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Series Editor’s Foreword

Mechatronics is a discipline that includes elements of mechanics, electronics,
computer science, and control. It is a complex discipline simply because its nature
combines the essences of so many others but it is extremely fascinating and relevant
for our daily life and for industrial production. We live in a world pervaded by
mechatronic systems: our cars are an example, as are the robots that contribute to
their assembly, the robotic systems that process the food we eat, the automated cells
involved in the manufacture of fabrics and leather to create the clothes and the shoes
we wear, the machines that make the work of farmers in agriculture less laborious,
and many home automation systems and smart components associated with the
Internet of Things; all these are mechatronic systems.

Apart from the aforementioned applications, there is no doubt that one of the
fields in which mechatronics has taken hold significantly in recent decades is
healthcare. Many fundamental medical devices are mechatronic systems. Think, for
example, of prosthetic limbs that allow realistic movements, restoring to amputees a
quality of life that would have been unbelievable decades ago. Think of robotic
surgery devices, which support surgeons in surgical activities that are extremely
complex to perform by laparoscopy, also allowing the surgeon to operate while
sitting and with a perfect vision of the operating field, which is often impossible
with conventional surgery. In addition, since robot-assisted surgery is minimally
invasive, it enables quicker patient recovery.

Among the possible medical applications of mechatronics, we cannot omit the
use of machines for rehabilitation, including wearable robot systems such as
exoskeletons and rehabilitation robots, which nowadays are increasingly combined
with advanced communication systems, even allowing the patient to be rehabili-
tated remotely. It is no coincidence that, at present, the term bio-mechatronics is
more and more often used in the related technical literature.

In writing this Foreword, I cannot ignore the difficult moment in which this book
is being prepared. A historic moment marked by the heavy social and economic
impact of COVID-19. In this dramatic situation, medical mechatronics has played a

vii
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crucial role, supporting hospital workers in carrying out their duties despite difficult
and risky conditions. The pandemic has further motivated researchers and tech-
nologists from all over the world to investigate new possibilities in the medical
mechatronics. Given that the pandemic caused by SARS-CoV-2 is still ongoing and
that future disease outbreaks cannot be excluded, nascent ideas of new mechatronic
medical applications deserve to be sustained and brought to realization whether
these be directly related to patient care—in the automation of taking nasal swabs
without undue patient discomfort, for example—or in more general preventative
measures such as the automated sanitization of daily work spaces without damage
to nearby equipment. In scenarios in which the risk of contagion is high, and
effective personal protection devices are not always available, the role of machines
equipped with a certain level of autonomy, reliability, and finesse becomes of
utmost importance.

The application of mechatronics to the healthcare sector and medicine, in gen-
eral, brings formidable challenges, both from the point of view of the development
of the underlying theory, and of the realization of the devices at affordable cost. To
this end, the use of accurate kinematic and dynamic models is fundamental. The
theoretical implications of controlling the interaction between the device and the
environment, and of the hybrid force/position control of the parts of the machine
which come in contact with the patient cannot be overlooked.

Turning to economic and productivity concerns, the production volumes of these
machines, especially of those which perform niche operations or very-high-
precision tasks such as ophthalmic surgical robots, may not be enormous.
Therefore, the research and development phase must also address cost containment,
in order to guarantee a competitive advantage for producers. Achieving a fair
balance between costs and benefits is also assisted by dedicating attention to the
theoretical aspects and following a rigorous methodological approach in the design
and development phase.

From this perspective, this book plays two important roles. It provides the user
with the methodological tools that can help understand the functioning and char-
acteristics of a certain mechatronic device, specifically a device of medical type. It
also reviews theoretical tools relevant to ensuring that mechanical and control
design is reliable and efficient. It is a very thoroughgoing book, covering a broad
spectrum of topics, from force and position control to observer-based force esti-
mation, encompassing supervisory and vision-based motion and interaction control
strategies.

