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Preface

Over the past three decades, the scientific community has realized the urgency of
obtaining a better understanding of the interaction between the earth’s atmosphere/
biosphere and the sun’s radiant energy. Most of the research has focused on the
radiant energy balances in the solar and infrared regions of the spectrum, and the
way these energy flows affect the climate. During this same time frame, in a
related arena, a smaller group of dedicated individuals has concentrated on the
role of ultraviolet (UV) radiation as it affects the overall welfare of the planet.
Although comprising only a small fraction of the radiation balance that may play
a role in global climate change over the next centuries, UV radiation has the
capacity to cause direct and more immediate harm to virtually all living organisms
and especially to human health. Cumulative high doses of UV radiation are
considered a major causal factor in the development of skin cancer and cataracts.
Ultraviolet radiation can weaken the human immune system, and can also affect
crop production and ocean bio-productivity.

Concerns about the increased levels of UV-B radiation reaching the earth’s
surface have led to the development of ground- and space-based measurement
programs to provide long-term records of its levels. Accurate long-term
measurements are difficult to obtain, especially when limited to the bandwidth
regions that contain the most harmful solar photons. A core of concerned
scientists from across the globe realizes that much work is needed in quantifying
the harmful radiation levels and defining their adverse effects. In assessing the
effects of UV-B radiation, it is important to realize the complexity of the
interactions of living organisms that cause adverse responses with radiant energy
directly, as well as in combination with other climate stressors, such as drought,
increased temperatures, and CO,.

This book addresses work that has been conducted throughout the world over
the past three decades, such as: (1) current efforts for establishing a climatology of
UV radiation; (2) modeling the UV component and its impact on ecosystems, human
health, and related economic and social implications; (3) new developments in



UV instrumentation, advances in calibration (ground-based and satellite-based)
measurement methods; and (4) the effects of global climate change on UV
radiation. All chapters, including the review chapters, have been solicited from
renowned scientists in their research fields of UV radiation, meteorology, the
environment, and ecosystems. They have presented their work based on research
at the global scale, taking into consideration possible future developments. Many
new techniques and methods developed from space-ground measurements,
mathematical modeling, and remote sensing have recently become available, yet
have not previously been presented. This book will be a useful source of reference
for undergraduate and graduate students who are involved in the study of global
change, environmental science, meteorology, climatology, biology, and agricultural
and forest sciences. It will also benefit scientists in related research fields, as well
as professors, policy makers, and the general public.

As editors of this book, we wish to express our great appreciation for the
contributions of many individuals. We are indebted to the over 50 authors and
co-authors within the scientific community who have shared their expertise and
contributed much time and effort in the preparation of the book chapters. We also
wish to give credit to the numerous funding sources promoting the scientific
research performed, and thus the valuable findings shared by the authors. We
express our appreciation to the many reviewers and expert scientists who took
the time to offer valuable comments and suggestions for the improvement of the
book chapters. We acknowledge the management and editorial assistance of Laurie
Richards and the technical support of Jonathan Straube of the Natural Resource
Ecology Laboratory, Colorado State University and Tsinghua University Press and
Springer-Verlag. We especially want to express our appreciation for the support of
the Cooperative State Research, Education and Extension Service (CSREES) of
the U.S. Department of Agriculture, and the USDA UV-B Monitoring and
Research Program at Colorado State University. The efforts of many individuals
including Drs. John Moore, John Davis, Steve Liu, Ni-Bin Chang, Mr. George
Janson, and Ms. Rita Deike are appreciated.

Dr. Wei Gao

Colorado State University

Fort Collins, CO

Dr. Daniel Schmoldt

U.S. Department of Agriculture
Washington, D.C.

