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Preface to Third Edition

Goals and objectives

Understanding Physics is written primarily for students who are taking their first course in physics at university level. While it is
anticipated that many readers will have some previous knowledge of physics or of general science, each topic is introduced from first
principles so that the text is suitable for students without any prior background in physics. The book has been written to support most
standard first year undergraduate university physics courses (and often beyond the first year) and can serve as an introductory text for
both prospective physics majors and other students who will need to apply the principles and techniques of basic physics in subsequent
courses. A principal aim of this book is to give the reader the foundation required to proceed smoothly to intermediate level courses in
physics and engineering and to courses in the chemical, computer, materials, and earth sciences, all of which require a sound knowledge
of basic physics.

Students with some previous knowledge of physics will find that they are already familiar with many of the topics covered in the early
sections. These readers should note, however, that the treatment of these topics in Understanding Physics often differs from that given
in school textbooks and is designed to lay the foundations for the treatment of new and more advanced topics. As authors, one of our
aims is to integrate school physics more closely to that studied at university, encouraging students to appreciate the relevance of physics
previously studied and to integrate it with the material encountered at university. For these reasons we hope that students with a previous
knowledge of physics will take the opportunity to refresh and deepen their understanding of topics which they may regard as familiar.

Some knowledge of simple algebra, geometry, and trigonometry is assumed but differential and integral calculus, vector analysis,
and other more advanced mathematical methods are introduced within the text as the need arises and are presented in the context of the
physical problems which they are used to analyse. Historically, many mathematical techniques were developed specifically to address
problems in physics and these can often be grasped more easily when applied to a relevant physical situation than when presented as
an otherwise abstract mathematical concept. These mathematical asides are indicated throughout the text by a grey background and it
is hoped that by studying these short sections, the reader will gain some insight into both the mathematical techniques involved and the
physics to which the techniques are applied.

The mathematical asides, together with Appendix A (Mathematical Rules and Formulas), cannot, however, substitute for a formal
course in mathematical methods, but rather they could be considered a mathematical ‘survival kit’ for the study of introductory physics.
It is hoped that most readers will either have already taken or be studying an introductory mathematics course. In reality the total amount
of mathematics required is neither large nor particularly demanding.

Approach

It is no longer credible to describe the discoveries and developments made during the early years of the twentieth century as ‘modern
physics’. This is not to deny the radical and revolutionary nature of these developments but rather is a recognition that they have long since
become a part of mainstream physics. Quantum mechanics, relativity, and our picture of matter at the subatomic level will surely form
part of the ‘classical’ tradition of twenty-first century physicists. On the other hand, the discoveries of the seventeenth, eighteenth, and
nineteenth centuries have lost none of their importance. The majority of everyday experiences of the material world can be understood
in a fully satisfactory manner in terms of classical physics. Indeed attempts to explain such phenomena in the language of twentieth
century physics, while possible in principle, tend to be unnecessarily complicated and often confusing.

In Understanding Physics, ‘modern’ (twentieth century) topics are introduced at an earlier stage than is usually found in introductory
textbooks and are integrated with the more ‘classical’ material from which they have evolved. Although many of the concepts which are
basic to twentieth century physics are relatively easy to represent mathematically, they are not as intuitive as those of classical physics,
particularly for students with an extensive previous acquaintance with ‘classical’ concepts. This book aims to encourage students to
develop an intuition for relativistic and quantum concepts at as early a stage as is practicable. However, if instructors prefer to introduce
relativity (Chapter 9) and quantum physics (Chapter 14) at a later stage, their introduction may be delayed until after Chapter 23.

Understanding Physics has been kept to a compact format in order to emphasise, in a fully rigorous manner, the essential unity of
physics. At each stage new topics are carefully integrated with previous material. Throughout the text references are given to other
sources where more detailed discussions of particular topics or applications may be found. In order to avoid breaking the flow and unity
of the material within chapters, worked examples are placed at the end of each chapter. Indications are given throughout the text as to
when a particular worked example might be studied.

The internationally agreed system of units (SI) is now adopted almost universally in science and engineering and is used uncompro-
misingly in this text. In addition, we have adhered rigorously to the recommendations of the International Union of Pure and Applied
Physics (IUPAP) on symbols and nomenclature (Cohen and Giacomo, 1987). As noted below, this edition of Understanding Physics has
been rewritten to conform with the revision of the SI which came into force in May 2019.
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The text takes a reflective approach towards the scientific method at all stages – that is, while learning the fundamentals of physics the
student should also become familiar with the scientific method. In keeping with the title of the text, emphasis is placed on understanding
of and insight into the material presented. The book therefore seeks not merely to describe the discoveries and the models of physics but
also, in the process, to familiarise readers with the skills and techniques which been have developed to analyse natural phenomena, skills
and techniques which they can look forward to applying themselves. This book does not seek to reveal and explain all the mysteries
of the physical universe but, instead, lays the foundations on which readers can build and (perhaps more importantly) encourages and
equips readers to explore further.

