

Volume 1

MACHINE VISION INSPECTION SYSTEMS

*Image Processing,
Concepts, Methodologies
and Applications*

Edited by

Muthukumaran Malarvel
Soumya Ranjan Nayak
Surya Narayan Panda
Prasant Kumar Pattnaik
Nittaya Muangnak

 Scrivener
Publishing

WILEY

Machine Vision
Inspection Systems
Volume 1

Scrivener Publishing
100 Cummings Center, Suite 541J
Beverly, MA 01915-6106

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)

Machine Vision Inspection Systems Volume 1

**Image Processing, Concepts,
Methodologies and Applications**

Edited by
**Muthukumaran Malarvel,
Soumya Ranjan Nayak,
Surya Narayan Panda,
Prasant Kumar Pattnaik
and Nittaya Muangnak**

WILEY

This edition first published 2020 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA
© 2020 Scrivener Publishing LLC
For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at <http://www.wiley.com/go/permissions>.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

Names: Malarvel, Muthukumaran, editor. | Nayak, Soumya Ranjan, 1984–
editor. | Panda, Sury Narayan, editor. | Pattnaik, Prasant Kumar, 1969–
editor. | Muangnak, Nittaya, editor.

Title: Machine vision inspection systems / edited by Muthukumaran Malarvel,
Soumya Ranjan Nayak, Sury Narayan Panda, Prasant Kumar Pattnaik and
Nittaya Muangnak.

Description: Hoboken, NJ : Wiley-Scribener, 2020. | Includes
bibliographical references and index. | Contents: Volume 1. Image
processing, concepts, methodologies and applications –

Identifiers: LCCN 2020020076 (print) | LCCN 2020020077 (ebook) | ISBN
9781119681809 (hardback) | ISBN 9781119681960 (adobe pdf) | ISBN
9781119682097 (epub)

Subjects: LCSH: Computer vision. | Computer vision–Industrial
applications. | Engineering inspection–Automation. | Image processing.
| Image processing–Digital techniques.

Classification: LCC TA1634 .M3354 2020 (print) | LCC TA1634 (ebook) | DDC
006.3/7–dc23

LC record available at <https://lccn.loc.gov/2020020076>

LC ebook record available at <https://lccn.loc.gov/2020020077>

Cover image: Pixabay.Com

Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

Contents

Preface	xi
1 Land-Use Classification with Integrated Data	1
<i>D. A. Meedeniya, J. A. A. M Jayanetti, M. D. N. Dilini, M. H. Wickramapala and J. H. Madushanka</i>	
1.1 Introduction	2
1.2 Background Study	3
1.2.1 Overview of Land-Use and Land-Cover Information	3
1.2.2 Geographical Information Systems	4
1.2.3 GIS-Related Data Types	4
1.2.3.1 Point Data Sets	4
1.2.3.2 Aerial Data Sets	5
1.2.4 Related Studies	6
1.3 System Design	6
1.4 Implementation Details	10
1.4.1 Materials	10
1.4.2 Preprocessing	11
1.4.3 Built-Up Area Extraction	11
1.4.4 Per-Pixel Classification	12
1.4.5 Clustering	14
1.4.6 Segmentation	14
1.4.7 Object-Based Image Classification	16
1.4.8 Foursquare Data Preprocessing and Quality Analysis	20
1.4.9 Integration of Satellite Images with Foursquare Data	21
1.4.10 Building Block Identification	21
1.4.11 Overlay of Foursquare Points	22
1.4.12 Visualization of Land Usage	23
1.4.13 Common Platform Development	23
1.5 System Evaluation	25
1.5.1 Experimental Evaluation Process	25
1.5.2 Evaluation of the Classification Using Base Error Matrix	28

