to ultimately be able to predict how the nuclei move and what photophysical or
photochemical processes these motions trigger simply from a glimpse at the
molecular structure—exactly as it is possible for an organic chemist to predict what
a carbonyl group will do with an electrophile. The thesis of Dr. Bjørnholst is unique
in the sense that it consistently follows this line of thought throughout. By
attempting to assess a large range of the possible electronic transitions that can arise
from exposing an organic functional group to a photon, the thesis provides a
consistent overview of exactly how most functional groups in organic molecules
induce specific nuclear motions that potentially lead to specific electronic transi-
tions and eventually selective photoinduced bond breakage—something which has
been considered the dream of most photochemists for decades.

Copenhagen, Denmark
May 2020

Prof. Theis I. Sølling
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Abstract

Non-adiabatic transitions are central in the study of photoinduced dynamics of
polyatomic molecules. Time-resolved photoelectron spectroscopy (TRPES) is a
technique that is particularly sensitive to the changes in electronic structure, and
thus non-adiabatic transitions between electronically excited states have been
revealed in a vast number of molecules by TRPES studies.

The non-radiative molecular response to excitation, e.g. internal conversion (IC),
is often found to occur on the ultrafast timescale. The associated strong
non-adiabatic couplings occur only along a small subset of nuclear degrees of
freedom, and few structural changes are inherently responsible for ultrafast IC. The
link between molecular structure and the excited state structural changes has pre-
viously been conceptualised as ‘dynamophores’.

The VUV photoinduced dynamics of four cyclic ketones and one linear ketone is
studied and exhibit qualitatively similar dynamics. The initially excited states have
3d Rydberg character but also display partial (p; p�) valence character. The
observed excited state lifetimes are quantitatively similar, indicating that a common
deactivation mechanism is associated with 3d Rydberg excitation in ketones and as
such the dynamics are consistent with the dynamophore concept.

The ring-opening and dissociative dynamics of cyclopropane are studied by a
joint computational and experimental study. The computational results show that
vertical excitation energies are inadequate to predict and assign the experimental
absorption spectrum. The explicit inclusion of the electromagnetic field associated
with a pump pulse is required to qualitatively reproduce the absorption spectrum.
The ensuing dynamics are also simulated and show impressive quantitative
agreement with the experimental results.

Model systems for the disulfide bond and the peptide bond, which are both
related to the structure of proteins, are additionally investigated. The dynamics are
similar in the sense that a dense manifold of Rydberg states is present in both cases,
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and these efficiently couple with valence states, ultimately leading to dissociation.
Finally, the potential ultrafast intersystem crossing (ISC) in three methylated ben-
zene derivatives is investigated computationally, and the same structural change
associated with IC is highlighted as being crucial to the potential ISC as well in all
three compounds, consistent with a common dynamophore in the systems.
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Preface

This thesis has been submitted to the Ph.D. School at the Faculty of Science at the
University of Copenhagen as partial fulfilment of the requirements to obtain the
Ph.D. degree in chemistry. The work has been carried out under the supervision of
Prof. Theis I. Sølling at the Department of Chemistry at the University of
Copenhagen during a 3-year period from September 2015 to 2018. The majority of
this time was spent in the Femtolab at the University of Copenhagen, carrying out
experiments and calculations. Part of the work was also carried out during a
7-month visit to the group of Prof. Albert Stolow at the National Research Council
of Canada (NRC) and the University of Ottawa in 2016, with an additional 3-week
re-visit in March 2018. A purely computational project was carried out during a
6-week visit to the group of Prof. Leticia González at the University of Vienna in
late 2017.

Copenhagen, Denmark Martin Alex Bjørnholst
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