Structure

Chapter 1 starts with a short overview of the way in which physics today describes the material universe, from the very smallest building
blocks of matter up to large scale bulk materials. It is a remarkable fact that the same basic principles seem to apply over the full range of
distance scales – from sub-nuclear to inter-galactic. The physical principles encountered in subsequent chapters are applied to systems
on all of these scales, as the need arises. The basic ideas of calculus are introduced in Chapter 2 in the context of the description of motion
in one dimension; readers with a good prior knowledge of this material may wish to skip this chapter, although such readers might find
it profitable to use the chapter to refresh their memories.

Chapters 3 to 7 introduce the main themes of classical dynamics. This is followed by an introduction to relative motion (Chapter 8),
which is an essential prerequisite to the study of the special theory of relativity (Chapter 9). Chapters 10 to 12, deal with the mechanical
and thermal behaviour of matter. A sound knowledge of wave motion (Chapter 13), a very important part of physics in its own right,
is essential for a proper understanding of quantum mechanics (Chapter 14). The seven subsequent chapters (15 to 21) cover the main
aspects of classical electromagnetism and its application to wave and geometrical optics is covered in Chapters 22 and 23.

The final four chapters (24 to 27) – on atomic physics, on electrons in solids, on semiconductors and on nuclear and particle
physics – are a little more specialised and detailed than the others. Depending on the subjects which the reader plans to pursue
subsequently, significant amounts of all or some of these chapters might well be omitted.

Changes in the third edition

• This edition has been rewritten to conform with the revision of the SI which came into force in May 2019. In the revised system
definitions are achieved by adopting fixed numerical values for certain fundamental constants of nature (see Appendix D for
details).

• The electromagnetism chapters have been reorganised to emphasise the integration of the various topics into a view of physics as
a unified whole. Particular emphasis is placed on the use of the concept of flux (and Gauss’s law) as a basis for the analyses of
gravitation, electricity and magnetism.

• More advanced sections, which were indicated by a blue background in previous editions may now be accessed through links to
the Understanding Physics Website (described below). Problems are also accessed through the Website.

• Numerous detailed improvements have been made throughout the book following suggestions from instructors, students and from
our own experience.

A message for students

You should not expect to achieve an instant understanding of all topics studied. The learning process starts through an understanding of
concepts and then progresses.

New material may not be fully absorbed at first reading but only after more careful study. From our own personal experience, however,
we can assure you that persistence will be rewarded and that initially challenging material will be revealed as being both simple and
elegant.

We have deliberately not provided end-of-chapter summaries. We feel that it is an important part of the learning exercise that
students create such summaries for themselves. To assist this process, however, we have adopted a range of specific highlighting styles
throughout the book (indicating fundamental principles/laws, equations of state, definitions, important relationships, etc.). A key to the
more important examples of the notations used is located inside the front cover.

Readers who are studying physics for the first time are starting on a great adventure; we hope that this book will help you to find the
early stages of the journey both exciting and rewarding. We also hope that it will prove to be a source of continuing support for your
subsequent studies.
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The Understanding Physics Website

The Student Companion Website for this textbook may be found at http://up.ucc.ie
The site comprises a wide selection of problems for each Chapter and a number of additional sections and subsections covering

somewhat more advanced material. These resources may be accessed either by specifying the relevant URL on a browser or via the
QR codes in the book margins using a mobile phone, tablet or laptop with an appropriate QR reader. Documents may be downloaded in
the form of .pdf files. The Website also contains a range of interactive software designed to enhance insight and understanding of various
topics covered in the text. Any reported errata will be published on the Website.

Students are encouraged to enhance their understanding and insight by using the website in parallel with studying the text. The Website
will continue to be developed. The authors wish to thank Lisa Faherty of the Physics Department and Peter Flynn and Noelette Hurley
of IT Services UCC for their many important contributions to the Website.

Problems

More than 600 problems are available on the Website. For each problem a link is given to its answer. Each answer is then linked to a
detailed solution. Students are encouraged to refrain from studying the detailed solution to a problem until they have made a number of
serious attempts to find the solution for themselves.

http://up.ucc.ie
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1
Understanding the physical universe

AIMS

◼ to show how matter can be described in terms of a series of models (mental pictures of the structures and workings of systems) of increasing

scale, starting with only a few basic building blocks

◼ to describe how, despite the great complexity of the material world, interactions between its building blocks can be reduced to no more

than four distinct interactions

◼ to describe how natural phenomena can be studied methodically through observation, measurement, analysis, hypothesis, and testing

(the scientific method)

1.1 The programme of physics

Humans have always been curious about the environment in which they found themselves and, in particular, have sought explanations
for the way in which the world around them behaved. All civilisations have probably engaged in science in this sense but sadly not all
have left records of their endeavours. It would seem, however, that sophisticated scientific activity was carried out in ancient Babylonian
and Egyptian civilisations and, certainly, many oriental civilisations had expert astronomers – every appearance of Halley's comet over a
time span of 1000 years was recorded by Chinese astronomers. Science as we know it today developed from the Renaissance in Europe
which in turn owed much to the rediscovery of the work of the great Greek philosopher/scientists such as Aristotle, Pythagoras, and
Archimedes, work that had been documented and further developed in the Islamic world between the seventh and sixteenth centuries
particularly during the Golden Age of Islamic Science, circa 750 to 1250 ce.