1.6	Discussion	31
1.6.1	Contribution of the Proposed Approach	31
1.6.2	Limitations of the Data Sets	32
1.6.3	Future Research Directions	33
1.7	Conclusion	34
	References	35
2	Indian Sign Language Recognition Using Soft Computing Techniques	37
	<i>Ashok Kumar Sahoo, Pradeepa Kumar Sarangi and Parul Goyal</i>	
2.1	Introduction	37
2.2	Related Works	38
2.2.1	The Domain of Sign Language	39
2.2.2	The Data Acquisition Methods	41
2.2.3	Preprocessing Steps	42
2.2.3.1	Image Restructuring	43
2.2.3.2	Skin Color Detection	43
2.2.4	Methods of Feature Extraction Used in the Experiments	44
2.2.5	Classification Techniques	45
2.2.5.1	K-Nearest Neighbor	45
2.2.5.2	Neural Network Classifier	45
2.2.5.3	Naive Bayes Classifier	46
2.3	Experiments	46
2.3.1	Experiments on ISL Digits	46
2.3.1.1	Results and Discussions on the First Experiment	47
2.3.1.2	Results and Discussions on Second Experiment	49
2.3.2	Experiments on ISL Alphabets	51
2.3.2.1	Experiments with Single-Handed Alphabet Signs	51
2.3.2.2	Results of Single-Handed Alphabet Signs	52
2.3.2.3	Experiments with Double-Handed Alphabet Signs	53
2.3.2.4	Results on Double-Handed Alphabets	54
2.3.3	Experiments on ISL Words	58
2.3.3.1	Results on ISL Word Signs	59
2.4	Summary	63
	References	63

3	Stored Grain Pest Identification Using an Unmanned Aerial Vehicle (UAV)-Assisted Pest Detection Model	67
	<i>Kalyan Kumar Jena, Sasmita Mishra, Sarojananda Mishra and Sourav Kumar Bhoi</i>	
3.1	Introduction	68
3.2	Related Work	69
3.3	Proposed Model	70
3.4	Results and Discussion	72
3.5	Conclusion	77
	References	78
4	Object Descriptor for Machine Vision	85
	<i>Aparna S. Murthy and Salah Rabba</i>	
4.1	Outline	85
4.2	Chain Codes	87
4.3	Polygonal Approximation	89
4.4	Moments	92
4.5	HU Invariant Moments	96
4.6	Zernike Moments	97
4.7	Fourier Descriptors	98
4.8	Quadtree	99
4.9	Conclusion	102
	References	114
5	Flood Disaster Management: Risks, Technologies, and Future Directions	115
	<i>Hafiz Suliman Munawar</i>	
5.1	Flood Management	115
5.1.1	Introduction	115
5.1.2	Global Flood Risks and Incidents	116
5.1.3	Causes of Floods	118
5.1.4	Floods in Pakistan	119
5.1.5	Floods in Australia	121
5.1.6	Why Floods are a Major Concern	123
5.2	Existing Disaster Management Systems	124
5.2.1	Introduction	124
5.2.2	Disaster Management Systems Used Around the World	124
5.2.2.1	Disaster Management Model	125
5.2.2.2	Disaster Risk Analysis System	126
5.2.2.3	Geographic Information System	126

5.2.2.4	Web GIS	126
5.2.2.5	Remote Sensing	127
5.2.2.6	Satellite Imaging	127
5.2.2.7	Global Positioning System for Imaging	128
5.2.3	Gaps in Current Disaster Management Technology	128
5.3	Advancements in Disaster Management Technologies	129
5.3.1	Introduction	129
5.3.2	AI and Machine Learning for Disaster Management	130
5.3.2.1	AIDR	130
5.3.2.2	Warning Systems	130
5.3.2.3	QCRI	131
5.3.2.4	The Concern	131
5.3.2.5	BlueLine Grid	131
5.3.2.6	Google Maps	132
5.3.2.7	RADARSAT-1	132
5.3.3	Recent Research in Disaster Management	132
5.3.4	Conclusion	137
5.4	Proposed System	137
5.4.1	Image Acquisition Through UAV	138
5.4.2	Preprocessing	138
5.4.3	Landmarks Detection	138
5.4.3.1	Buildings	139
5.4.3.2	Roads	139
5.4.4	Flood Detection	140
5.4.4.1	Feature Matching	140
5.4.4.2	Flood Detection Using Machine Learning	141
5.4.5	Conclusion	143
	References	143
6	Temporal Color Analysis of Avocado Dip for Quality Control	147
	<i>Homero V. Rios-Figueroa, Micloth López del Castillo-Lozano, Elvia K. Ramirez-Gomez and Ericka J. Rechy-Ramirez</i>	
6.1	Introduction	147
6.2	Materials and Methods	148
6.3	Image Acquisition	149
6.4	Image Processing	150
6.5	Experimental Design	150
6.5.1	First Experimental Design	150
6.5.2	Second Experimental Design	151