May 2009
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1 A Climatology of UV Radiation, 1979-2000,
65S—-65N

Julia Lee-Taylorl, Sasha Madronich', Christopher Fischer',
and Bernhard Mayer’

! National Center for Atmospheric Research, Boulder, Colorado, USA
2 Deutsches Zentrum fiir Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Abstract Solar ultraviolet (UV) radiation reaching earth’s surface is of
interest because of its role in the induction of various biological and chemical
processes, including skin cancer. We present climatological distributions of
monthly mean surface-level UV radiation, calculated using the Tropospheric
Ultraviolet-Visible (TUV) radiative transfer model with inputs of ozone
column amounts and cloud reflectivities (at 380 nm) measured by satellite
instruments (Total Ozone Mapping Spectrometers (TOMS), aboard Nimbus-7,
Meteor-3, and Earth Probe). The climatology is averaged over the years
1979-2000 for UV-A (315 nm— 400 nm), UV-B (280 nm— 315 nm), and
radiation weighted by the action spectra for the induction of erythema
(skin-reddening), pre-vitamin D5 synthesis, and non-melanoma carcinogenesis.
Coverage is global, excluding the poles.

Comparisons with concurrent ground-based UV radiation measurements
archived at the World Ozone and Ultraviolet Data Center show agreement at
the 10% — 20% level, except at high latitudes where the large surface albedo
of snow and ice invalidates the use of satellite-observed reflectivity in
estimating cloud cover. The climatology may be useful in epidemiological
studies that assess the role of long-term environmental exposure to UV
radiation.

Keywords UV climatology, erythema, vitamin D synthesis, TUV model

1.1 Introduction

Solar ultraviolet radiation transmitted through the atmosphere to earth’s surface
is known to induce various biological and chemical processes, many of which are
harmful to living tissues and some materials (see UNEP, 20006, for a review).
Examples of processes relevant to human health include skin-reddening (erythema),
synthesis of vitamin D within skin, and induction of various skin cancers. The
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long-term geographical distribution of surface UV radiation is of considerable
interest towards understanding these effects. However, environmental UV levels
are highly variable due to daily and seasonal cycles at different latitudes, and to
variations in atmospheric transmission (mainly attributable to variations in ozone,
clouds, and aerosols) and surface reflections. Ultraviolet radiation measurements
by ground-based instruments are too few, and their record relatively short, to
construct a unified picture of its average global distribution.

An alternative method of estimating surface UV levels with long-term global
coverage relies on satellite-based observations of earth’s atmosphere and surface,
combined with a computer model of the propagation of UV radiation through
the atmosphere. This methodology is already in use on a NASA website
(http://jwocky.gsfc.nasa.gov/ery uv/ery uvl.html, which uses data from the
TOMS ozone-monitoring satellite instruments to generate maps of erythemal UV
for specific days. Other applications of the technique have illuminated interesting
aspects of the problem, i.e., estimation of zonal mean irradiances at different
UV wavelengths, of trends due to ozone changes, of cloud effects, and of
geographical distributions based on monthly averaged ozone and clouds (e.g.,
Frederick and Lubin, 1988; Madronich, 1992; Eck et al., 1995; Frederick and Erlick,
1995; Herman et al., 1996a; Lubin et al., 1998; Herman et al., 1999; Sabziparvar
et al., 1999; Herman et al., 2000; McKenzie et al., 2001). Here we use satellite-
based observations of atmospheric ozone and clouds to derive a climatology of
erythemal UV radiation with nearly global coverage (excluding the polar regions),
averaged over the years 1979 —2000. We developed a fast method for the explicit
calculation of UV daily doses for each day of the whole time period. Averaging
daily UV doses, rather than calculating monthly doses on the bases of monthly-
averaged cloudiness and ozone, reduces possible uncertainties connected with the
non-linear relationship between atmospheric parameters (e.g., total ozone and clouds)
and surface UV radiation. Comparisons with long-term measurements at 22 UV
monitoring stations allow some assessment of the reliability of this technique.
Climatologies such as those presented here can be useful in epidemiological
studies that assess the role of long-term environmental exposure to ultraviolet
radiation, such as those discussed in Chapter 2 (McKenzie and Liley).