Common to all scientific activity is the general observation that, in most respects, the physical world behaves in a regular and
predictable manner. All other things being equal, an archer knows that if he fires successive arrows with the same strength and in
the same direction they follow the same path to their target. Similar rules seem to govern the trajectories of stones, spears, discuses,
and other projectiles. Regularities are also evident in phenomena involving light, heat, sound, electricity, and magnetism (a magnetic
compass would not be much use if its orientation changed randomly!). The primary objective of physics is to discover whether or not
basic ‘rules’ exist and, if they do, to identify as exactly as possible what these ‘rules’ are. As we shall see, it turns out that most of the
everyday behaviour of the physical universe can be explained satisfactorily in terms of rather few simple ‘rules’. These basic ‘rules’ have
come to be called laws of nature, examples of which include the Galilean /Newtonian laws of motion (Sections 3.2, 3.3, 6.1), Newton's
law of gravitation (Section 5.1) and the laws of electromagnetism associated with the names of Ampère (Section 18.5), Faraday (Section
20.1), Coulomb (Section 16.3) and Maxwell (Section 21.1). In addition to these basic laws there are also ‘laws’ of a somewhat less
fundamental nature which are used to describe the general behaviour of specific systems. Examples of the latter include Hooke's law for
helical springs (Section 3.5), Boyle's (or Mariotte's) law for the mechanical behaviour of gases (Section 10.10) and Ohm's law for the
conductivity of metals (Section 15.4).

The objective in studying physics, therefore, is to investigate all aspects of the material world in an attempt to discover the fundamental
laws of nature and hence to understand and explain the full range of phenomena observed in the physical universe. This programme must
include a satisfactory explanation of the structure of matter in all its forms (for example solids, liquids, gases), which in turn requires
an understanding of the interactions between the basic building blocks from which all matter is constituted. How these interactions are
responsible for the mechanical, thermal, magnetic, and electrical properties of matter must also be explained. Such explanations, once
discovered, can be applied to develop descriptions of phenomena ranging from the subatomic to the cosmic and to develop practical
applications for the benefit of, and use by, society.

In the next three sections we will review the language and images currently used by physicists to describe the structure of matter and
the fundamental interactions of nature.

Understanding Physics, Third Edition. Michael Mansfield and Colm O’Sullivan.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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2 Understanding the physical universe

1.2 The building blocks of matter

Fundamental particles
Our present view of the nature of matter is very different from that which prevailed even sixty years ago. All matter is currently viewed
as comprising various combinations of two classes of elementary particles – the basic building blocks – called, respectively, quarks
and leptons. We give below an introductory account of the terminology and models used in the quark/lepton description of matter. The
quark/lepton model will be discussed in more detail in Sections 27.11 and 27.12

Quarks and leptons occur in three distinct generations but only those in the first generation are involved in ordinary stable everyday
matter. The first generation comprises two quarks, the up quark (symbol u) and the down quark (d), and two leptons, the electron (e)
and the electron neutrino (𝜈e). Matter comprising particles of the second and third generations is invariably unstable and is normally
only formed when particles collide at very high speeds, such as those prevailing at the beginning of the Universe or in experiments with
particle accelerators.

Leptons can exist as free isolated particles. Quarks, on the other hand, do not exist in isolation and are only observed grouped together,
usually in threes, to form the wide range of different particles which form ordinary matter or which are produced in high-speed collisions.

In this section we will describe how quarks and leptons, the basic building blocks of matter, combine to form larger building blocks
which, in turn, combine to form even larger building blocks, etc. as summarised in Table 1.1. Let us consider each stage in more detail,
starting with combinations of quarks.

Table 1.1 Building blocks of matter

Building block Scale/m

Quarks <10−20

Particles ∼10−15

Nuclei ∼10−14

Atoms ∼10−10

Molecules 10−10 to 10−8

Bulk matter >10−9

Nuclei
The simplest combinations of first-generation quarks which are observed are three-quark combinations called nucleons. As illustrated in
Figure 1.1, two different types of nucleon are observed, namely the proton (p), which comprises two u quarks and one d quark, and the
neutron (n), which comprises one u quark and two d quarks. The electric charge of the proton is +e (e is called the fundamental electric
charge), while that of the neutron is zero. While a proton is stable, a free neutron is not and decays radioactively to form a proton and
two leptons. Further three quark combinations, involving quarks from other generations, will be considered when we come to discuss
subnuclear particles in Section 27.11.

d

d

u u

d

u u

d

u u

u

d d

u

d

proton neutron deuteron 2H1

p pn n

Figure 1.1. The quark and nucleon compositions of the proton (1
1p), neutron (1

0n) and deuteron (2
1H).

