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Preface

The purpose of the International Symposium on Superalloys, which takes place every four
years, is to provide a forum for researchers, producers, and users to exchange recent technical
information regarding the high-temperature, high-performance materials that are used in gas
turbine engines and related products. The principal goal of the symposium is to highlight new
initiatives and future growth opportunities for superalloys, recent advances in the under-
standing of their behavior, and progress in integrating them into new systems. The first
symposium, held in 1968, emphasized phase instabilities in superalloys. Since then, the scope
of the symposium has expanded considerably to cover all aspects of research, development,
manufacture, and application of these materials. Over the years, the symposium has developed
rich traditions, encompassing a high-quality peer-reviewed publication, which is presented
before the conference, single-session presentations, and lively discussions during and after
formal sessions, which are facilitated by the Seven Springs Mountain Resort. Participation
from the international superalloy community in the technical program has always been key to
the success and reputation of this symposia, so due to the unprecedented COVID-19 pan-
demic, the Superalloys 2020 Organizing Committee and TMS have rescheduled the 14th
International Symposium on Superalloys to September 12–16, 2021. The collected proceed-
ings is being published and released to the community as scheduled in September 2020 to
ensure that that the reported findings are timely and up to date.

This, the Fourteenth Symposium, will be taking place at a time when advances in the
superalloy community have been largely driven by the development of property models,
computational tools, processing methods, and innovative characterization techniques. For
example, 3D mesoscale through atomic-scale characterization, machine learning algorithms,
integrated computational materials engineering (ICME), and physics-based property models
have all contributed to improve the processing and performance of existing materials, while
accelerating the development of new alloys. As highlighted in the collection of proceedings,
the development and application of innovative technologies in academia, industry, and gov-
ernment laboratories have been critical for improving the overall life cycle of superalloys.

For the first time, the keynote address of this symposium will be a joint presentation from
representatives of an engine OEM and a superalloy supplier. Christian Dumont, Chief of the
Materials and Processing Modeling Department at Aubert & Duval, and Arnaud Longuet, an
expert in the mechanics of high-temperature materials at Safran Aircraft Engines, will provide
a unique overview of how data and information generated from process modeling tools used
by the supply chain have been integrated into lifing methodologies used by the engine’s
original equipment manufacturer (OEM).

Starting with the Second Symposium in 1972, each symposium and its corresponding
published proceedings have been dedicated to an individual as a means of honoring his or her
contributions to the superalloy industry. The Fourteenth International Symposium is dedicated
to Pierre Caron, a true pioneer and innovator in our field. Further details of Pierre’s career and
contributions can be found on the following pages.

Finally, it should be noted that this symposium would not have been possible without the
efforts of the current and past members of the committees that serve the International Sym-
posium on Superalloys. The Program Committee for the Fourteenth Symposium, listed below,

vii



was responsible for preparation of the technical program, including critical review of abstracts
and manuscripts for originality, technical content, and pertinence to industry. The TMS staff,
particularly Trudi Dunlap, Jennifer Booth, Matt Baker, and Doug Shymoniak, devoted con-
siderable effort to organizing all other aspects of the symposium.

Sammy Tin, Chair
Mark Hardy
Justin Clews

Jonathan Cormier
Qiang Feng
John Marcin

Chris O’Brien
Akane Suzuki
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Advanced Modeling Tools for Processing
and Lifing of Aeroengine Components

Arnaud Longuet, Christian Dumont, and Eric Georges

Abstract

Lifing is one of the main challenges for aeroengine
manufacturers. For fatigue prediction, attention has been
focused on the crack initiation mode depending on stress
level and initial microstructure. Microstructure prediction
during the component manufacturing, especially for final
heat treatments and final forging operations, is required if it
is to be included in fatigue analysis. Reliable tools are now
available for basic nickel-based alloys such as Inconel 718.
For other alloys, notably c/c′ alloys, research is still being
performed in close partnership with academia. Globally,
two main trends are emerging; first, one of our main
interests is to develop the modeling capability for the entire
manufacturing process, including ingot conversion and
billet forging. Second, new approaches are still under
development by introducing more physical considerations
through full-field models, which are very useful for a better
understanding of specific issues such as heterogeneous
grain growth. From a component lifing point of view, the
initial state of stress is also a key parameter to be
considered. One method for the control of residual stresses
is application of a pre-spinning process. Finally, a standard
lifing methodology is explained and improvements are
proposed; in particular, size effect is used to model notch
specimen life considering surface or internal initiation.

