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Foreword

Since the early 60s, when Prigogine puts forward the emergent properties of
complex chemical reaction networks in non-equilibrium and non-linear conditions,
researchers around the world try to apply such ideas to describe the highly complex
biological networks. Especially, a greater effort has been made since the beginning
of the twenty-first century due to the development of omics sciences, when a huge
set of global data on biological systems became available. It also appears that these
technical improvements in sequencing and detecting biological molecules have
propelled classical biological studies in a much more quantitative way.
Furthermore, massive and universal computational resources available now have
contributed crucially to what we can call a “new” model-driven quantitative biol-
ogy. In this context, representation, visualization, analysis, and modeling of the
topological and dynamic properties of the complex biological networks are in order.

This volume shows relevant aspects of this new area, with contributions mainly
from Brazilian groups, trying to describe gene expression, metabolic, and signaling
networks, as well as the brain functioning and epidemiological models. In the
following chapters, complex networks are explored not only from the point of view
of inference but also from dynamics and time evolution, pointing out the emerging
properties of biological systems. In the first part, theoretical and computational
analysis of complex biological networks is reviewed, involving visualization,
inference, topological, and differential analysis, as well as modeling time evolution
and sensitivity of biological processes. In the second part, the emphasis is on the
application of these methods to investigate infectious and degenerative diseases,
including cancer, aimed at a better understanding of the evolution of diseases and
searching for relevant pharmacological targets and biomarkers.

Sophisticated mathematical and computational tools are necessary to understand
the intricate processes occurring in biological networks at different levels, from the
regulation of gene expression and metabolic networks into each cell, as well as
signaling at the intracellular level and between cells and organisms. A broad view
of modeling of these processes is presented by the authors, pointing out the
importance of this approach in the rational design of new drugs, innovative gene,
and immune therapies, and also in advancing the concept of personalized medicine.
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Although recognized as being in the early stages, the power of this approach is well
demonstrated in this volume. In fact, we can imagine much broader and new
applications in this area, especially related to the new trends arising from the current
revolution in information technology, such as the promising resources of the
“internet of things.” Also, surprising is the number and quality of Brazilian groups
involved in this area, showing a very promising evolution of research in our
country.

Finally, we can point out that the current pandemic of the new coronavirus,
which required rapid and accurate responses, mobilized, as expected, scientists
from around the world who have largely employed tools like those discussed here,
emphasizing once again the importance of these contributions.

Paulo Mascarello Bisch
Institute of Biophysics “Carlos Chagas Filho”

Federal University of Rio de Janeiro
Rio de Janeiro, Brazil
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Preface

In the last decades, we have witnessed a transition from descriptive biology to a
systemic understanding of biological systems that was possible due to the
impressive progress in high-throughput technologies. The wave of data produced
by these technologies is tremendous and offered an opportunity for big data as well
as mathematical and computational modeling to take off. Systems Biology is a
rapidly expanding field and comprises the study of biological systems through
mathematical modeling and analysis of large volumes of biological data. Now we
testify exciting times where sciences integrate one another for the benefit of solving
specific problems. Of course, medical sciences do not escape this trend, and we
have to follow these developments for participating and translating them into
medical applications as well as for transmitting them to the next generations.
Indeed, the transmission of knowledge on cutting-edge developments in System
Biology was the purpose of the III International Course on Theoretical and Applied
Aspects of Systems Biology, held in Rio de Janeiro in July 2019, whose contri-
butions are now translated into the present book.

This book presents current research topics on biological network modeling, as
well as its application in studies on human hosts, pathogens, and diseases. The
chapters were written by renowned experts in the field. Some topics discussed
in-depth here include networks in systems biology, computational modeling of
multidrug-resistant bacteria, and systems biology of cancer. It is intended for
researchers, advanced students, and practitioners of the field. Chapters are
research-oriented and present some of the most recent results related to each topic.