If, at first glance, the book may appear to be a classic robotics book, a more
careful reading reveals that this is absolutely not true. All parts, even those that refer
to very classic topics, are made modern and interesting thanks to their being cus-
tomized for the specific case of mechatronic medical devices.
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With this volume, Advances in Industrial Control is enriched with a new
monograph that contributes strongly to broadening the scope of the series, con-
firming that the meaning of the adjective “industrial” that we agree on in this
context is very broad and inclusive of the control of machines, devices, and systems
that do not fall under the conventional classification of industrial applications.

Antonella Ferrara
University of Pavia, Italy



Preface

Mechatronic systems have been increasingly used in many industrial and medical
applications, where they are designed to work for various tasks in different envi-
ronments. Significantly, many applications are required to carry out the contact
operation and handle the interaction between the mechatronic systems and the
environments (contacting objects) in order to complete the specific task success-
fully, such as grasping, polishing, assembly, robotic surgery, injection, etc. During
the contact operation, the interaction force needs to be regulated carefully to avoid
the undesirable effects and ensure the success of the performed task. As a conse-
quence, force control is needed and designed delicately to meet specific require-
ments and achieve desired performance.

To achieve an appropriate or desired interaction, force feedback control is an
effective way to regulate contact behavior. In recent years, huge numbers of
research works report various force feedback schemes, which show good effec-
tiveness of applying force controller in different applications. The explicit force
controllers can achieve low force overshoot good force tracking performance,
especially when the contact model is established accurately. However, it is noted
that the motion/position of the actuation system is unconstrained or uncontrolled for
pure force controllers (i.e., only the force is controlled directly). To deal with the
applications where both force control and position control are required, force and
position control is the major approach.

In this book, we offer systematic coverage of theoretical and practical aspects in
the area of force and position control, which gives the readers an overview on the
concepts, design, and implementation approaches of such control system. This book
totally consists of nine chapters. More specifically, the first chapter of this book
introduces the general concepts and technologies related to the force sensing,
interaction modeling, and control strategy. In the following chapters from Chap. 2
to Chap. 8, the novel ideas and innovations related to the force estimation and the
force and position control (includes direct force control, force—position control and
impedance control) are reported in detail. Significantly, Chaps. 3-8 are technical
chapters that are presented along with specific applications in medical devices.
These chapters not only offer the readers various general knowledge and new

xi
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thinking to solve their application challenges or control problems, but also provide
the readers detailed references and examples on the ways to integrate the suitable
control approaches into the practices. Lastly, the final chapter concludes this book.

In summary, this book gives an overview of the force and position control
techniques; shows the readers our several recent novel ideas and innovations on the
design and implementation of the force control and the force and position control
for mechatronics; and uses the practical applications as case studies where detailed
experimental verifications and results are given. From this book, readers can expect
to learn how to design and implement new techniques of force control or force and
position control for mechatronic systems, especially, medical devices. In particular,
application-oriented readers can benefit more from this book.

Besides, we would like to take the opportunity to many thank Dr. Sunan Huang
for his help and constructive suggestions in the writing of this book. Also, this book
would not be possible without the generous assistance of the following colleagues
and friends: Mr. Chee Siong Tan, Dr. Lynne Hsueh Yee Lim, Mr. Chee Wee Gan,
Dr. Cailin Ng, Mr. Zhao Feng, Dr. Wenchao Gao, Dr. Jun Yik Lau, Dr. Jun Ma,
and Dr. Silu Chen. Moreover, we are grateful for the help provided by the Editors.
Finally, we thank our families for their love and support.

May the force be with you!

Singapore, Singapore Tong Heng Lee
Singapore, Singapore Wenyu Liang
Vancouver, Canada Clarence W. de Silva
Singapore, Singapore Kok Kiong Tan

April 2020
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Chapter 1 ®)
Introduction Check for

Forces result from interactions between objects. Interactions with other objects play
a significant role in the proper and successful completion of various specific tasks
for mechatronic systems. To deal with the interaction problems, force control is
an effective and good way to guarantee the acceptable or desired contact. In recent
years, the force control plays a more and more important role in mechatronic systems
as the tasks of these systems become more complex and have increasing needs for
handling the interaction between their contacting objects (e.g., environment, human)
and themselves.

