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Directions for Use

This book is composed of chapters and their complements:

– The chapters contain the fundamental concepts. Except for a few
additions and variations, they correspond to a course given in the last
year of a typical undergraduate physics program (Volume I) or of a
graduate program (Volumes II and III). The 21 chapters are complete in
themselves and can be studied independently of the complements.

– The complements follow the corresponding chapter. Each is labelled
by a letter followed by a subscript, which gives the number of the chapter
(for example, the complements of Chapter V are, in order, AV, BV, CV,
etc.). They can be recognized immediately by the symbol that appears
at the top of each of their pages.

The complements vary in character. Some are intended to expand the
treatment of the corresponding chapter or to provide a more detailed
discussion of certain points. Others describe concrete examples or in-
troduce various physical concepts. One of the complements (usually the
last one) is a collection of exercises.

The difficulty of the complements varies. Some are very simple examples
or extensions of the chapter. Others are more difficult and at the grad-
uate level or close to current research. In any case, the reader should
have studied the material in the chapter before using the complements.

The complements are generally independent of one another. The student
should not try to study all the complements of a chapter at once. In
accordance with his/her aims and interests, he/she should choose a small
number of them (two or three, for example), plus a few exercises. The
other complements can be left for later study. To help with the choise,
the complements are listed at the end of each chapter in a “reader’s
guide”, which discusses the difficulty and importance of each.

Some passages within the book have been set in small type, and these
can be omitted on a first reading.
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Foreword

Quantum mechanics is a branch of physics whose importance has continually in-
creased over the last decades. It is essential for understanding the structure and dynamics
of microscopic objects such as atoms, molecules and their interactions with electromag-
netic radiation. It is also the basis for understanding the functioning of numerous new
systems with countless practical applications. This includes lasers (in communications,
medicine, milling, etc.), atomic clocks (essential in particular for the GPS), transistors
(communications, computers), magnetic resonance imaging, energy production (solar
panels, nuclear reactors), etc. Quantum mechanics also permits understanding surpris-
ing physical properties such as superfluidity or supraconductivity. There is currently a
great interest in entangled quantum states whose non-intuitive properties of nonlocality
and nonseparability permit conceiving remarkable applications in the emerging field of
quantum information. Our civilization is increasingly impacted by technological appli-
cations based on quantum concepts. This why a particular effort should be made in the
teaching of quantum mechanics, which is the object of these three volumes.

The first contact with quantum mechanics can be disconcerting. Our work grew
out of the authors’ experiences while teaching quantum mechanics for many years. It
was conceived with the objective of easing a first approach, and then aiding the reader
to progress to a more advance level of quantum mechanics. The first two volumes, first
published more than forty years ago, have been used throughout the world. They remain
however at an intermediate level. They have now been completed with a third volume
treating more advanced subjects. Throughout we have used a progressive approach to
problems, where no difficulty goes untreated and each aspect of the diverse questions is
discussed in detail (often starting with a classical review).

This willingness to go further “without cheating or taking shortcuts” is built into
the book structure, using two distinct linked texts: chapters and complements. As we
just outlined in the “Directions for use”, the chapters present the general ideas and
basic concepts, whereas the complements illustrate both the methods and concepts just
exposed.

Volume I presents a general introduction of the subject, followed by a second
chapter describing the basic mathematical tools used in quantum mechanics. While
this chapter can appear long and dense, the teaching experience of the authors has
shown that such a presentation is the most efficient. In the third chapter the postulates
are announced and illustrated in many of the complements. We then go on to certain
important applications of quantum mechanics, such as the harmonic oscillator, which
lead to numerous applications (molecular vibrations, phonons, etc.). Many of these are
the object of specific complements.