This book is organized into two main sections: Biological Networks and
Methods in Systems Biology and Disease and Pathogen Modeling. Although the
whole book is made of contributions from researchers with a clear commitment to
applied sciences, the first part brings chapters where the more fundamental aspects
of biological networks in systems biology are addressed. The remaining chapters on
the second part of the book deal with the application of such fundamentals in
disease modeling.
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Chapter 1
Network Medicine: Methods
and Applications

Italo F. do Valle and Helder I. Nakaya

Abstract The structure and function of biological systems are determined by a
complex network of interactions among cell components. Network medicine offers
a toolset for us to systematically explore perturbations in biological networks and to
understandhow they can spread and affect other cellular processes. In thisway,we can
have mechanistic insights underlying diseases and phenotypes, evaluate gene func-
tion in the context of theirmolecular interactions, and identifymolecular relationships
among apparently distinct phenotypes. These tools have also enabled the interpre-
tation of heterogeneity among biological samples, identification of drug targets and
drug repurposing as well as biomarker discovery. As our ability to profile biological
samples increases, these network-based approaches are fundamental for data inte-
gration across the genomic, transcriptomic, and proteomic sciences. Here, we review
and discuss the recent advances in network medicine, exploring the different types
of biological networks, several methods, and their applications.

Keywords Network medicine · Graph theory · High-throughput technologies

1.1 Introduction

High-throughput technologies such as next-generation sequencing, mass spec-
trometry, and high-dimensional flow cytometry have revolutionized medicine. By
providing the molecular and cellular profile of patients, these technologies can help
physicians into their medical decisions. For instance, the analysis of whole-genome
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sequencing allows the identification of mutations associated with a disease or a
response to treatment. It is also possible to measure the activity of tens of thousands
of genes, proteins, and metabolites to find the set of markers capable of predicting
a medical outcome. Another example is the analysis of DNA methylation patterns
in liquid biopsies that can reveal the presence of tumors in the early stages of the
disease [1]. However, just having this comprehensive catalog of a patient’s genes
and biological components is often not sufficient to understand the mechanisms of
human diseases.

Networkmedicine studies the interactions amongmolecular components to better
understand the pathogenesis of a disease. The underlying idea is that a cell can be
thought as networks of interacting biomolecules, and a disease is can be seen as
a “malfunctioning” in one or more regions in human biological networks [2]. A
mutation that affects the correct functioning of a single protein will interfere not
only with the function of that specific protein, but also with the proper functioning
of many other proteins that are connected to it. Network medicine uses graph theory
to analyze how networks behave in the context of a disease and one of its aims is to
identify the key players related to the disease.

In this chapter, we will describe the types of biological networks and the main
methods of analysis utilized in networkmedicine.Wewill also address the techniques
that identify subnetworks and genemodules associated with human diseases. Finally,
we will show how drug treatment can affect the network behavior.

1.1.1 Basic Concepts in Graph Theory

A network (or a graph) is a catalog of a system’s components often called nodes
or vertices and the interactions between them, called links or edges. In biological
networks, nodes represent biomolecules, such as proteins, metabolites, and genes,
while links represent different types of biological interactions between them, such
as physical binding, enzymatic reaction, or transcriptional regulation. Link networks
can be directed, like in the interaction where a transcription factor activates a given
target gene, or undirected, where the interaction is bidirectional, like in a physical
interaction between two proteins.

A key property of a node is its degree, which is equal to its total number of
connections. Depending on the network, it can represent the number of proteins a
given protein binds to or the number of reactions a given metabolite participates in.
For directed networks, such as regulatory networks, the degree can be differentiated
in outgoing degree, the number of nodes it points to, or incoming degree, and the
number of nodes that point to it. The degree distribution of a network, which gives the
probability P(k) that a selected node has exactly k links, is important to understand
how the network works. For example, a peaked degree distribution indicates that a
system has a characteristic degree fromwhichmost of the nodes do not highly deviate
from (Fig. 1.1a, c). By contrast, most networks found in nature, are characterized by a
power-law degree distribution, which means that most nodes have a few interactions
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Fig. 1.1 Example of a random non-scale-free network (a) and of a scale-free network (b), together
with a schematic representation of their degree distributions (c). A node with degree K = 4 is
highlighted in green, and a shortest path of length D = 3 is highlighted in blue

and that these coexistwith a fewhighly connected nodes, the hubs, that hold thewhole
network together (Fig. 1.1b, c). Networks with this property are usually referred to as
scale-free network. These are typical of several real-world systems, and this degree
distribution implies important properties of these systems’ behavior, such as the high
robustness against accidental node failures [3].