Keywords

Inconel 718� c/c′ alloys�Modeling�Recrystallization�
Lifing � Residual stresses � Manufacturing process

Introduction

Aeroengine turbine disks are among the most challenging
components to design. Material choice and microstructure
evolution are crucial to the performance and durability of a
part design, which is dependent on the application, required
fatigue/creep life and temperatures reached. The design
process for such a component is iterative. To select a
material for a particular application, specifications need to be
given by the pre-design and the design department. Highly
representative material properties are necessary for models
to accurately predict the life and integrity of a part.

Disk qualification packages are submitted for certification
to airworthiness authorities (e.g., FAA and EASA). The two
most critical risks to avoid are disk burst in case of
over-speed and disk failure due to fatigue. Material proper-
ties and their response to processing are of the utmost
importance to meet certification requirements.

Often times, the material performance for the selected
application is too low with respect to the design require-
ments and a new superalloy is desired. However, multiple
approaches can be used in an aim to meet the design
requirements: Improve the material by a change in the
chemical composition, improve the manufacturing process
(i.e., conversion, forging, heat treatment, machining) to have
better material properties, or improve the material’s consti-
tutive modeling approaches to better understand any con-
servatism in the predictive methodology. For decades, many
research programs have been devoted to microstructure
prediction, from ingot casting to final closed die forging of
parts. For the forging process, models are based on
post-processing of thermomechanical histories during part
manufacturing, deduced from finite element modeling,
Inconel 718 being the material of choice [1–3]. This pre-
sentation will be oriented toward improving the modeling
tools that can help with improving forge process and lifing
methodologies of forged rotating components. For

A. Longuet
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microstructure prediction, we propose to address more
specifically the three following points:

– The reliability of the thermomechanical description of
processes as a requirement for realistic microstructure
prediction

– The relevance of new full-field models for microstructure
prediction

– The specificity of c/c′ alloys versus Inconel 718.

Several examples presented in this article are from Aubert
& Duval and Safran Aircraft Engines in house research
activities, as well as from French Industry–University
research programs, through joint PhD students or large-scale
programs like the OPALE, DIGIµ, and TOPAZE chairs [4–
6] supported by the ANR (French National Agency for
Scientific Research), Safran, and/or Aubert & Duval.

It should be noted that research activities on high-
temperature materials can be performed on very applied
(industrial) topics in French academic laboratories due to a
well-established intellectual property (IP) system. The IP is
shared in most cases between the university and the indus-
trial partner to existing agreements. Governmental initiatives
encouraging joint industry–university research are further
strengthened by providing funding, e.g., half of Ph.D. stu-
dent grants if hired by industry or half of the financial
support for large-scale research programs (like the
above-mentioned ones) for more fundamental research
activities.

Effect of Microstructure on Inconel 718 Life

Inconel 718 (IN718) is the most widely used superalloy for
disk applications. It is low cost compared to c/c′ superalloys
and relatively easy to process and has good mechanical
properties up to 650 °C. The forging process produces dif-
ferent microstructures, mainly in terms of grain size. The
understanding of crack initiation mode on the durability of

IN718 is critical to be able to estimate the scatter linked to
each crack initiation mechanism [7]. Figure 1a shows that
the surface crack initiation (example in Fig. 1b) mode has a
lower scatter than the internal crack initiation mode. It is of
the utmost importance at the stress level where the two crack
initiation modes are competing to be able to draw the min-
imal master curve used for the component design, and to
understand the possible origins of scatter.