6.6	Results and Discussion	151
6.6.1	First Experimental Design (RGB Color Space)	151
6.6.2	Second Experimental Design ($L^*a^*b^*$ Color Space)	152
6.7	Conclusion	156
	References	156
7	Image and Video Processing for Defect Detection in Key Infrastructure	159
	<i>Hafiz Suliman Munawar</i>	
7.1	Introduction	160
7.2	Reasons for Defective Roads and Bridges	161
7.3	Image Processing for Defect Detection	162
7.3.1	Feature Extraction	162
7.3.2	Morphological Operators	163
7.3.3	Cracks Detection	164
7.3.4	Potholes Detection	165
7.3.5	Water Puddles Detection	166
7.3.6	Pavement Distress Detection	167
7.4	Image-Based Defect Detection Methods	169
7.4.1	Thresholding Techniques	170
7.4.2	Edge Detection Techniques	170
7.4.3	Wavelet Transform Techniques	171
7.4.4	Texture Analysis Techniques	171
7.4.5	Machine Learning Techniques	172
7.5	Factors Affecting the Performance	172
7.5.1	Lighting Variations	173
7.5.2	Small Database	173
7.5.3	Low-Quality Data	173
7.6	Achievements and Issues	173
7.6.1	Achievements	174
7.6.2	Issues	174
7.7	Conclusion	174
	References	175
8	Methodology for the Detection of Asymptomatic Diabetic Retinopathy	179
	<i>Jaskirat Kaur and Deepti Mittal</i>	
8.1	Introduction	180
8.2	Key Steps of Computer-Aided Diagnostic Methods	181
8.3	DR Screening and Grading Methods	183
8.4	Key Observations from Literature Review	188

8.5	Design of Experimental Methodology	189
8.6	Conclusion	192
	References	193
9	Offline Handwritten Numeral Recognition Using Convolution Neural Network	197
	<i>Abhisek Sethy, Prashanta Kumar Patra and Soumya Ranjan Nayak</i>	
9.1	Introduction	198
9.2	Related Work Done	199
9.3	Data Set Used for Simulation	201
9.4	Proposed Model	202
9.5	Result Analysis	204
9.6	Conclusion and Future Work	207
	References	209
10	A Review on Phishing—Machine Vision and Learning Approaches	213
	<i>Hemamalini Siranjeevi, Swaminathan Venkatraman and Kannan Krishnaswamy</i>	
10.1	Introduction	213
10.2	Literature Survey	214
10.2.1	Content-Based Approaches	214
10.2.2	Heuristics-Based Approaches	215
10.2.3	Blacklist-Based Approaches	215
10.2.4	Whitelist-Based Approaches	216
10.2.5	CANTINA-Based Approaches	216
10.2.6	Image-Based Approaches	216
10.3	Role of Data Mining in Antiphishing	217
10.3.1	Phishing Detection	219
10.3.2	Phishing Prevention	220
10.3.3	Training and Education	222
10.3.4	Phishing Recovery and Avoidance	222
10.3.5	Visual Methods	223
10.4	Conclusion	224
	Acknowledgments	224
	References	224
Index		231