Complex networks are also often characterized by the small-world property [4].
Thismeans that anypair of nodes canbe connectedby relatively short paths. In biolog-
ical networks, this property indicates that, for example,most proteins (ormetabolites)
are only a few interactions (or reactions) from any other protein (metabolite) [5–7].
Therefore, perturbing the state of a given node can affect the activity of several others
in their vicinity.

1.2 Biological Networks

Cells are comprised of complex webs of molecular interactions between cell compo-
nents [8]. These interactions form complex networks or interactomes, and many
experimental approaches have been developed to completely map them. These
approaches include (1) curation of existing data available in the literature (litera-
ture curation), (2) computational predictions based on different information such as
sequence similarity and evolutionary conservation, and (3) systematic and unbiased
high-throughput experimental strategies applied at the scale of whole genomes or
proteomes. The networks derived by each of thesemethods have their own biases and
limitations that should be carefully taken into account during computational anal-
ysis. Here, we discuss a few examples of biological networks and their respective
properties.
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1.2.1 Protein–Protein Interaction (PPI) Networks

PPIs are undirected networks in which nodes represent proteins and edges represent
a physical interaction between two proteins. Two main methodologies are used for
large-scale interaction mapping: yeast-two hybrid (Y2H) and affinity purification
followed by mass spectrometry (AP/MS) (Fig. 1.2).

In the Y2H technique, a transcription factor is split into its two components: the
binding domain (BD), which binds to the DNA sequence, and the activation domain
(AD), which activates the transcription. DNA recombinant tools are used to create
chimeric proteins in which one protein of interest (prey) is fused to the transcription
factor BD, while the other protein of interest (bait) is fused to the AD. If the prey and
bait proteins physically interact, the transcription factor is reconstructed and is then
able to activate the transcription of a reporter gene, which will create an indicator that
the interaction occurred (Fig. 1.2a). In AP/MS, a protein of interest (bait) is purified
from a cell lysate (often referred to as pull-down), and co-purified proteins (preys)
are identified through mass spectrometry (Fig. 1.2b). Mappings derived from Y2H
contain physical interactions, while AP/MS ones contain co-complex information—
that is, the interactions can be either physical or indirect.

Several high-throughput mappings have been used to map protein interactomes
in humans and model organisms. The most recent efforts for human interac-
tomes include the Human Reference Interactome (HuRI) [9], mapped by Y2H,
and BioPlex2.0 [10], and mapped using AP/MS. Several databases with literature-
curated PPIs are available, and a few efforts have been made to produce high-quality
interactomes derived from literature-curated data [11, 12].

Literature-curated PPIs are inherently biased toward heavily studied proteins:
most interactions occur among genes characterized by many publications and their
network is depleted of interactions for proteins with few or no publications [13].

Fig. 1.2 Schematic representations of the techniques used to detect protein–protein interactions:
a Yeast-two hybrid and b affinity purification of protein complexes. BD: DNA-binding domain,
AD: transcription activation domain, A-B hypothetic proteins
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The analysis of such networks may lead to incorrect conclusions, such as the previ-
ously reported correlation between number of interaction partners (degree) and gene
essentiality [9, 13].

Small overlaps are observed among protein interactomes, even those derived by
unbiased and systematic studies, which can be partially attributed to the different
properties of their respective experimental strategies. For example, PPIs have
different binding affinities, which may or may not be in the range of detectability for
that specific method. Other factors might include fusion constructs, washing buffer,
and protein expression in the cell.

1.2.2 Gene Regulatory Networks

In gene regulatory networks, nodes are transcription factors (TFs) (and/or miRNAs)
and their targets, and directed edges exist between TFs (miRNA) and their targets.
The most common approach for detection of regulatory interactions is chro-
matin immunoprecipitation (ChIP-seq)-based approaches:DNA-binding proteins are
cross-linked with the DNA, an antibody is used to immunoprecipitate the protein of
interest, and DNA sequencing strategies are used to identify the genomic regions
where the protein binds to. The human regulatory network derived in this way
by the ENCODE project revealed important features of cellular regulation: hierar-
chical organization of TFs in which top-level factors more strongly influence expres-
sion, while middle-level TFs co-regulate several targets. These properties avoid
information-flowbottlenecks and allow the presence of feed-forward networkmotifs.
It was also possible to observe stronger evolutionary and allele-specific activity of
the most connected network components [14].