Volume II pursues this development, while expanding its scope at a slightly higher
level. It treats collision theory, spin, addition of angular momenta, and both time-
dependent and time-independent perturbation theory. It also presents a first approach
to the study of identical particles. In this volume as in the previous one, each theoretical
concept is immediately illustrated by diverse applications presented in the complements.
Both volumes I and II have benefited from several recent corrections, but there have also
been additions. Chapter XIII now contains two sections §§ D and E that treat random
perturbations, and a complement concerning relaxation has been added.
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Foreword

Volume III extends the two volumes at a slightly higher level. It is based on the
use of the creation and annihilation operator formalism (second quantization), which is
commonly used in quantum field theory. We start with a study of systems of identical
particles, fermions or bosons. The properties of ideal gases in thermal equilibrium are
presented. For fermions, the Hartree-Fock method is developed in detail. It is the base
of many studies in chemistry, atomic physics and solid state physics, etc. For bosons, the
Gross-Pitaevskii equation and the Bogolubov theory are discussed. An original presen-
tation that treats the pairing effect of both fermions and bosons permits obtaining the
BCS (Bardeen-Cooper-Schrieffer) and Bogolubov theories in a unified framework. The
second part of volume III treats quantum electrodynamics, its general introduction, the
study of interactions between atoms and photons, and various applications (spontaneous
emission, multiphoton transitions, optical pumping, etc.). The dressed atom method is
presented and illustrated for concrete cases. A final chapter discusses the notion of quan-
tum entanglement and certain fundamental aspects of quantum mechanics, in particular
the Bell inequalities and their violations.

Finally note that we have not treated either the philosophical implications of quan-
tum mechanics, or the diverse interpretations of this theory, despite the great interest
of these subjects. We have in fact limited ourselves to presenting what is commonly
called the “orthodox point of view”. It is only in Chapter XXI that we touch on certain
questions concerning the foundations of quantum mechanics (nonlocality, etc.). We have
made this choice because we feel that one can address such questions more efficiently
after mastering the manipulation of the quantum mechanical formalism as well as its nu-
merous applications. These subjects are addressed in the book Do we really understand
quantum mechanics? (F. Laloë, Cambridge University Press, 2019); see also section 5 of
the bibliography of volumes I and II.
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A. Introduction

A-1. Importance of collision phenomena

Many experiments in physics, especially in high energy physics, consist of directing
a beam of particles (1) (produced for example by an accelerator) onto a target composed
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Incident beam
Target

Detector

Detector

particles (2)

θ2

θ1

particles (1)

Figure 1: Diagram of a collision experiment involving the particles (1) of an incident
beam and the particles (2) of a target. The two detectors represented in the figure measure
the number of particles scattered through angles 1 and 2 with respect to the incident
beam.

of particles (2), and studying the resulting collisions: the various particles1 constituting
the final state of the system – that is, the state after the collision (cf. Fig. 1) – are
detected and their characteristics (direction of emission, energy, etc.) are measured.
Obviously, the aim of such a study is to determine the interactions that occur between
the various particles entering into the collision.

The phenomena observed are sometimes very complex. For example, if particles
(1) and (2) are in fact composed of more elementary components (protons and neutrons
in the case of nuclei), the latter can, during the collision, redistribute themselves amongst
two or several final composite particles which are different from the initial particles; in this
case, one speaks of “rearrangement collisions”. Moreover, at high energies, the relativistic
possibility of the “materialization” of part of the energy appears: new particles are then
created and the final state can include a great number of them (the higher the energy of
the incident beam, the greater the number). Broadly speaking, one says that collisions
give rise to reactions, which are described most often as in chemistry:

(1) + (2) (3) + (4) + (5) + (A-1)

Amongst all the reactions possible2 under given conditions, scattering reactions are de-
fined as those in which the final state and the initial state are composed of the same
particles (1) and (2). In addition, a scattering reaction is said to be elastic when none
of the particles’ internal states change during the collision.

1In practice, it is not always possible to detect all the particles emitted, and one must often be
satisfied with partial information about the final system.

2Since the processes studied occur on a quantum level, it is not generally possible to predict with cer-
tainty what final state will result from a given collision; one merely attempts to predict the probabilities
of the various possible states.
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A. INTRODUCTION

A-2. Scattering by a potential

We shall confine ourselves in this chapter to the study of the elastic scattering of
the incident particles (1) by the target particles (2). If the laws of classical mechanics
were applicable, solving this problem would involve determining the deviations in the
incident particles’ trajectories due to the forces exerted by particles (2). For processes
occurring on an atomic or nuclear scale, it is clearly out of the question to use classical
mechanics to resolve the problem; we must study the evolution of the wave function
associated with the incident particles under the influence of their interactions with the
target particles [which is why we speak of the “scattering” of particles (1) by particles
(2)]. Rather than attack this question in its most general form, we shall introduce the
following simplifying hypotheses:

( ) We shall suppose that particles (1) and (2) have no spin. This simplifies the the-
ory considerably but should not be taken to imply that the spin of particles is
unimportant in scattering phenomena.