The next simplest combination, also illustrated in Figure 1.1, comprises six quarks (uuuddd), equivalent to one p and one n. This combi-
nation occurs in the nucleus of the deuterium atom (discussed below) and is called the deuteron. The electric charge of the deuteron, like
that of the proton, is +e. Two combinations of nine quarks, equivalent to pnn and ppn, are known; the first combination (pnn) is unstable
(radioactive) and the second (ppn) stable. When we consider atoms below we will identify these combinations as nuclei of tritium and
helium atoms, respectively. Hundreds of stable particles (nuclei), comprising various combinations of u and d quarks (or, equivalently,
protons and neutrons), are the basis of ordinary matter and will be discussed in Chapter 27. A great many other combinations can be
created artificially, for example in nuclear reactors, and, while these are unstable, their lifetimes are often sufficiently long for them to
be studied in detail and put to practical use (Chapter 27).
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Atoms and molecules
All nuclei have an electric charge of +Ze, where Z is an integer; Z can be thought of as the number of protons in the nucleus. We will
discover later (Chapter 16) that positive and negative charges are attracted to one another by electrostatic attraction. Under normal
conditions (by which is meant an environment which is not too hot and in which the matter density is not too low) the positively charged
nuclei attract electrons to form electrically neutral systems called atoms. In atoms the electrons do not coalesce with the nuclei but,
instead, may be thought of as moving around them in orbits with radii of the order of 10−10 m. This picture of an atom is something like
that illustrated in Figure 1.2 – a very small nucleus of charge +Ze surrounded by Z orbiting electrons, each of charge –e. Alternatively,
as we will see in Chapter 24, the electrons may be considered as a cloud of negative charge surrounding the nucleus.

+e

−e

+2e

−e−e

H (Z = 1) He (Z = 2)

Figure 1.2. The electronic structure of the hydrogen and helium atoms.

The overall charge on the atom is thus zero; it is electrically neutral. The radius of an atom is 10 000 times greater than the radius of the
nucleus (which is about 10−14 m). The electron is a very light particle, nearly 2000 times lighter than the proton, so nearly all the matter
in an atom is concentrated in the nucleus.

As argued above, the electric neutrality of the atom requires that the nuclear charge +Ze is balanced by the negative charge of Z
electrons; Z therefore also gives the number of electrons in a neutral atom and is called the atomic number. The chemical properties of
an atom are determined by the number of electrons it contains. An atom with Z = 1, that is with a single proton in its nucleus and hence
containing a single electron, is known as a hydrogen atom (Figure 1.2). The hydrogen nucleus can also contain one or two neutrons.
Such atoms are called deuterium or tritium atoms, respectively, and are known as isotopes of hydrogen because they are chemically
identical. Helium atoms have Z = 2 (Figure 1.2); two different stable isotopes exist, 3

2He (two p and one n) and 4
2He (two p and two n).

The chemical elements, listed in Appendix E, correspond to different values of Z (Z = 3 for lithium, Z = 4 for boron and so on). Note
that the conventional notation used to specify an atomic nucleus (or nuclide) is A

ZX where X is the chemical symbol for the particular
element, Z is the atomic number (the number of protons in the nucleus) and A (the number of nucleons – that is protons plus neutrons – in
the nucleus) is called the mass number. Isotopes of an element therefore have the same Z but different values of A.

If an atom loses or gains an electron it will end up with a net positive or negative electric charge and is called an ion. The number of
electrons lost or gained is conventionally denoted by a suffix to the notation for the atomic nucleus, for example A

ZX+(one electron lost),
A
ZX2+ (two electrons lost) or A

ZX−(one electron gained).
When atoms come sufficiently close together that their electron systems begin to overlap, they may form stable groupings of two or

more atoms which are called molecules. Representations of some common molecules are illustrated in Figure 1.3. Molecular sizes vary
from atomic dimensions (∼10−10 m) to dimensions which are many hundreds of times larger in the case of biological molecules such as
proteins and nucleic acids.

Cl

hydrogen chloride water ammonia methane

HCl H2O NH3 CH4

O N C

Figure 1.3. The atomic compositions of some common molecules – the smaller grey spheres represent hydrogen atoms.

The conventional notation for a molecule places the number of each type of atom in the molecule at the bottom right of the symbol for
that atom. For example, a water molecule (a grouping of two atoms of hydrogen and one atom of oxygen) is denoted by the symbol H2O
(or 1

1H2
16
8O, if the isotopic species of each atom is also to be shown). We will consider the various processes by which atoms can bind

together to form molecules in Section 25.1.
The description of matter which we have outlined in this section is summarised in Figure 1.4.
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Figure 1.4. Models of the structure of matter — from the quark scale to the bulk matter scale.

1.3 Matter in bulk

When large numbers of atoms or molecules are bound closely together the atoms tend to arrange themselves in regular patterns, some
examples of which are illustrated in Figure 1.5.

Figure 1.5. Some crystal lattice structures.

These patterns can extend over a very large number of atoms to form crystal lattices. Most solids are aggregates of crystals formed in
this way and, if care is taken in their preparation, a solid may even be grown as one large single crystal.