Other strategies also take advantage of DNAse-Seq to identify regions that can be
occupied byTFs and then identify these TFs by their bindingmotifs for that particular
genomic region. The mapping of the regulatory networks across 41 cell lines using
this technique has revealed that networks are markedly cell-specific and even TFs
that are expressed across cells of a given lineage show distinctive regulatory roles in
the different cells [15].

Several approaches have been developed for reverse engineering cellular networks
from gene expression data. Most of these methods are based on the notion of
similarity among co-expression across different experimental conditions. Methods
based on measures based on correlation, mutual information and graphical models
(includingBayesian networks) identify undirected edges between nodes by capturing
probabilistic dependences of different kinds [16].
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1.2.3 Metabolic Networks

Metabolic networks attempt to describe biochemical reactions for a particular cell
or organism. In most representations, nodes are metabolites and edges are the reac-
tions that convert one metabolite into another. In this case, edges can be directed or
undirected, depending on the reversibility of the reaction. Other representations are
also possible, such as nodes as metabolites and edges representing co-participation
in the same biochemical reactions.

Network reconstruction involves manual curation of literature data describing
experimental results on metabolic reactions as well as predicted reactions derived
from orthologous enzymes experimentally characterized in other species [17].

1.2.4 Genetic Interaction Networks

Genetic interactions (GIs) are functional relationships between genes, and they can
be classified into positive and negative interactions. In negative GIs, the observed
fitness by mutating a pair of genes at the same time (double mutants) is worse than
what is expected when mutating genes individually (single mutants) (Fig. 1.3a). In
positive GIs, a gene mutation can mitigate the effect caused by another mutation,
and the double mutant is healthier than most sick of the single mutants (Fig. 1.3b).
Mapping GIs allows us to understand the mechanisms underlying robustness of

Fig. 1.3 Schematic representation of negative (a) and positive (b) genetic interactions
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biological systems and how compensatory mechanisms emerge after perturbations.
Recent technological advances havemade possible the systematicmapping of genetic
interactions in yeast, C. elegans and human cells. These maps can be represented
as networks in which nodes are genes and an edge exists between genes that have
high similarity in their genetic interaction profiles. Genetic interaction networks
have enabled the understanding of the hierarchical dependencies of cell functions,
identification of functionally related processes and pleiotropic genes [18–20].

1.2.5 Pathogen–Host Interactomes

Pathogens have complex mechanisms to perturb host intracellular networks to their
advantage and the understanding of parasite–host interactomes could provide impor-
tant insights for the development of treatment strategies. For instance, it has been
observed that pathogen’s proteins preferentially target hubs in human and plant inter-
actomes [21, 22]. Systematic maps capturing viral–host protein–protein interactions
have been obtained for Epstein–Barr virus [23], hepatitis C virus [23], herpesviruses
[24], influenza [25], HIV [26], and others [27]. Other pathogen–host interactomes
have been assembled or predicted for bacteria [28], fungi [29], worms, such as Schis-
tosoma mansoni [30], and several protozoans, such as Leishmania [30], Plasmodium
[30–32], and Trypanosoma [30].

1.3 Biological Networks for Functional Annotations
of Proteins and Complexes

The network neighborhood of a protein reflects several of its properties: cellular
localization, biological, and molecular function. Therefore, the most basic assump-
tion is that proteins that are close to each other and/or share many neighbors in the
interactomes are more likely to have a similar function. This “guilt-by-association”
principle underlies many network-based methods for protein function prediction.

An example of this principle can be observed in the recent demonstration that
PPI networks can be used to predict protein subcellular localization [9]. The authors
showed that extracellular vesicle (EV) proteins form a significant subnetwork in the
PPI network. The interaction partners of the EV subnetwork already included many
proteins with established roles in EV biogenesis and cargo recruitment, and the other
interaction partners with unknown subcellular localization were ranked as potential
EVproteins based on the number of interactions they sharedwith the EV subnetwork.
Experimental validation demonstrated that candidate proteins were indeed related to
extracellular vesicle functions [9].