( ) We shall not take into account the possible internal structure of particles (1) and
(2). The following arguments are therefore not applicable to “inelastic” scattering
phenomena, where part of the kinetic energy of (1) is absorbed in the final state
by the internal degrees of freedom of (1) and (2) (cf. for example, the experiment
of Franck and Hertz). We shall confine ourselves to the case of elastic scattering,
which does not affect the internal structure of the particles.

( ) We shall assume that the target is thin enough to enable us to neglect multiple
scattering processes; that is, processes during which a particular incident particle
is scattered several times before leaving the target.

( ) We shall neglect any possibility of coherence between the waves scattered by the
different particles which make up the target. This simplification is justified when
the spread of the wave packets associated with particles (1) is small compared to
the average distance between particles (2). Therefore we shall concern ourselves
only with the elementary process of the scattering of a particle (1) of the beam by
a particle (2) of the target. This excludes a certain number of phenomena which
are nevertheless very interesting, such as coherent scattering by a crystal (Bragg
diffraction) or scattering of slow neutrons by the phonons of a solid, which provide
valuable information about the structure and dynamics of crystal lattices. When
these coherence effects can be neglected, the flux of particles detected is simply
the sum of the fluxes scattered by each of the target particles, that is, times
the flux scattered by any one of them (the exact position of the scattering particle
inside the target is unimportant since the target dimensions are much smaller than
the distance between the target and the detector).

( ) We shall assume that the interactions between particles (1) and (2) can be described
by a potential energy (r1 r2), which depends only on the relative position
r = r1 r2 of the particles. If we follow the reasoning of § B, Chapter VII, then,
in the center-of-mass reference frame3 of the two particles (1) and (2), the problem

3In order to interpret the results obtained in scattering experiments, it is clearly necessary to return
to the laboratory reference frame. Going from one frame of reference to another is a simple kinematic
problem that we will not consider here. See for example Messiah (1.17), vol. I. Chap. X, § 7.
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CHAPTER VIII SCATTERING BY A POTENTIAL

reduces to the study of the scattering of a single particle by the potential (r). The
mass of this “relative particle” is related to the masses 1 and 2 of (1) and (2)
by the formula:

1 = 1
1

+ 1
2

(A-2)

A-3. Definition of the scattering cross section

Let be the direction of the incident particles of mass (fig. 2). The potential
(r) is localized around the origin of the coordinate system [which is in fact the center

of mass of the two real particles (1) and (2)]. We shall designate by the flux of particles
in the incident beam, that is, the number of particles per unit time which traverse a unit
surface perpendicular to in the region where takes on very large negative values.
(The flux is assumed to be weak enough to allow us to neglect interactions between
different particles of the incident beam.)

We place a detector far from the region under the influence of the potential and in
the direction fixed by the polar angles and , with an opening facing and subtending
the solid angle dΩ (the detector is situated at a distance from which is large compared
to the linear dimensions of the potential’s zone of influence). We can thus count the
number d of particles scattered per unit time into the solid angle dΩ about the direction
( ). The differential d is obviously proportional to dΩ and to the incident flux .
We shall define ( ) to be the coefficient of proportionality between d and dΩ:

d = ( ) dΩ (A-3)

The dimensions of d and are, respectively, 1 and ( 2 ) 1, ( ) therefore has
the dimensions of a surface; it is called the differential scattering cross section in the
direction ( ). Cross sections are frequently measured in barns and submultiples of
barns:

1 barn = 10 24 cm2 (A-4)

The definition (A-3) can be interpreted in the following way: the number of par-
ticles per unit time which reach the detector is equal to the number of particles which
would cross a surface ( ) dΩ placed perpendicular to in the incident beam.

Similarly, the total scattering cross section is defined by the formula:

= ( ) dΩ (A-5)

Comments:

( ) Definition (A-3), in which d is proportional to dΩ, implies that only the
scattered particles are taken into consideration. The flux of these particles
reaching a given detector [of fixed surface and placed in the direction
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( )] is inversely proportional to the square of the distance between and
(this property is characteristic of a scattered flux). In practice, the incident

beam is laterally bounded [although its width remains much larger than the
extent of the zone of influence of (r)], and the detector is placed outside
its trajectory so that it receives only the scattered particles. Of course, such
an arrangement does not permit the measurement of the cross section in
the direction = 0 (the forward direction), which can only be obtained by
extrapolation from the values of ( ) for small .