Gases, on the other hand, comprise large numbers of molecules which are spaced so that the average distance between them is much
greater than the molecular diameters. Molecules in gases move around rapidly and only interact with one another when they collide;
otherwise they move in straight lines between collisions. The molecules in liquids are very close together but remain mobile and do not
form crystal lattices. Thus liquids fall somewhere between gases and solids. Many materials, glass for example, do not fall into these
simple categories and have properties which are somewhere between those of solids and liquids.

Our everyday experience of solids, liquids, and gases does not give any hint of their microscopic nature, that is of their molecular,
atomic or sub-atomic composition. Indeed, matter in bulk appears continuous – most materials seeming to be uniform in their composition
and properties at this level. Thus, if we are interested in answering questions such as ‘where is a stone going to land if I throw it from
the top of a cliff?’ or ‘how much will the air in a balloon compress if I squeeze it?’, it hardly seems sensible to consider what happens
to the atoms in the stone or to the quarks in the air! Questions like this are best addressed by employing macroscopic models (large
scale pictures) of the systems being investigated rather than the microscopic models which we have outlined in Section 1.2. Clearly
a range of different models is available to us and the choice as to which one is best to use depends on the question being asked. The
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criterion which we must use here is that of simplicity – in attempting to explain any phenomenon only those concepts necessary for
the explanation should be included in the theory. This principle, which is central to all scientific endeavour, is known as Occam's razor
after the medieval philosopher William of Occam (1285–1349), although the formulation in which it is normally stated (entia non sunt
multiplicanda praeter necessitatem – entities are not to be multiplied unnecessarily) is attributed to John Ponce (1603–1661).

In this book we will adhere to this principle as far as possible. We will generally begin a discussion of a phenomenon from a macro-
scopic viewpoint. There will be many cases in which we are also able to discuss a phenomenon starting from a microscopic viewpoint
(for example, kinetic theory in Section 10.11). An important test of the microscopic approach will be whether its predictions agree with
those of the macroscopic treatment. We will find that when the two approaches agree we can be more confident that the microscopic
approach is correct and, perhaps more importantly, we will gain some rewarding insights into the meaning of macroscopic concepts at a
more basic level.

1.4 The fundamental interactions

We have seen that, despite the extraordinary complexity of the material world, all matter is made up from a relatively small number of
basic building blocks. Equally remarkably, we find that the way in which these building blocks interact with one another can be reduced
to no more than four distinct interactions, namely:

(a) The strong interaction: This is the force between quarks which keeps them bound together within a particle or an atomic nucleus.
It is responsible for the force between nucleons in a nucleus, as described in Chapter 27. The range over which the strong interaction
operates is very small – it has negligible effect if the distance between particles is much greater than 10−15 m.

(b) The electromagnetic interaction: This is the force which exists between all particles which have an electric charge, such as the force
which keeps the electrons bound to the nucleus in an atom. The electromagnetic interaction is long range, extending in principle
over infinite distances, but it is over 100 times weaker than the strong interaction within the range over which the strong interaction
operates.

(c) The weak interaction: Leptons are not affected by the strong interaction but interact with one another and with other particles via a
much weaker force called the weak interaction, whose strength is only 10−14 times that of the strong interaction. While all particles
interact weakly, the effect is only noticeable in the absence of the strong and electromagnetic interactions. The weak interaction is
very short range (∼10−18 m) and plays a role only at the nuclear and sub-nuclear level.

(d) The gravitational interaction: By far the weakest of the fundamental interactions is the gravitational interaction, the interaction
which, for example, gives a body weight at the surface of the Earth. Its strength is 10−38 times that of the strong interaction. All
particles interact gravitationally and, like the electromagnetic interaction, the gravitational interaction operates over an infinite
range.

Unification of the basic interactions
There is a long tradition in physics of attempting to unify theories which were originally distinct. For example, for a long time magnetism
and electricity were considered to be quite different phenomena but during the nineteenth century the two areas were united in Maxwell's
theory of electromagnetism (which will be described in Chapter 21). Over the past sixty years the theories covering the fundamental
interactions have been undergoing a similar unification process. In the 1960s Weinberg, Salam, and Glashow showed that, when viewed
at a more fundamental level, the electromagnetic and weak interactions can be seen to be manifestations of a single interaction (known
as the electroweak interaction).

Since then considerable progress has been made towards the unification of the electroweak interaction with the strong interaction and
this objective (known as Grand Unified Theory) is still being pursued. The relative strengths of the four basic interactions can be stated
in terms of coupling constants. The values of the coupling constants of the electroweak and strong interactions vary with energy and tend
to converge on the same value at very high energies, indicating that these interactions are indeed manifestations of a single interaction.
A model known as the standard model has been developed to provide a theory of the electroweak and strong interactions and of the
elementary particles that take part in these interactions. To date the results of high energy nuclear physics experiments are consistent with
the standard model. In particular, in 2012, an important particle predicted by the standard model – the Higgs boson – which explains the
existence of mass, was observed at CERN's Large Hadron Collider.

The final step in the unification of the fundamental interactions is to unify the gravitational interaction with the other fundamental
interactions but, to date, even the possibility of such a single theory of all four fundamental interactions, a Theory of Everything, remains
in the realm of speculation. Several possible lines of approach to this goal are being pursued.