Several network-based indexes attempt to quantify the size of neighborhood that is
shared between two proteins—these are often referred to in network science as node
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similarity indexes. Common similarity indices for pairs of nodes take into account
the number of shared interaction between the nodes normalized by their total number
of interactions (Jaccard index), or by the smallest degree of either node (Simpson
index) or by the product of the individual nodedegrees (geometric and cosine indexes)
[33]. Uncharacterized proteins can be ranked based on their similarity indexes with
proteins of known function, and the high-ranking proteins can be annotated to the
same function. Exploiting the same principle on genetic interaction (GI) networks has
been shown to be very effective for the discovery of functional complexes, control,
and regulatory strategies, as well as unrecognized biosynthetic pathways [34].

Other approaches for the prediction of protein function take into account the full
topologyof the network [35]. Flow-based approaches consider eachprotein annotated
to a given function as the source of a “functional flow”. After simulating the spread
of this flow over time through the network, each unannotated protein is assigned a
score that is proportional to the amount of flow it received during the simulation
[36, 37]. A recent distance metric based on network diffusion that is able to capture
similarities based on multiple paths in the network has been shown to provide finer
grained distinctions when transferring functional annotation in PPI networks [38].
Other approaches integrate PPI network data with high-throughput biological data,
creating functional networks for the predictions [39].

More recently, algorithms based on network embedding have also been used
for the prediction of protein function. In classic versions of these approaches,
matrix factorization leads to a representation of network nodes as vectors in a low-
dimensional spacewhile preserving the neighborhood similarity between nodes [40].
A network embedding algorithm has been applied in a multi-layer network, where
each layer represents protein interactions in a different tissue, to provide predictions
of cellular function that take into account tissue-specific protein functions [41].

1.4 Biological Networks and Diseases

1.4.1 Disease Genes and Subnetworks

Biological networks provide us with a unique opportunity to study disease mech-
anisms in a holistic manner. The interconnectivity between cellular components—
genes, proteins, and metabolites—implies that the effect of specific perturbations,
like mutations, will spread through the network to areas not originally affected.
Biological networks provide us with the context for a given gene or protein which is
essential in determining the phenotypic effects of perturbations [2].

Protein–protein interaction networks have been extensively used to study disease
mechanisms. It has been observed that proteins genetically associated to a given
disease tend to be colocalized in a given neighborhood of the network, forming a
connected subgraph, often referred to as disease module. Thus, the disease module
indicates a region in the network that, if perturbed, leads to the disease phenotype
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[2]. In asthma, for example, out of 129 asthma-related genes, 37 formed a connected
subgraph, or disease module [42]. In order to measure whether the disease module
could have emerged by chance, 129 genes were randomly selected from the network
and the size of the largest connected component formed by these genes is registered.
This process is repeated through several iterations, usually 1,000 times, producing
a null distribution. This null distribution can be then used as reference to compare
the module size observed from the disease genes, providing an empirical p-value:
the proportion of random iterations that produced a module size equal or greater
than the real observation [42]. The biological significance of the disease modules
can be verified by the fact that the asthma module contained proteins related to
immune response and pathways involved in other immune-related disorders [42].
The asthma module also resulted in enriched with differentially expressed genes
from normal and asthmatic fibroblast cells treated with an asthma-specific drug and
close evaluation of the module revealed GAB1 signaling pathway as an important
modulator in asthma [42]. In summary, this represents the simplest approach for
disease module discovery: size of the largest connected component (LCC) of the
subgraph formed by disease proteins, and strategy that was later demonstrated to
work in hundreds of other diseases rather than asthma only [43].

However, the discovery and detection of diseasemodules can be often challenging,
since a large proportion of the disease-associated proteins remains unknown, as well
as many of the possible protein–protein interactions remain to be discovered. These
limitations result in modules that are often fragmented, limited in size, and only
partially describing the underlying disease mechanisms.