Preface

This edited book aims to bring together leading researchers, academic scientists and research scholars to put forward and share their experiences and research results on all aspects of an inspection system for detection analysis for various machine vision applications. It also provides a premier interdisciplinary platform for educators, practitioners and researchers to present and discuss the most recent innovations, trends, methodology, applications and concerns, as well as practical challenges encountered and solutions adopted in the inspection system in terms of image processing and analytics of machine vision for real and industrial application. The book is organized into ten chapters,

Chapter 1 presents an overview of an automated methodology-based learning model classification technique for identifying the usage and coverage of land use in Sri Lanka by using satellite imagery data. This chapter also discusses the issue related to manual surveys and its limitations about the land-use of different regions.

Chapter 2 focuses on the Indian sign language recognition using machine learning algorithm in machine vision and pattern recognition research areas. The work is to translate acquired images or videos either offline or online to corresponding words, numbers or sentences representing the meaning of the input sign. The Direct Pixel Value, Hierarchical Centroid, Local Histogram features of Image Processing techniques are used as a feature in the experimental analysis. The classifiers used here are k-Nearest Neighbour and Neural Network.

Chapter 3 presents an unmanned aerial vehicle (UAV) assist the pest detection model to track pests in the stored grain (SG). This proposed model consists of four phases such as data acquisition, edge detection, feature extraction, and pest identification. In this model, the edge detection (ED) phase is focused on analyzing the data (pest in the SG images). Many standard edge detection (SED) methods such as Sobel, Prewitt, Roberts, Morphological, Laplacian of Gaussian (LoG), Canny etc. are used to track the shape, location, and quantity of pests in SG. The implementation of the

methods are performed using MATLAB R2015b and evaluated using signal to noise ratio (SNR), peak signal to noise ratio (PSNR), and processing time (PT).

Chapter 4 describes object selection as a trade-off between performance and accuracy. Particularly, in machine vision time versus precision for object selection plays a crucial role in image analysis is addressed. These regions are a group of segmented pixels that are used for processing. Such regions are often represented by numbers called “object descriptors”. Using such data, the authors compare and distinguish objects by matching the descriptors. Without loss of generality, these descriptors have certain properties like (a) invariance against geometrical transformations like translation, rotation and scaling, (b) Stability to noise and non-rigid local deformation, (c) Completeness.

Chapter 5 explores flood control and disaster management technologies based on image processing and machine learning. The main objective of this chapter is to develop an understanding of the flood risks, explore the existing systems for managing the risks and devise a flood management model through machine vision. Furthermore, this chapter discusses the limitations of the current technologies and suggests a reliable model to overcome the problems. Finally, this chapter elaborates on the system of how to detect flood-affected areas and determine rescue routes.

Chapter 6 discusses the color changes on the avocado dip under microwave conditions through the machine vision approach. This chapter analyzes the change of color in $a^* - b^*$ space in terms of different treatments. Also, this chapter discusses real-time experimental analysis by various parameters.

Chapter 7 deliberates the defect detection on defective roads and bridges through computer vision-based techniques. This chapter discusses the basic steps involved in defect detection using image processing along with existing systems and presents the pros and cons of the different existing methods in terms of performance. Also, this chapter applies multiple image processing techniques to solve the various types of defects.

Chapter 8 presents the study and conducts experiments through machine vision techniques on diabetic retinopathy disease present in retinal fundus images. This chapter also discusses various factors of the disease that appears in the image and discusses the possible solutions in terms of image processing techniques. An effective analysis is shown for computer-aided solutions.

Chapter 9 provides a robust method to solve the ambiguities in hand-written the OCR system. This has been resolved using the Convolutional Neural Network (CNN) based approach. This state-of-the-art of

CNN-based approach for recognition of multiple handwritten numerals of various scripts is clearly shown here. It is also quite helpful to report the discriminate features of each individual and later lead to reporting a high recognition rate. At the simulation level we have listed the variance nature of the individual's images and through CNN we have reported a high recognition rate, which is quite helpful in building the automatic recognition system for handwritten numerals to have the solution for real-time problems.