1.5 Exploring the physical universe: the scientific method

Our aim in physics is to explore the physical universe, to observe, analyse and (hopefully) eventually understand the natural phenomena
and processes which underlie the workings of the universe. In the process of achieving an understanding of natural phenomena we will
often acquire an ability to predict their future course and hence an ability to apply our knowledge – to use it for practical purposes.



�

� �

�

6 Understanding the physical universe

How then can we investigate natural phenomena? We outline below an approach known as the scientific method. It is a method
which has proved its value over many centuries but it is important to note there is nothing particularly remarkable about it – it has not
been handed to us on ‘tablets of stone’. As we shall see it is merely a series of practical steps that anyone who wishes to study a natural
phenomenon methodically might well devise on his or her own initiative. We outline these steps below.

Observation
The first step is simply to observe the phenomenon – to watch it unfold. Careful systematic observation leads us inevitably to take notes
on what we see – to record our observations. With records we can later remind ourselves, or others, of what we have observed. The
process of recording what we see in a thorough and rigorous manner leads us quickly to make measurements. For example, if we are
observing the motion of a moving object we could describe its motion in words by stating that ‘the object is first a long way from us,
then not so far, then nearer and finally very near’. It is clear, however, that words alone soon become inadequate; they are not sufficiently
precise and can be ambiguous. One person's idea of ‘very near’ may not be the same as that of the next person. Measurement is therefore
the next step in the scientific method.

Measurement
In making measurements we must decide which (physical) quantities associated with the phenomenon that we are observing can be
measured most conveniently and accurately. Note that the process is already becoming a little arbitrary. One person's idea of what can be
measured conveniently may not be the same as that of the next person. As experience is built up, a consensus usually emerges on the best
way to make a certain measurement. Sometimes, as we will see, technical developments can force a change in the consensus and hence
even in the way in which physics is formulated. The development of physics has always been rooted strongly in empirical observation
and hence in the process of measurement.

In making a measurement we inevitably have to choose a unit in which to make the measurement. In the case of a moving object we
would naturally tend to measure its distance from us in metres because a unit of distance, the metre, has already been defined for us. Had
it not been defined we would have had to invent some such unit. In choosing units for measurement it is also sensible to coordinate our
choice with that of others, that is to choose agreed measurement standards and systems of units. This will enable us to communicate
our observations to colleagues on the other side of the world in such a way that they will know precisely what we mean.

The internationally agreed system of units (SI), summarised in Appendix D, is now adopted almost universally in science and
engineering and is used uncompromisingly in this book by following rigorously the recommendations of the General Conference on
Weights and Measures. In particular we use the revised definitions of SI base units which came into force in May 2019. As we will
see (for example in Section 3.4 where the definition of the metre is discussed) the revisions, which are based on the adoption of fixed
numerical values for certain fundamental constants of nature, provide a good illustration of how technical developments can force a
change in the way in which units are defined and physics is communicated.

Analysis and hypothesis
Having observed a phenomenon, and then having collected a set of measurements – our experimental data – the next step in the
scientific method, in our attempt to understand the phenomenon, is to look for relationships between the quantities we have measured.
For example in the case of a moving object we may have a set of measurements which gives the object's position at certain times. In
comparing the measurements of position with those of time can we see any pattern? Can we put forward any hypothesis (inspired guess)
which describes and accounts for the relationship between the quantities? Can we go further and put forward a model of the situation,
an idealised picture of what is happening, usually based on situations we already understand – that is, on our experience?

At this stage the scientific method becomes arbitrary and personal. Different people from different backgrounds and with different
experiences may see different patterns and may put forward different models. There is not necessarily any one correct interpretation. In
time it may turn out that one approach is simpler and easier to follow than the others but it does not follow that this is the only correct
approach. It is always wise to keep an open mind in studying natural phenomena – we are less likely to spot new patterns if we have
already decided what we expect to see. We must always be on our guard against introducing prejudices when drawing on our experience.

A number of procedures may help us to identify patterns in our observations. As will be illustrated in Section 2.3 for the case of a
moving object, we can assemble tables of data and can draw graphs of one measured quantity against another. We will see in Section 2.3
how analyses of tables and graphs often enable us to deduce relationships between observed quantities. Very general relationships that
predict the behaviour of systems in nature are described as laws of physics. One of the things which makes physics such a rewarding
subject to study is that not only are the fundamental laws few in number but they are also usually of relatively simple form. Because of
the essential simplicity of the laws, the natural and most straightforward way to express them is through the language of mathematics.

When we are successful in identifying relationships between observed quantities we are usually able to express them as mathematical
equations, which, as we will see in Section 2.3, are usually the most concise and unambiguous way of expressing relationships.