1.2 Method

UV broadband irradiances (W m ?) are computed as integrals over wavelength 1
(nm) of spectral irradiances £(4) (W m ™~ nm ') weighted by appropriate spectral
functions S(1) (typically unit-less):

Trradiance = jS(/I) E(A) dA
E(X) is a function of solar zenith angle (SZA) and surface elevation, as well as

2
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optical depth profiles of atmospheric absorbers and scatterers (e.g., ozone and
clouds). The values of S(A) are unity for UV-A and UV-B in the respective
wavelength ranges of 315 nm— 400 nm and 280 nm— 315 nm, and zero outside
these ranges. Figure 1.1 shows the wavelength dependence for three action spectra
with relevance to human health: (1) erythema (McKinlay and Diffey, 1987),
(2) pre-vitamin D3 production in human skin (Holick et al., 2006, after MacLaughlin
et al., 1982), and (3) photocarcinogenesis of non-melanoma skin cancers (CIE,
2006). The erythema action spectrum has been accepted for the calculation of the
instantaneous UV index (defined as the UV, irradiance multiplied by 40
(ICNIRP, 1995; WMO, 1997)), and the time-integrated standard erythemal dose
(SED =100 J m* (CIE, 1998)). In practice, use of this CIE spectrum emphasizes
the ozone-sensitive region of 295 nm — 320 nm, peaking near 305 nm with minor
contributions from longer wavelengths (Madronich et al., 1998; Micheletti et al.,
2003). The other two functions are somewhat similar, in that they maximize at
around 305 nm wavelength, and decrease by several orders of magnitude by 330 nm.

0
10°F 0
7 4 N
R — Erythema
‘"\ - = Vitamin D
2 107F i
z
2 102
2
=
&
1073
1
_ ]
10 4‘1 ......... [T Lo [T Lovuinnnns [T L
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Wavelength (nm)

Figure 1.1 Spectral functions for erythema: solid line (McKinlay and Diffey, 1987);
synthesis of pre-vitamin D3: dashed line (MacLaughlin et al., 1982; Holick et al., 2006);
and non-melanoma carcinogenesis: dotted line (CIE, 2006)

Compilation of a global UV climatology is computationally intensive, requiring
the calculation of E(A) at all relevant wavelengths, at each geographical location,
and over diurnal cycles for each day of each year. To reduce computational time,
we used the TUV model (Madronich and Flocke, 1997) to pre-tabulate values of
weighted UV irradiances as a function of SZA (0° to 96° in 1° steps), ozone
column (43 DU - 643 DU in steps of 10 DU), and surface elevation (0, 3, and 8
km above sea level), for cloud-free and aerosol-free conditions. The omission of
UV absorption by aerosols can lead to overestimates of irradiance for polluted
locations; this limitation will be discussed in more detail later. E(1) at earth’s
surface was computed at 1 nm steps from 280 nm — 400 nm. The spectral irradiance

3
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incident at the top of the atmosphere was taken from the Atlas3/SUSIM
measurements (D. Prinz, pers. comm., 1998). Vertical profiles (appropriate for
mid-latitude, annual average conditions) for air density, temperature, and ozone
were taken from the U.S. Standard Atmosphere (USSA, 1976) with, however, the
ozone profile re-scaled to the actual ozone column (see below). The propagation
of solar radiation through the atmosphere was computed with a 4-stream discrete
ordinates method (Stamnes et al., 1988), with pseudo-spherical correction for
improved accuracy at low sun conditions (Petropavlovskikh, 1995). A Lambertian
surface albedo of 5% was assumed at all wavelengths.

The atmospheric ozone column and cloud reflectivity at 380 nm (R) were taken
from the TOMS data from three satellites: (1) Nimbus-7, Level 3/Version 8
(McPeters et al., 1996), Nov. 1, 1978 to Dec. 31, 1992; (2) Meteor-3, Level
3/Version 8 (Herman et al., 1996b), Aug. 22, 1991 to Dec. 11, 1994; and
(3) Earth Probe, Level 3/Version 8 (McPeters et al., 1998), July 7, 1996 to June
30, 2000. The geographical resolution of the measurements was 1.25° longitude by
1.00° latitude. For each grid point, only one satellite overpass per day occurred
(ca. local noon). We therefore assumed constant ozone and reflectivity values for
the entire day. Local values of the ozone column, SZA and surface elevation were
used to compute the clear-sky irradiances at 30-minute intervals over half days by
interpolation of the pre-tabulated values. Assuming symmetry about local noon,
these data were integrated over 24 hours to obtain the daily UV-A, UV-B, and
erythemal doses. A correction for variations in the earth-sun distance was applied
as a function of date. A reduction factor F for cloud cover, identical to that used
by Eck et al. (1995), was then applied:

1/F=

1-(R-0.05)/0.9, R<50%
1-R, R>50%

For cloud-free and aerosol-free conditions, total reflectivity at 380 nm is
dominated by Rayleigh scattering and surface reflections, the latter being rather
small at UV wavelengths unless snow or ice is present. The TOMS algorithm
attributes excess reflectivity to clouds or scattering aerosols, without distinguishing
between the two. When high surface albedo is encountered (e.g., snow or ice),
this method erroneously interprets the high surface reflectivity as cloud cover,
thus artificially reducing surface UV irradiance. Polar regions are therefore
excluded from our analysis. For non-polar regions, including mountainous
regions, we did not attempt to correct for snow cover. The calculated UV doses
for such areas should therefore be considered as lower limits.

The calculation of UV doses should in principle be carried out for each location
and each day over the satellite record (ca. 1979 — 2000). However, gaps in the
satellite record exist, so that for some days and/or locations, no doses could be
computed. These missing days require some consideration to avoid biases in any

4
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long term averages and trends. For each location, monthly averaged doses were
calculated for each of the 247 months in the combined dataset, but were considered
valid only if at least half of the days in that month had data. No attempt was
made to discriminate between the months in which data gaps typically occurred
during the early part of the month and when they typically occurred during the
latter part of the month. In some cases, measurements for the same location and
days were available from two different satellites; in such cases, monthly means
for each satellite were computed, then averaged together to obtain a single mean
for that month.

Climatological monthly values were computed for each location by averaging
all valid values for that month over multiple years (e.g., climatological January is
the mean of all valid January values over 1979 — 2000, etc.). For most of this chapter,
we consider averages over the full 22 years (1979 —2000), but for some of the
discussion below, we also considered the time periods 1979 — 1989 and 1990 —
2000 separately. Climatological annual values were computed as the mean of all
valid climatological monthly values, specifically (mean of all Jans. + mean of all
Febs. +---+ mean of all Decs.)/12.

The second period (1990 — 2000) is missing some data (all of 1995, Jan— Jun
1996, Jul — Dec 2000). We tested the effects of these missing data on the calculated
changes by temporarily removing the analogous months from the 1979 — 1989
record and comparing the resulting climatology to that of the complete
1979 — 1989 period. Differences of <+ 0.2% were obtained. This is on the order
of ~1/10 of the clear sky changes between the two periods 1979 — 1989 and
1990 —- 2000, and on the order of <1/10 of the changes in the “all sky” values
between these two periods.

For a comparison with the satellite-derived estimates, we used measurements
of UV irradiances by ground-based spectroradiometers, obtained from the World
Ozone and UV Data Center archive (WOUDC; data downloaded June 2002).
Measured UV, doses are reported as daily integrals of spectral observations
integrated over wavelength with the McKinlay and Diffey (1987) erythemal action
spectrum weighting. The archives include 22 non-polar stations; 10 in Canada
(Meteorological Service of Canada, MSC); 4 in Japan (Japan Meteorological
Agency, JMA); 2 in the Taiwan region (“Central Weather Bureau of Taiwan,
CWBT?”), and 1 each in Obninsk, Russia (Institute of Experimental Meteorology-
Scientific Production Association (IEM-SPA)), Poprad-Ganovce, Slovakia (Slovak
HydroMeteorological Institute (SHMI)); Mauna Loa, HI (MSC); San Diego, CA;
Ushuaia, Argentina; and Palmer Station, Antarctica (all US National Science
Foundation (NSF) sites). The NSF sites operated double monochromators
(Biospherical Instruments, Inc), while all other sites operated Brewer single
monochromators. Our satellite-based irradiance values for station locations were
derived for the locations and altitudes of the ground-based stations.
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1.3 Results