Turbine disks always show variation in grain size due to
the forging process. Among all the microstructural features
critical for component lifing, grain size is the most important
for IN718, while this is not always true for other c/c′ alloys
[8–12]. Figure 2 shows the effect of grain size on IN718
fatigue life. In the same way, the fatigue life variability is
dependent on the crack initiation mechanism and hence on
the grain size. For a surface crack initiation mode,
carbides/nitrides for 10 ASTM (*10 µm) material or twin
boundaries for 7 ASTM (*30 µm) material can be crack
starters [8, 10–13]. But the fatigue life remains identical
between these two modes. For the internal crack initiation
mode, as 10 ASTM IN718 material already initiates on
grains/at twin boundaries, the initiation mode does not
change. However, the fatigue life is reduced with larger
grain size.

A more detailed review of the data is presented in Figs. 3
and 4. LCF strain-controlled fatigue tests were performed on
two different IN718 materials (different forging routes) with
nearly the same grain size at an intermediate strain level
where crack initiation could occur at the surface with a low
life or internally with higher lives [8]. According to Fig. 3, it
is clear that material 1 has a lower life compared to material
2. In an unexpected way, material 1 initiates mainly on
grains/twin boundaries near the surface and material 2
internally on nonmetallic inclusions, nitrides especially.
Better fatigue life is expected with internal crack initiation
compared to (sub)surface initiation, but usually grain initi-
ation gives better lives than inclusion initiation.

The explanation for this result can be found in Fig. 4. The
two materials have a very similar average grain size, but the

Fig. 1 Nature of crack initiation mode of IN718 in a S–N diagram at low and intermediate temperature (i.e., T < 500 °C) (a) and typical LCF
surface crack initiation from a nonmetallic inclusion (a nitride in this case) at intermediate temperature—adapted from [10] (b)
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grain size distribution of material 1 has a longer tail, with
sizes even larger than maximum nitride size. Crack initiation
occurring on the largest microstructural feature between
nonmetallic inclusions and twins, the results of Fig. 3 are
confirmed. A similar trend is also observed in AD730TM c/c′
alloy in LCF at 450 °C [9], despite a reduced variability in
LCF life compared to IN718. Moreover, it has been clearly
shown by Texier et al. that at fixed grain sizes and by
considering only nonmetallic inclusion crack initiation, the
precipitation state is critical in terms of fatigue life vari-
ability. In addition, an alloy with a higher content of c″ (i.e.,
lower d content) leads to greater fatigue life variability for
IN718 [10].

All these considerations show that both the microstruc-
ture and initial state of stress/strain should be controlled
carefully throughout the component manufacturing process.
Modeling tools are now used regularly in order to improve
both the forging and heat treatment routes. The main goal is
to predict the microstructures and residual stress levels.
Thus, a review is proposed in the next subsections on the
developments and capability of “metallurgical and
mechanical post-processing modules” implemented in
commercial process simulation software packages.

Microstructure Modeling

Closed Die Forging

Commercial software packages such as FORGE or
DEFORM based on Johnson–Mehl–Avrami–Kolmogorov
(JMAK) formulations [14] are used to model closed die
forging of IN718. They are very useful for testing different
forging routes for each new application (geometry of the
blank, lubrication, die temperature, etc.). Moreover, corre-
lation between modeling and experimental results is a good
way to validate process control and the prediction of ther-
momechanical history at different locations in the forged
part. However, this basic approach may become unsatis-
factory for more complex situations such as:

– Multistep forming processes (rolling or ring rolling, open
die forging, etc.)

– Adiabatic heating over the d-solvus, leading to a faster
dissolution of d phase and consequently to unexpected
grain growth.

In such cases, modeling equations must be improved,
leading to specific experiments to assess new parameters. By
considering again the same two examples:

Fig. 2 Effect of grain size on fatigue life of Inconel 718 (G—ASTM
grain size)

Fig. 3 Comparison between LCF lives of different IN718 forgings at
an intermediate strain level and low temperature (i.e., T < 500 °C)—
adapted from [8]

Fig. 4 Grain size histograms and maximum carbide and nitride sizes
for Fig. 2 materials—adapted from [8]
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– Recovery effects between each deformation step must be
introduced for unrecrystallized grains in the description
of the residual strain coming from the previous defor-
mation pass [15].

– In contrast to a simple thermal treatment, deformation
significantly increases the precipitate dissolution rate
[16].