Chapter 10 presents a detailed review of some of the attempts towards avoiding, detecting and preventing phishing in terms of visual methods. This chapter explains the frauds and criminal activities on phishing and, moreover, discusses the various solutions approached in recent years. Additionally, this chapter reviews the role of training and education on the reduction of phishing victims.

We have to start by thanking God Almighty for giving us the ability and opportunity to undertake to edit this book and to complete it satisfactorily. Completion of this book could not have been accomplished without the support of all editors starting from the "Call for Chapters" till their finalization. All the contributors have given their contributions amicably and is a positive sign of significant teamwork. The editors are sincerely thankful to all the members of Scrivener Publishing especially Martin Scrivener for providing constructive inputs and allowing an opportunity to edit this important book. We are equally thankful to all reviewers who hail from different places in and around the globe shared their support and stand firm towards quality chapter submissions. Finally, we are eternally grateful to the authors for contributing quality chapters.

Muthukumaran Malarvel
Soumya Ranjan Nayak
Surya Narayan Panda
Prasant Kumar Pattnaik
Nittaya Muangnak
April 2020

Land-Use Classification with Integrated Data

D. A. Meedeniya*, J. A. A. M Jayanetti, M. D. N. Dilini,
M. H. Wickramapala and J. H. Madushanka

*Department of Computer Science and Engineering,
University of Moratuwa, Sri Lanka*

Abstract

The identification of the usage and coverage of the land is a major part of regional development. Crowdsourced geographic information systems provide valuable information about the land use of different regions. Although these data sources lack reliability and possess some limitations, they are useful in deriving building blocks for the usage of the land, where the manual surveys are not up-to-date, costly, and time consuming. At present, in the context of Sri Lanka, there is a lack of reliable and updated land-use data. Moreover, there is a rapid growth in the construction industry, resulting in frequent changes in land-use and land-cover data. This paper presents a novel and an automated methodology based on learning models for identifying the usage and coverage of the land. The satellite imagery is used to identify the information related to land cover. They are integrated with Foursquare venue data, which is a popular crowdsourced geographic information, thus, enhancing the information level and the quality of land-use visualization. The proposed methodology has shown a kappa coefficient of 74.03%, showing an average land-use classification accuracy within a constrained environment.

Keywords: Geographic information system, land-cover identification, land-use classification, social computing, decision support system, satellite images, Foursquare data

*Corresponding author: dulanim@cse.mrt.ac.lk

1.1 Introduction

Regional planning and management are major concerns in the development strategy of a country. The information related to the coverage and usage of lands can be used to extract the features in an area and facilitate development activities. The land-use data are related to human activities, whereas the land-cover information represent the natural features and artificial constructions on the earth surface. Crowdsourced geographic information systems provide valuable information about the land use of different regions. At present, up-to-date data on land usage and coverage are not available for all the cities in Sri Lanka. This is due to the cost of labor, lack of the required technologies, and resources associated with the data surveys. Unavailability of a cost-effective way of obtaining such latest and reliable data is a bottleneck to the long-term planning and development of a region. This results in unplanned *ad hoc* developments, construction of unhealthy residential areas, deterioration of service and infrastructure, environmental pollution, increased traffic congestion, and so on [1], which can be widely seen in many urban areas in Sri Lanka. Therefore, up-to-date data on the usage and coverage of land are important to make strategic decisions on sustainable region planning.

The objective of this research is to design and develop a support system to classify the land-cover and land-use data using Google Satellite imagery [2] and Foursquare data, which is a type of volunteer geographic information (VGI), respectively [3]. The system produces a visualization of different types of land-use in each area (eg. residential, industrial, commercial, agriculture etc.) on a land-use map based on heterogeneous data sources including crowdsourced Foursquare data. Acquiring data on land cover and land use from different data types, which can be integrated into the classification system, will enhance the quality of the processed information [4].