( ) The concept of a cross section is not limited to the case of elastic scattering:
reaction cross sections are defined in an analogous manner.

A-4. Organization of this chapter

§ B is devoted to a brief study of scattering by an arbitrary potential (r) (de-
creasing however faster than 1 as tends toward infinity). First of all, in § B-1, we
introduce the fundamental concepts of a stationary scattering state and a scattering
amplitude. We then show, in § B-2, how knowledge of the asymptotic behavior of the
wave functions associated with stationary scattering states enables us to obtain scatter-
ing cross sections. Afterwards, in § B-3, we discuss in a more precise way, using the
integral scattering equation, the existence of these stationary scattering states. Finally
(in § B-4), we derive an approximate solution of this equation, valid for weak potentials.
This leads us to the Born approximation, in which the cross section is very simply related
to the Fourier transform of the potential.

Incident beam

Region where the
potential is effective

0

V(r)

dΩ

Detector D

θ

z

Figure 2: The incident beam, whose flux of particles is , is parallel to the axis ; it
is assumed to be much wider than the zone of influence of the potential (r), which is
centered at . Far from this zone of influence, a detector measures the number d
of particles scattered per unit time into the solid angle dΩ, centered around the direction
defined by the polar angles and . The number d is proportional to and to dΩ; the
coefficient of proportionality ( ) is, by definition, the scattering “cross section” in the
direction ( ).
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For a central potential (r), the general methods described in § B clearly remain
applicable, but the method of partial waves, set forth in § C, is usually considered
preferable. This method is based (§ C-1) on the comparison of the stationary states with
well-defined angular momentum in the presence of the potential ( ) (which we shall
call “partial waves”) and their analogues in the absence of the potential (“free spherical
waves”). Therefore, we begin by studying, in § C-2, the essential properties of the
stationary states of a free particle, and more particularly those of free spherical waves.
Afterwards (§ C-3), we show that the difference between a partial wave in the potential

( ) and a free spherical wave with the same angular momentum is characterized by a
“phase shift” . Thus, it is only necessary to know how stationary scattering states can
be constructed from partial waves in order to obtain the expression of cross sections in
terms of phase shifts (§ C-4).

B. Stationary scattering states. Calculation of the cross section

In order to describe in quantum mechanical terms the scattering of a given incident
particle by the potential (r), it is necessary to study the time evolution of the wave
packet representing the state of the particle. The characteristics of this wave packet are
assumed to be known for large negative values of the time when the particle is in the
negative region of the axis, far from and not yet affected by the potential (r). It is
known that the subsequent evolution of the wave packet can be obtained immediately if
it is expressed as a superposition of stationary states. This is why we are going to begin
by studying the eigenvalue equation of the Hamiltonian:

= 0 + (r) (B-1)

where:

0 = P2

2 (B-2)

describes the particle’s kinetic energy.
Actually, to simplify the calculations, we are going to base our reasoning directly

on the stationary states and not on wave packets. We have already used this procedure
in Chapter I, in the study of “square” one-dimensional potentials (§ D-2 and comple-
ment HI). It consists of considering a stationary state to represent a “probability fluid”
in steady flow, and studying the structure of the corresponding probability currents.
Naturally, this simplified reasoning is not rigorous: it remains to be shown that it leads
to the same results as the correct treatment of the problem, which is based on wave
packets. Assuming this will enable us to develop certain general ideas easily, without
burying them in complicated calculations4.

4The proof was given in complement JI, for a particular one-dimensional problem; we verified that the
same results are obtained by calculating the probability current associated with a stationary scattering
state or by studying the evolution of a wave packet describing a particle which undergoes a collision.
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B-1. Definition of stationary scattering states

B-1-a. Eigenvalue equation of the Hamiltonian

Schrödinger’s equation describing the evolution of the particle in the potential (r)
is satisfied by solutions associated with a well-defined energy (stationary states):

(r ) = (r) e ~ (B-3)

where (r) is a solution of the eigenvalue equation:

~2

2 ∆ + (r) (r) = (r) (B-4)

We are going to assume that the potential (r) decreases faster than 1 as
approaches infinity. Notice that this hypothesis excludes the Coulomb potential, which
demands special treatment; we shall not consider it here.