All these improvements lead to more reliable and com-
plex models, which come progressively close to physical and
mean-field approaches. Residual strain accumulated between
each pass during an incremental process can thus be con-
sidered as describing dislocation density. However, JMAK
models are still largely used since the sensitivity analysis and
parameter identification are easier, with their main parame-
ters being directly connected to thermomechanical data
(strain, temperature, etc.). Moreover, physical models are
more difficult to implement in computation codes, because
we have to manage larger numbers of parameters, increasing
with the level of detail for microstructure description:
kinetics of misorientation of sub-grains, twins [17]. Ulti-
mately, it becomes impossible to get a complete map of
microstructure parameter distribution (grain size, recrystal-
lized fraction etc.) through metallurgical post-processing.
Each thermomechanical operation, extracted from the initial
finite element model, needs to be treated separately.

In this sense, full-field models are much more suitable to
account for microstructure evolution. A large research pro-
gram is currently in progress in France which aims at
developing the DIGIµ™ software package, based on the
state-of-the-art numerical methods and metallurgical models,
but optimized to enable their industrial use [18–21]. The
collaboration between industrial and academic partners runs
in a specific framework with interactive governance and
shared IP principles that have been set up. Similar to what
has been done in the past for other software developments,
such as FORGE, the interaction between industry and aca-
demics proceeds through the following steps:

– New numerical developments are proposed by the aca-
demia with agreed-upon needs expressed by the industrial
partners, in terms of metallurgical phenomena, materials,
and processes.

– The new software implementation and their tutorials are
delivered by the research laboratory (CEMEF—MINES
ParisTech, Sophia Antipolis) to the industrial partners
through a software editor company (Transvalor).

– Industrial partners provide a feedback on the software
usage and parameter identification for their materials of
interest. The latter issue is also subjected to common
work performed between several industrial companies of
the funding consortium.

– Important feedback is provided for new proposals and
requests for further software development that lead to
new academic research programs.

Founded and co-funded by industrial partners and the
French government (through the French National Agency
for Scientific Research, ANR), this process leads to a strong
partnership that is highly efficient, flexible, and agile. Even if
they are not IP free at the beginning, these numerical tools
are ultimately intended to be disseminated on the market by
the software company. However, this process offers
numerous benefits for the initial funders like exclusive use
period, discount for maintenance, and definition of future
development plans.

Based on a level-set description of polycrystals, the
DIGIµ framework has been developed in order to model the
evolution of an actual grain size distribution during static,
dynamic, and post-dynamic recrystallization. In this case, the
main goal is not to simulate an actual forging process, but it
can be very useful for optimization of model parameters.
One of the main interests of this approach consists also in
carrying out numerical experiments in order to study specific
phenomena occurring during subsequent solution heat
treatments. One typical example deals with heterogeneous
grain growth [22], which can be uncontrolled and lead to
large grain sizes, with a deleterious impact on mechanical
properties [23]. For this specific concern, three main
parameters governing grain boundary motion have to be
taken into account:

– Capillarity driving force directly connected to grain size
distribution

– Distribution of second-phase particles, such as d phase in
IN718 (volume fraction and size)

– Difference of stored energy between neighboring grains.

An example is shown in Fig. 5 adapted from [22]. Pattern
(a) represents an initial microstructure on IN718
(100 � 100 µm) with a volume fraction of 4% of round d
particles 0.8 µm in diameter. The blue grain is free of stored
energy, while the surrounding grains are characterized by a
stored energy equal to 200 kJ/m3. Subsequent heat treatment
at 985 °C is then calculated with DIGIµTM. This difference
in stored energy leads to the faster growth of the blue grain
after 600 s (b), 1800 s (c), and 3600 s (d). Similar phe-
nomena have also been reported in c/c′ alloys and attributed
to static recrystallization under critical stored energy con-
ditions [24].

Obviously, this approach does not pretend to be repre-
sentative of a real microstructure and process. However, it
can give useful guidelines for understanding unexpected
microstructure evolution occurring during heat treatments,
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on a rather wide range of materials (IN718, c/c′ alloys, etc.)
and different processes (ring rolling, bar cogging, etc.). For a
given initial microstructure in terms of grain size and sec-
ondary phase particles, it is then possible to assess the dis-
tribution of stored energy which can trigger heterogeneous
grain growth. This phenomenon is more sensitive when
grain size decreases due to the higher capillarity effect
(typically from grain size finer than 10 µm). However, the
link between thermomechanical history and a specific dis-
tribution of stored energy between neighboring grains
leading to heterogeneous growth is not always so easy to
establish.