Several methods have been proposed for the discovery of disease-associated
proteins and subnetworks. Some methods are based on the “guilt-by-association”
principle and exploit the network proximity of diseased genes [44, 45].Othermethods
explore the global structural and topological properties of PPI networks to iden-
tify disease-related subnetworks or disease modules. For example, some methods
are based on the principle of network diffusion or random walk [37, 46]. In these
methods, disease genes are starting points (seeds) of a random walker that moves
from node to node along the links of a network. After a given number of iterations,
the frequency in which the nodes are visited converges is used to rank highly visited
subnetworks. Examples of methods based on this principle are HotNet [47] and
HotNet2 [48] algorithms that aim to find modules of somatic mutations in cancer
and modules of common variants in complex diseases.

The DIseAse Module Detection (DIAMOnD) algorithm introduced the concept
of connectivity significance [49]. In this method, disease genes are mapped in the
PPI network and, at each step of an iterative process, the node most significantly
connected to the disease genes is added to the module. The connectivity significance
is based on a hypergeometric test that assigns a p-value to the proteins that share
more connections with the seed proteins than expected by chance [49]. However,
as a cautionary note, we highlight the fact that statistical tests that assume indepen-
dence of observations are not appropriate for networks [50], and degree-preserving
network randomization strategies could provide better statistical support for the same
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network-based principles [51, 52]. The comparison of different types of similar algo-
rithms (i.e., node-ranking) suggests that each one has its strengths and weakness and
their application might depend on the specific use case [53].

Another class of methods for module identification is based on the principle that
nodes related to the same disease or function are more densely connected to each
other than expected by change (i.e., high modularity). A recent study compared
different types of module identification algorithms in different biological networks
[54]. Again, results showed that methods from different categories can achieve
comparable performances complementary to each other [54].

Different networks can provide very different predictive performances when used
with disease module identification algorithms. A comparison of different network
sources indicates that the size of the network can improve performance and outweigh
the detrimental effects of false positives [55]. It also showed that parsimonious
composite networks, which only include edges that are also observed in other
networks, can also increase performance and efficiency [55].

Integration of phenotypic data can also help in the identification of disease genes
and diseasemodules. Caceres and Paccanaro [57] recently proposed an approach that
uses disease phenotype similarity [56], to define a prior probability distribution over
disease genes on the interactome. Subsequently, a semi-supervised learning method
establishes a prioritization ordering for all genes in the interactome. The important
advantage of this method is that it provides predictions of disease genes even for
diseases with no known genes. Their method can also be used to retrieve disease
modules [57].

1.4.2 Disease Networks

The interconnectivity between cellular components also implies that different
diseases might be connected by the same underlying molecular mechanisms. To
map these disease–disease relationships, Goh et al. [58] created the diseasome, a
network in which nodes represent diseases; two diseases are linked if they share
common genes, and these links are labeled by the number of gene-causing mutations
that are shared. The network representation of disease interrelationships provides
a global perspective, offering the possibility to identify patterns and principles not
readily apparent from the study of individual disorders.

However, different diseases could share disease pathways and processes while
not having any causal gene in common. Therefore, methods have been developed for
measuring the network proximity (or overlap) between disease modules in the inter-
actome. The SAB measure compares the shortest distances between proteins within
each disease (A and B, for example), to the shortest distance between A-B protein
pairs [43]. It was shown that overlapping disease modules (SAB < 0) share several
pathobiological properties: the respective disease proteins have similar functions and
show higher co-expression across tissues, while the diseases have similar symptoms
and higher risk of co-occurrence in patients [43].
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It is also possible to integrate clinical information to map and understand how
different diseases are related. Disease networks can map the level of disease co-
occurrence, or comorbidity, from Electronical Health Records (EHR). In these
networks, the nodes are usually disease codes used in clinical practice, such as ICD-
9 and ICD-10, and the links are defined by a statistical measure of co-occurrence.
Examples of co-occurrence measures are the phi-coefficient, a correlation measure
for binary variables, and the relative risk, the ratio between observed co-occurrence
and random expectation [59]. Strategies based on such maps were able to reveal
comorbidities that were demographically modulated in a given population (e.g.,
diseases more frequently co-occurring in black males) [60], the impact of age and
sex on disease comorbidities [61, 62], and to reveal temporal patterns of disease
progression [63–66]. For example, the study of a disease network was able to iden-
tify patterns of disease trajectories significantly associated with sepsis mortality,
which started from three major points: alcohol-abuse, diabetes, and cardiovascular
diagnoses [64].