We shall only be concerned with solutions of (B-4) associated with a positive
energy , equal to the kinetic energy of the incident particle before it reaches the zone
of influence of the potential. Defining:

= ~2 2

2 (B-5)

(r) = ~2

2 (r) (B-6)

enables us to write (B-4) in the form:

∆ + 2 (r) (r) = 0 (B-7)

For each value of (that is, of the energy ), equation (B-7) can be satisfied by an
infinite number of solutions (the positive eigenvalues of the Hamiltonian are infinitely
degenerate). As in “square” one-dimensional potential problems (cf. Chap. I, § D-2 and
complement HI), we must choose from amongst these solutions the one that corresponds
to the physical problem being studied (for example, when we wanted to determine the
probability that a particle with a given energy would cross a one-dimensional potential
barrier, we chose the stationary state which, in the region on the other side of the
barrier, was composed simply of a transmitted wave). Here, the choice proves to be more
complicated, since the particle is moving in three-dimensional space and the potential

(r) has, a priori, an arbitrary form. Therefore, we shall specify, using wave packet
properties in an intuitive way, the conditions that must be imposed on the solutions
of equation (B-7) if they are to be used in the description of a scattering process. We
shall call the eigenstates of the Hamiltonian which satisfy these conditions stationary
scattering states, and we shall designate by (scatt)(r) the associated wave functions.

B-1-b. Asymptotic form of stationary scattering states. Scattering amplitude

For large negative values of , the incident particle is free [ (r) is practically zero
when one is sufficiently far from the point ], and its state is represented by a plane
wave packet. Consequently, the stationary wave function that we are looking for must
contain a term of the form e , where is the constant which appears in equation (B-7).
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When the wave packet reaches the region which is under the influence of the potential
(r), its structure is profoundly modified and its evolution complicated. Nevertheless,

for large positive values of , it has left this region and once more takes on a simple
form: it is now split into a transmitted wave packet which continues to propagate along

in the positive direction (hence having the form e ) and a scattered wave packet.
Consequently, the wave function (scatt)(r), representing the stationary scattering state
associated with a given energy = ~2 2 2 , will be obtained from the superposition of
the plane wave e and a scattered wave (we are ignoring the problem of normalization).

The structure of the scattered wave obviously depends on the potential (r). Yet
its asymptotic form (valid far from the zone of influence of the potential) is simple;
reasoning by analogy with wave optics, we see that the scattered wave must present the
following characteristics for large :
( ) In a given direction ( ), its radial dependence is of the form e . It is a

divergent (or “outgoing”) wave which has the same energy as the incident wave. The
factor 1 results from the fact that there are three spatial dimensions: (∆+ 2)e
is not zero, while:

(∆ + 2)e = 0 for 0 where 0 is any positive distance (B-8)

(in optics, the factor 1 insures that the total flux of energy passing through a
sphere of radius is independent of for large ; in quantum mechanics, it is the
probability flux passing through this sphere that does not depend on ).

( ) Since scattering is not generally isotropic, the amplitude of the outgoing wave
depends on the direction ( ) being considered.

Finally, the wave function (scatt)(r) associated with the stationary scattering state
is, by definition, the solution of equation (B-7) whose asymptotic behavior is of the form:

(scatt)(r) e + ( ) e (B-9)

In this expression, only the function ( ), which is called the scattering amplitude,
depends on the potential (r). It can be shown (cf. § B-3) that equation (B-7) has
indeed one and only one solution, for each value of , that satisfies condition (B-9).

Comments:

( ) We have already pointed out that in order to obtain simply the time evolution of
the wave packet representing the state of the incident particle, it is necessary to
expand it in terms of eigenstates of the total Hamiltonian rather than in terms
of plane waves. Therefore, let us consider a wave function of the form5:

(r ) =
0

d ( ) (scatt)(r) e ~ (B-10)

5Actually, it is also necessary to superpose the plane waves corresponding to wave vectors k having
slightly different orientations, for the incident wave packet is limited in the directions perpendicular to

. For the sake of simplicity, we are concerning ourselves here only with the energy dispersion (which
limits the spread of the wave packet along )
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