1.1 Overview

With the rapid development of mechatronics, mechatronic systems have been increas-
ingly used in healthcare and medical applications due to their capabilities of automat-
ing processes with precise and fast motions, such as ear surgical device [1], surgical
robot for laparoscopic surgery [2], robot-assisted beating heart surgery [3, 4], robot-
assisted vitreoretinal surgery [5, 6], palpation probe for minimally invasive surgery
(MIS) [7], hand-held ultrasound probe [8], cell injection system [9-11], powered
exoskeleton [12], and so on. Remarkably, advancements in mechatronic systems of
the medical devices allow surgeons/doctors to conduct the surgical treatments in a
more efficient way.

Meanwhile, the tasks of medical devices become more complex, and higher dex-
terity as well as higher adaptability to different circumstances are needed with the
increase of various applications. Therefore, they are not only required to generate
precise motions to complete their tasks but also required to handle the interactions
between the environment or human and themselves (e.g., robot—environment inter-
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2 1 Introduction

action and human-robot interaction) in the sophisticated tasks. To this end, the force
control plays an important role in these mechatronic systems.

Force control is essentially a kind of approach that controls the dynamic interaction
between a mechatronic system and its contacting object. Its main objectives are to
maintain the contact force within an acceptable range or control the applied force
to follow a desired reference. There are enormous numbers of research works on
force control. For example, in [3], a model reference adaptive force control was
designed suitably for beating heart surgery. In [10], a force control strategy for cell
injection system was proposed based on the cell model of polynomial function and
feedback linearization technique, so that an explicit force tracking was achieved. Also
of interest is the work in [13] where an inversion-free force tracking controller for
a variable physical damping actuator was proposed without complicated modeling.
Nevertheless, although suitable individual force controllers can achieve fast response
and low force overshoot, the position of the actuated device is typically unconstrained
and uncontrolled for pure force controllers; and such a situation (while obviously
possibly posing certain dangers) is oftentimes part of the trade-off for the actuated
device to reach the desired location to complete the overall task [14]. Furthermore,
many applications need to perform the position tracking in certain directions while
the force control is required in other directions. To deal with such cases, the force and
position control is the major approach, where both force and position are considered
in the control system.

In moving beyond pure force control, it can be noted that the regulation of both
position and force can be realized through employing the hybrid force—position
(force/position) control approach [15] or the parallel force—position (force/position)
control approach [16], which includes a position controller and a force controller to
track position and force, respectively. Such force—position control approaches are
widely used in various mechatronic systems. In [17], a hybrid force/position con-
trol scheme is designed and implemented in a flexible parallel manipulator. In [18],
through employing a suitably optimized algorithm, a selective force—position control
approach was applied on an ear surgical device. In [19], a parallel force/position con-
trol approach was designed and used in a parallel wire robot for epicardial interven-
tions. In [20], a proportional—integral—derivative (PID) force controller and an adap-
tive sliding mode position controller were combined to penetrate zebrafish embryos.

Alternatively, the methodology of impedance control proposed by Hoganin [21] is
an effective and practical approach to regulate the position and force simultaneously
without direct force control. Through establishing a virtual mass—spring—damper sys-
tem containing position error and contact force, a delicate and compliant interaction
control is achieved. Large numbers of research works on the impedance control are
reported in various publications, and some examples of which are listed as follows. In
[22], a force tracking impedance control was designed for a robot manipulator con-
tacting with a rigid environment. In [23], a robust impedance control was proposed to
handle parametric uncertainties, unknown force conversion function and hysteresis
nonlinearity for a piezo-actuated flexure-based four-bar mechanism. Additionally
too, discrete-time sliding mode impedance controllers have also been designed to
complete microassembly in [24, 25].