The human symptoms—disease network—that connected diseases that showed
symptom similarity, indicated that strong associations in symptom similarity also
reflect common disease genes and PPIs [67]. It also indicated that diseases with
diverse clinical manifestations also showed diversity in their underlying mechanisms
[67].

Disease networks will improve as more molecular and phenotypic data will
become available for a larger number of diseases. They represent a global refer-
ence map for clinicians to better visualize and understand disease interrelationships.
They might reveal principles for better treatment and prevention, as well as offer
a mechanism-driven approach for the development of new disease classification
guidelines [68].

1.5 Biological Networks and Drugs

As the study of biological networks reveals significant insights into the systemic
organization of cellular mechanisms, they provide a powerful platform where we
can study the interplay between drugs and diseases and identify emergent properties
not apparent when singlemolecules are studied in isolation [69]. Biological networks
have been applied for the discovery of new targets, characterization of mechanism
of action, identification of drug repurposing strategies, and for prediction of drug
safety and toxicity.

PPI networks have been extensively used to study drug targets and their rela-
tionship with disease proteins. The targets of most drugs tend to form connected
subgraphs within the PPI that are significantly larger than expected by change
and most compound targets are characterized by significantly shorter path lengths
between their associated targets [70]. Additionally, drug targets tend to be signif-
icantly proximal, in the network, to the proteins of the diseases for which they
are indicated [71, 72]. These network proximity measures take into account the
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shortest path lengths among drug targets and proteins, and the statistical signifi-
cance is evaluated by comparing the observed distance to the distance obtained from
random sets of proteins, while preserving the size and degree of the original sets.
Guney et. al. [72] applied these principles to study the proximity between all possible
pairs among 238 drugs and 78 diseases, showing that the proximity between drug
targets and disease proteins provided a good discriminating performance for distin-
guishing known drug–disease pairs (i.e., with clinical use) from unknown ones
[72].

These observations suggest that network-based methods could aid in the iden-
tification of drugs that could be reused for conditions different from their intended
indications. In particular, it has been observed that drugs often target regions and path-
ways that are shared across multiple conditions [73]. Potential therapeutic interven-
tions targeting the common pathologic processes of Type 2Diabetes andAlzheimer’s
Diseases were revealed by first identifying pathways proximal to the diseasemodules
and then ranking pathways targeted by drugs using topological information from the
protein interactome [73]. In another example, transcriptomic data integrated with a
protein–protein interaction networkwere used to identifymolecular pathways shared
across different tumor types, revealing therapeutic candidates that could eventually
be repurposed for the treatment of a whole group of tumors [74]. Using the network
proximity between drug targets and disease proteins, Cheng et al. [76] identified
hydroxychloroquine, a drug indicated for rheumatoid arthritis, as a potential thera-
peutic intervention for coronary artery disease [75]. The authors analyzed data from
over 220 million patients in healthcare databases to demonstrate that patients who
happened to be prescribed for hydroxychloroquine had indeed lower risk of being
diagnosed for coronary heart disease later in their lives. The study provided addi-
tional in vitro data suggesting that the mechanism of action for this association might
involve hydroxychloroquine’s anti-inflammatory effects on endothelial cells [75].

Complex diseases tend to be associated with multiple proteins and drugs often
work by targeting several proteins besides their primary target. Consequently, several
approaches attempt to develop and predict drugs that target multiple proteins, as well
as to identify new drug combination strategies. Recent analysis of drug targets in PPIs
showed that targets are clustered in specific network neighborhoods and proximity
among targets of drug pairs also correlates with chemical, biological, and clinical
similarities of the corresponding drugs [70, 76]. It also showed that for a drug–pair
combination to be effective, the drug targets of both drugs should overlap with the
disease module of the disease for which the treatment is intended for, while not
overlapping with each other [76]. Based on these principles, a network proximity
method showed good accuracy on the discrimination of approved hypertensive drug
combinations, and it outperformed traditional cheminformatics and bioinformatics
approaches [76]. These observations also agree with experimental data evaluating
morphology perturbations caused by drug combinations in cell lines [70].