The description of relationships between quantities as ‘laws’ of physics is perhaps unfortunate because these laws should not be
regarded as incontrovertible edicts. They are merely well-established principles based on the experimental evidence available. Sometimes,
after further investigation, laws are found not to be as well established as was first believed. It is important, therefore, to test hypotheses
and models regularly. This brings us to the final step in the scientific method.
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Testing and prediction
It is now necessary to establish the range of applicability of any hypotheses and models which may have been proposed. We use these
hypotheses and models, therefore, to predict results in situations in which measurements have not yet been made. We then make mea-
surements in the new situations and see how well these measurements match predictions. Sometimes they do not match, although this
does not necessarily mean that our previous hypotheses and models were wrong. It means that they are limited in their applicability and
that we have to extend the hypotheses and models to cover the new situations.

As we shall see, developments in physics in the twentieth century have shown that many apparently universal laws of classical physics
do not apply at velocities which approach the speed of light or to particles on the microscopic (atomic and nuclear) scale. It has been
necessary to develop new more comprehensive theories, namely the special theory of relativity (Chapter 9) and quantum mechanics
(Chapter 14), to interpret and understand these situations.

As is apparent from the account of the scientific method given above, there is nothing particularly remarkable about the method. It has
been described quite simply as ‘organised common sense’, a method which a person without a scientific background might well adopt
when faced with the task of trying to understand a physical process. In physics we have the advantage of a wealth of techniques for
observation and analysis that have been developed by the scientific community over a long period of time. This gives us a head start in
seeking to understand new phenomena, although we should always be aware of the possible limitations of established thinking.

In this book therefore we will not only describe the discoveries and the models which have been put forward by physicists, we will
also, in the process, learn the skills and techniques which been have developed to analyse natural phenomena. We will then be able to
apply these skills and techniques ourselves as we study the physical universe. The end product will be the ability to describe a whole
range of apparently disconnected and complex phenomena in terms of an underlying simplicity of mathematically expressed structures.
On many occasions we will see how advances in knowledge have led to new theories or models which replace a whole range of different
models which were needed previously. This unifying process is one of the most satisfying aspects of physics. New understanding can
actually simplify a situation, or a number of situations; we then feel instinctively that we are closer to the truth. The methods which we
will uncover are powerful, intellectually satisfying, and useful. We will not be able to reveal all the mysteries of the physical universe
in this book but we will take some steps along the way and, perhaps more importantly, we will emerge equipped to explore further
ourselves.

1.6 The role of physics; its scope and applications

In Sections 1.2 to 1.4 we saw how physics describes the basic components of matter and their mutual interactions. We also saw how
physics endeavours to describe the physical world on all its scales – from that of the quark to that of the universe. In this sense, physics
provides the basic conceptual and theoretical framework on which other natural sciences are founded and may therefore be regarded as
the most fundamental and comprehensive of the natural sciences.

The techniques which have been developed to analyse the physical world can be used in almost any area of pure and applied research.
Physics provides an excellent testing ground for the scientific method. Moreover, in seeking to unify understanding of the natural world,
physics can play an important simplifying role in science, reducing complex situations to more understandable forms. In doing so, physics
can also counteract the fragmentation into separate disciplines which tends to accompany the ever expanding growth in scientific and
technical knowledge.

Physics is at the basis of most present technology and is sure to be at the basis of much future technology, tackling problems as
pressing and diverse as the development of new energy sources, of more powerful and less intrusive medical diagnostics and treatments
and of more effective electronic devices. The growth of physics has spawned a multitude of technological advances which impact on
almost all areas of science. Engineering practice must be revised regularly to take advantage of opportunities presented by the advance
of physics.

In the previous section we noted that new and more comprehensive theories, namely the special theory of relativity and quantum
mechanics, were developed in the last century to account for situations in which the laws of classical physics do not apply. The new
theories have stimulated important new technologies, such as quantum engineering (the development of new microelectronic devices),
laser technology, and nuclear technology, technologies which could hardly have been dreamt of at the beginning of the twentieth century.

A sound knowledge of physics is needed by scientists and technologists if they are to be able to understand and adjust to the rapidly
changing world in which they find themselves. Moreover, this understanding should stimulate them to devise and initiate further advances.
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2
Using mathematical tools in physics

AIMS
◼ to demonstrate the scientific method by applying it to the analysis of motion in a straight line

◼ to introduce the basic calculus methods used in this book and to demonstrate how they may be used in the analysis of physical phenomena

◼ to derive equations which describe some special cases of one-dimensional motion quantitatively and which can be used to predict their

future courses

2.1 Applying the scientific method

In this chapter we shall illustrate the scientific method by using it to study certain types of motion. In doing so we shall introduce some
important mathematical techniques which will enable us to analyze and represent physical processes in a concise and rigorous manner.
At the same time we will introduce the physical quantities which are used to describe motion in a straight line and angular motion about
a fixed axis.

While readers who are familiar with the analysis of linear motion and of angular motion, and who are also familiar with the use
of elementary calculus in physics, may choose to proceed to Chapter 3, we recommend that they take the opportunity to refresh their
understanding of these topics in this chapter.

2.2 The use of variables to represent displacement and time

We begin our investigation of motion by studying and characterising different types of motion. At this stage we are not concerned with
the cause of motion, although the cause of motion is a topic which is of central interest in physics and will be investigated in detail in the
next chapter. First we simply consider the behaviour of a moving object and decide which quantities associated with the motion we can
measure. We will then see if there is any discernible pattern in a particular motion – whether we can establish any relationships between
the measured quantities and whether we can establish any model for the motion.