Upstream Process: Ingot Conversion

Another challenge consists of microstructure prediction
during ingot conversion and billet manufacturing [25]. In
order to meet the final part requirements, microstructure
needs to be controlled at the earlier stages of the product and
typically on billets. For c/c′ alloys such as Rene 65 or
AD730TM, it is well known that fine and homogeneous grain
size must be obtained directly at this step since recrystal-
lization of large and elongated unrecrystallized grains cannot
be completed during closed die forging [26, 27]. Thus, the
trend is toward modeling of the full process, from ingot to
the final part, as shown in Fig. 6.

From a purely computational point of view, we have to
address three main challenges:

– As open die forging consists of a large number of various
operations (upsetting, bar forging, furnace reheating,
etc.), we need to gather a lot of process parameters for
accurate modeling of hundreds of press strokes.
Improvement of data recording and more continuous
communication between the press and computational
codes is an important way to move forward [28].

– Regarding microstructure prediction models, specific
adaptations have to be implemented in order to take into
account all the phenomena occurring simultaneously at
different locations of the bars (dynamic, metadynamic, or
static recrystallization). Moreover, as these models are
usually built from equiaxed initial microstructure, specific
attention has to be paid to the evolution of as-cast
microstructure during the early stages of the process
conversion.

– Lastly, ingot conversion involves several reheating steps
in furnaces. In several cases, we do not necessarily look
after a full recovery of a homogeneous temperature dis-
tribution within the bars. During some processes, we can
have some beneficial effect of a progressive temperature
decrease at the core of the bar during the whole forging
process, leading to microstructure refinement. As shown
in Fig. 7 in the case of IN718, heating rate should be in
some areas fast enough in order to avoid massive and
detrimental precipitation. For all these reasons, an accu-
rate prediction of thermal history in furnaces is also a key
point to have an excellent microstructure control. Special
attention has to be paid to this part of the process through
specific modeling tools, dedicated to furnace behavior.

Taking into account all these considerations, a rather
accurate prediction of microstructure evolution during ingot
conversion can be obtained. For example, forging route
optimization on IN718 for larger diameter bars up to
356 mm has been proposed.

Modeling Capability Versus Alloys

Finally, for processes, from ingot to forged parts, modeling
including microstructure prediction can be achieved on
IN718. However, additional development needs to be carried
out for ring rolling for two main reasons. First, the reliability
of thermomechanical prediction must be improved for this
complex process: pronounced spatial strain gradient, true
displacement rate of the press ram, etc. An exemplary result
obtained is shown in Fig. 8. When the press reached its

Fig. 5 Modeling of grain growth with DIGIµTM on a theoretical
microstructure on IN718 (extracted from [22])
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power limit, this last parameter can significantly decrease
due to the pressure loss in the hydraulic circuits. Thus, if the
actual behavior of the press is not correctly taken into
account, forging time will be in that case largely underesti-
mated, leading to a cascade of incorrect predictions (tem-
perature distribution, load, and microstructures). Moreover,
some specific conditions make identification of parameters
for microstructure prediction more challenging, including
high strain rates (up to 30 s−1) and low strain for each pass
(lower than 0.1).

Of course, these models must take into account precipi-
tation which is involved in controlling grain growth by
Smith–Zener pinning effects after primary recrystallization:
d phase for IN718, primary c′ particles for Rene 65, Udimet
720Li, or AD730TM alloys. However, rather slight interac-
tions have been observed between d phase and recrystal-
lization for IN718:

– Accelerated dissolution during hot deformation above the
solvus temperature as mentioned above

– Local segregation of niobium, leading to local variation
of d solvus, and consequently local variation in grain size

– Increase of nucleation rate during dynamic
recrystallization

– Large amounts of d phase can slow down metadynamic
recrystallization [17].