1.3.1 Satellite-Derived UV Climatologies

The geographical distributions of daily UV radiation doses at earth’s surface,
averaged over the entire time period of (Nov. 1, 1978 —June 30, 2000) are shown
in Figs. 1.2—-1.6. The upper panel in each figure shows values calculated by
considering the effects of both ozone and clouds, as estimated from TOMS data,
and are thus assessed to be nearest to the actual values experienced over this time
period. The lower panels show climatological distributions estimated for hypothetical
cloud-free skies (i.e., estimated from the ozone distributions without correcting
for the presence of clouds).
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Figure 1.2 Climatological daily doses of UV-A at earth’s surface, derived from
satellite (TOMS) observations of the atmospheric ozone column and cloud
reflectivity at 380 nm and averaged annually over Nov 1, 1978 — June 30, 2000,
with (upper) and without (lower) correcting for the presence of clouds
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Figure 1.3 Climatological daily doses of UV-B at earth’s surface, as Fig. 1.2
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Figure 1.4 Climatological daily doses of erythemal UV at earth’s surface, as Fig
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VtD: annual mean: kJ/m?/day:ozone + clouds case

Figure 1.5 Climatological daily doses of UV weighted for pre-vitamin D5 synthesis
at earth’s surface, as Fig. 1.2

The zonally homogeneous distribution of UV-A calculated for cloud-free
conditions shows almost exclusive dependence on solar position, with only small
variations due to surface topography. Ozone column variations induce additional
zonal variations in the distributions of cloud-free UV-B and UV weighted for
either erythema or other biological response functions. However, the strongest
longitudinal variations in the surface UV dose rate distributions are caused by
climatological cloud distributions.

As expected, the highest doses are generally seen in the tropics, up to ca.
6 kJ m > day ' (60 SED day ") for erythemal UV in the eastern Pacific and eastern
Africa, but with substantial cloud-related reductions over western South America,
parts of West Africa, and just north of the equator in the eastern and central
Pacific. Middle latitudes of both hemispheres show a general pole-ward decrease
from about 5 to 1 kJ m ™ day ', with some regional highs associated with higher
elevations, smaller ozone columns, and infrequent cloudiness (e.g., the Andes
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Figure 1.6 Climatological daily doses of UV weighted for non-melanoma
carcinogenesis at earth’s surface, as Fig. 1.2
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Figure 1.7 Climatological annual mean cloud-related UV reduction factors for
daily doses of UV-A derived from satellite (TOMS) observations of the atmospheric
ozone column and cloud reflectivity at 380 nm for Nov 1, 1978 — June 30, 2000.
Cloud-related UV reduction factors for the other UV functions discussed in this
chapter are similar
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Mountains, the Tibetan Plateau, central Mexico, and the southwestern U.S.).
Lower values for those latitudes are noted for East Asia and the coastal eastern
Pacific, associated with more frequent cloud cover. Figure 1.7 shows the cloud-
related UV reduction factor, calculated as the ratio of the cloud-corrected
climatological daily UV dose (upper panels of Figs. 1.2 — 1.6) to the climatological
daily dose before cloud-correction (lower panels of Figs. 1.2 —1.6).

The seasonal variations of the 22-year UV dose climatologies are shown in
Figs. 1.8 —1.11. (The seasonal variability of UV weighted for non-melanoma
carcinogenesis is similar in magnitude and distribution to that of UV weighted
for pre-vitamin D3 synthesis, so it is not shown.) The latitudinal distributions are
generally consistent with the annual variation of the subsolar point in the tropics,
giving strong seasonal variations at temperate latitudes (out of phase by six
months between the two hemispheres).
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Figure 1.8 Seasonal variability of daily doses of UV-A. The figure shows the
daily doses averaged over the period Dec. 1, 1978 — June 30, 2000 for the months
of June (upper) and December (lower)
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