A moving object is an object whose position changes with time. The obvious physical quantities to measure in recording the behaviour
of a moving object are therefore its position and the time at which it is at that position. Let us first consider measurement of position.

We can specify the position of a point P by measuring its displacement with respect to some reference point O which we call the
origin. We use the symbol r to represent the value of displacement, a variable quantity. Note however that in specifying the position of P
relative to O it is not sufficient simply to state the distance from O to P. If, for example, we say that a point P is in the plane of this page

P
r

O

Figure 2.1. The displacement
r of the point P from the origin.

and is at a distance r from O, P could be anywhere on a circle of radius r drawn around O (as illustrated in
Figure 2.1). To avoid ambiguity in specifying the position of P we must also specify the direction of P relative
to O. In this case this could be achieved by stating that P is directly to the right of O, as shown in Figure 2.1.

To specify a displacement r unambiguously, therefore, we must specify both its magnitude (the distance
from O to P) and its direction (the direction of the line OP). Later (Section 4.1) we will use the term vector to
describe a quantity which has both magnitude and direction; we will also show that vectors must be handled
using well defined methods. For our present purposes however, we can simplify the treatment of displacement
by considering the special case of linear (or one-dimensional) motion, that is motion which is confined to
a straight line. As illustrated in Figure 2.2, a linear displacement from the origin O along a straight line can
be in one of only two directions so that a point which is a distance 2 cm from O can be at either of the two
positions P or P′.

Understanding Physics, Third Edition. Michael Mansfield and Colm O’Sullivan.
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10 Using mathematical tools in physics

O
P

P′
–2 cm

+ 2 cm

x = 0 cm
x = –2 cm

x = 2 cm x-axis
+

−

Figure 2.2. The x-coordinate axis, showing the displacements of P and P′ relative to O.

We distinguish between the two possible directions in linear motion by using a sign convention to specify the direction of the displace-
ment. Displacement therefore can be represented by an algebraic quantity, namely a quantity which can be expressed in terms of its
magnitude preceded by a plus or minus sign; thus the displacements of the points P and P′ are +2 cm and −2 cm from O, respectively.

The choice between the + and − labels for the two directions in Figure 2.2 is of course arbitrary. We could equally well have chosen
the opposite sign labels. The important point is that, having adopted a convention for signs, we follow this convention consistently
throughout our analysis.

In linear motion, displacements from the origin are usually represented by the variable quantity x. The straight line along which the
motion occurs is then described as the x-axis and the algebraic value of the displacement, x, of a certain position from the origin O is
the coordinate of this position. The position of a point on the straight line is specified unambiguously by stating the algebraic value of
x provided a convention for positive x has been adopted. For example, based on the conventions adopted in Figure 2.2, the displacement
of P is x = +2 cm and that of P′ is x = −2 cm.

O
P

Q

displacement of Q
relative to P = + 3 cm

x = 0 cm

x = + 5 cm

x = 2 cm

+ directionx

– directionx

Figure 2.3. The displacements of P and Q relative to O, and of Q relative to P.

We can also define the displacement of a second point on the straight line, such as Q in Figure 2.3, relative to P.
If the displacement of P relative to O is +2 cm (that is, the x-coordinate of P is +2 cm) and the displacement of Q relative to O is +5 cm,

we can easily deduce from an inspection of Figure 2.3 that the displacement of Q relative to P is 5 − 2 = +3 cm, a positive displacement.
Similarly, the displacement of P relative to Q, is 2 − 5 = −3 cm, a negative displacement. Note how the signs of the algebraic quantities
which represent relative displacements give the directions of the displacements.

The second quantity which we have decided to measure in our study of motion is time, denoted by the symbol t, which can also be
represented by an algebraic quantity. Unlike displacement, t can only increase while we are making our observations – it can change in
only one direction, which we define to be the positive direction. Like displacement, time is measured with reference to an origin, in this
case the starting instant. Note that, although time can only change in the positive direction it is possible for t to be negative. For example,
if we choose 10.00 a.m. as our starting instant the time 9.55 a.m. becomes −5 minutes.

2.3 Representation of data

Let us consider the case of an object which is only free to move along a straight line, the x-axis, as illustrated in Figure 2.4. As an example
we will consider the motion of a train along a straight section of track. Suppose that we make a series of measurements of the train's
position together with the corresponding times. We can display these measurements (our data) in a number of ways, the most obvious
of which is the tabular representation, illustrated in Table 2.1 for a particular motion of the train which we call motion M.

O

+ 1000 m– 1000 m

+ x– x

Figure 2.4. The x-axis for a moving train.

In the third column of Table 2.1, in order to make the relationship between displacement and time more obvious, times are also stated
with reference to 10.00 a.m., the time at which we start observing the train's motion (our time origin). In this case a simple relationship
between x and t can be deduced quite easily from an inspection of the numbers in the first and third columns of Table 2.1.