Even if these interactions can lead to some changes in
microstructure, both mechanisms (primary recrystallization
and d precipitation) can be studied separately in a first
approach for IN718. For c/c′ alloys, the situation is more
challenging, especially during cogging, but more specifically
during the first deformation steps below the c′ solvus. For
example, a fine and coherent primary precipitation can be

Fig. 6 Flowchart for
microstructure modeling from
ingot to closed die forging on
IN718

Fig. 7 Temperature evolution close to a bar surface during cogging
and reheating—consequences on microstructures for IN718 alloy

Fig. 8 Comparison between real (dashed line) and predicted (solid
line) load (red) and ram speed (blue) during closed die forging of a
turbine gas disk in Inconel 706
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observed in coarse, elongated, and unrecrystallized grains
[27]. They can be considered as hard grains during hot
deformation, surrounded by soft material, corresponding to
fine recrystallized grains (an example of such a microstructure
can be seen in Fig. 9d). Therefore, the large grains cannot
accumulate enough strain hardening and stored energy in
order to advance the recrystallization process. Examinations
at different steps of billet conversion show that these large

grains are inherited from the early stages without any sig-
nificant evolution. Therefore, significant increase of defor-
mation is less efficient in order to improve recrystallization
fraction [26]. The best solution is then to act on precipitation.

Figure 9 shows other examples of recently reported
mechanisms which are specific to c/c′ alloys.
Hetero-epitaxial recrystallization (HEREX—Fig. 9a and b)
is a mechanism by which a recrystallized grain arises from
inverse precipitation of c phase at the rim of a c′ precipitate
and subsequent growth driven by stored energy consumption
[29–31]. The striking feature of HEREX grains is that they
have the same crystallographic orientation as the precipitate
they originate from, which led to the terminology of
hetero-epitaxial recrystallization. Figure 9c shows the com-
plex mechanism at play when a recrystallization front
migrates at sub-solvus temperatures, thus in a microstructure
with c′ precipitates [32]. The proposed mechanism proceeds
by dissolution of the deformed grain precipitates at the re-
crystallization front, followed by re-precipitation on the
other side in the recrystallized grain, the whole process
keeping the precipitates coherent with the matrix grains on
both sides. The classical Smith–Zener pinning mechanism
and model usually considered in recrystallization and grain
growth simulations are far from being sufficient in such a
mechanism. The last example concerns overgrown grains
(Fig. 9e) which develop specifically in elongated recovered
grains which can be found in forged billets when the billet
conversion route was not optimized enough to fully recrys-
tallize the microstructure [26, 27]. Such an elongated
recovered grain can be seen on the left side of Fig. 9d, and
the c′ precipitate size is much finer in those areas than it is in
the recrystallized equiaxed grains. The mechanism by which
those overgrown grains can develop is also driven by stored
energy consumption like that of Fig. 5, but it goes along
with a dissolution and re-precipitation mechanism at the
recrystallization front which leads to c′ precipitates with
particular shape and orientation (notably twin relationship
with the overgrown grain, as highlighted in the zoomed
insert of Fig. 9e). This only occurs if the recrystallizing grain
satisfies the condition of being misoriented about a 〈111〉-
axis with the recovered grain it grows into [33, 34].

Reliable microstructure prediction for c/c′ alloy forgings
will definitely require at least the implementation of the
coupling between recrystallization and phase transformation
phenomena into the metallurgical models, and likely also the
consideration of the local crystallographic texture and ori-
entation relationships. Due to the strong interaction between
precipitation and recrystallization, modeling microstructure
evolution during forging is by far more complex for these
alloys than for IN718 and no suitable tool is available
up to now. Knowledge improvement in c′ precipitation

Fig. 9 Back-scattered electron (BSE) image (a) and orientation
color-coded electron back-scattered diffraction (EBSD) map (b) with
grain boundaries (>15°) plotted black of a hetero-epitaxially recrystal-
lized grain in the Rene 65 alloy. BSE image at a recrystallization front
in the AD730TM alloy (c). BSE image in the longitudinal section of an
AD730TM alloy billet (d). Orientation color-coded EBSD map (e) with
grain boundaries (>15°) plotted black and twin boundaries plotted
white of an overgrown grain with twin-related c′ precipitates (arrowed
in the zoomed insert) in the AD730TM alloy
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