In a recent application of neural networks on graphs, a multi-layer representation
of protein–protein, drug–protein, and drug–drug (with links representing side effects)
interaction networks was used to predict side effects with improved performance
over previous methods [77]. In contrast with previous methods, this method could
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not only predict a probability/strength score of a drug interaction, but could also
identify which exact side effect would result from the interaction.
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Chapter 2
Computational Tools for Comparing
Gene Coexpression Networks

Vinícius Carvalho Jardim, Camila Castro Moreno, and André Fujita

Abstract The comparison of biological networks is a crucial step to better under-
standing the underlying mechanisms involved in specific experimental conditions,
such as those of health and disease or high and low concentrations of an environ-
mental element. To this end, several tools have been developed to compare whether
network structures are “equal” (in some sense) across conditions. Some examples
of computational methods include DCGL, EBcoexpress, DiffCorr, CoDiNA, Diff-
CoEx, coXpress, DINGO, DECODE, dCoxS, GSCA, GSNCA, CoGA, GANOVA,
and BioNetStat. We will briefly describe these algorithms and their advantages and
disadvantages.

Keywords Network science · Differential network analysis · Coexpression
network · Systems biology · Network theory

2.1 Introduction

To understand complex systems, we need to consider the interactions between their
elements. A graph is a useful tool for studying these systems due to the plasticity of
networkmodels for interpreting biological problems. In a biological context, network
vertices can represent system elements such as proteins, metabolites, genes, among
other examples. In coexpression networks, vertices represent genes, while edges
represent coexpression between gene pairs.
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We define coexpression as the statistical dependence (correlation) between the
expression values of two genes. Correlation measures how coordinated the variation
of expression values of two genes are in same condition samples (obtained from
microarray or RNA-seq analysis). In this chapter, we use the terms Conditions or
experimental conditions as synonyms of experimental treatments, such as of high,
mean, and low temperatures or clinical status, such as healthy versus cancer tis-
sues. Usually, correlation allows us to infer whether two genes belong to the same
metabolic pathway or biological process. However, it does not imply that one vari-
able influences another. Therefore, the edges that represent the correlations have no
direction, constructing undirected networks.

Changes in correlations (edges) between conditions are of interest to many stud-
ies. In some cases, the aim is to verify whether the environment or genome variations
affect the relationship between genes. Considering that each network represents an
experimental condition, to achieve this goal, we need effective means to compare
these networks. The scientific community has developed several strategies to accom-
plish this task, with approaches ranging from verifying the edge’s existence in dif-
fering conditions to network model comparisons.

Themost used correlationmeasure in coexpression network studies is the Pearson
correlation. However, the non-parametric Spearman correlation is also frequently
used since it does not demand the assumption of normality and is not limited to
only detecting linear correlations. Other strategies use mutual entropy and Bayesian
inference to define coexpression between genes [1].

Beyond the choice of correlation methods, it is also vital to select the threshold
for a given correlation to become an edge. In this sense, we commonly use two main
kinds of techniques. The most used is the hard threshold. It works as a cut-off value
to remove correlations that are below a defined value (correlation threshold) or with
a predetermined level of significance (p-value threshold). Another strategy is the soft
threshold proposed in WCGA paper [2]. The soft threshold ponders (or rescales) the
correlation values according to a power value β. This threshold technique works by
powering the correlation to a β value: the higher values increase and the lower ones
decrease, therefore highlighting the most relevant correlations. At the soft threshold,
the network remains complete without edge removal. Once parameters for construct-
ing networks are defined, those such as coexpression criteria and threshold technique,
we can compare the resulting networks in many ways.

2.2 Network Comparison Methods

Many studies apply network analysis to compare different experimental conditions.
One way is to quantify and compare the structural features of networks such as
presence or absence of edges or the number of connections of a vertex [3, 4]. Other
strategies look for edges that are exclusive of a condition [5] or identify a differential
network resulting from the combination of differential expression analysis (DE) and
differential coexpression (DC) [6]. Despite these methods being useful, they do not