Therefore, this research provides a novel way of identifying and classifying different forms of land-use data, specifically satellite imagery and Foursquare data, with the extensible features for other types of related data. The system refines the land-use mapping with the use of additional parameters, such as context-specific different data sources. Ultimately, the retrieved data can be used to monitor land-use changes in near real time [2]. Moreover, this study focuses on developing a common platform that enables the collaboration of heterogeneous data sources to produce enhanced land-use data. Further, this will increase the utility value of the retrieved information on land-cover and land-use, hence, widening the range of applicable applications from the results. Colombo district is selected as the study area considering the availability and sampling rates

of different data sets and issues associated with data validation [4]. The proposed land-use visualization approach identifies and classifies different forms of land cover and land use in a selected area considering the satellite imagery and Foursquare data, respectively, and displays the classification on a land-use map.

The land-use data retrieved from the proposed methodology can be used to monitor land-use changes near real time. Analysis of these detailed snapshots of land-use enables authorities to detect a change and foresee its social and environmental consequences. This, in turn, will enable them to identify long-lasting sustainable solutions to urbanization issues in Sri Lanka.

The paper is structured as follows: Section II explores the related literature and Section III presents the design architectures of the system and Section IV describes the development process with the used techniques. Section V evaluates the validity of the proposed method, and finally, Section VI summarizes the research including future work.

1.2 Background Study

1.2.1 Overview of Land-Use and Land-Cover Information

The identification of the usage and coverage of the land is a major part of regional development. Land cover and land use are often interchangeably used in many information systems, despite the distinct difference between those two terms [1, 4]. Land cover refers to observable physical properties of land, such as the areas with trees, grounds, building, roads, water, and so on. On the other hand, land use refers to purposes for which lands are being used, such as residential, commercial, entertainment, and so on. It may be difficult to determine the actual purpose for which land is being used by solely using the information produced by a source of observation. For example, in the absence of additional information sources, it may be difficult to decide whether grasslands are used for agricultural activities or not. Moreover, there is a rapid growth in the construction industry, resulting in frequent changes in land-use and land-cover data.

As a summary, the land coverage and usage data are important to identify correctly and process timely manner in order to make decisions on regional development. However, it is challenging to obtain large-scale, latest data from reliable sources. The unplanned constructions may impact the region with unprogressive infrastructure, unhealthy residential, and environment issues, such as traffic congestion and pollution.

1.2.2 Geographical Information Systems

A Geographical Information Systems (GIS) facilitates collection, store, process, analyze, and visualize data on the surface of the earth. Prior to the discovery of advanced technologies and concepts, a GIS primarily consisted of a database management system (DBMS) and a set of tools that allowed data to be retrieved from the DBMS. With the advent of the Internet and Web-based applications, as well as the increased utilization of mobile devices, the traditional notion of a GIS has been altered significantly. Particularly, the user base of GISs has expanded from traditional users, such as relevant public and private sector to just about anyone who uses an application built on top of a GIS in their mobile or other electronic devices.

Even though the primary functions, such as data storage, retrieval, visualization, and so on, are common to all GISs, the nature of these functions depends largely on the underlying application. Based on the area of application, GIS can be classified into different information system types, such as cadastral, land and property, image-based, natural resource management, spatial information systems, and so on.

The GIS can be used to find solutions to a wide variety of problems, such as determining and predicting the features of a particular location, identifying locations with particular characteristics, monitoring change over periods, determining the best route between different locations, modeling environmental and societal evolution over time, crime location mapping, disaster management, transportation planning, management, and so on.

1.2.3 GIS-Related Data Types

1.2.3.1 Point Data Sets

Point data are used to represent discrete data points that have no adjacent features. For example, in a GIS, the location of a place can be represented by a point location. The GIS data are of two categories, the spatially referenced data and the attribute data table associated with it. The spatially referenced data are represented in vector and raster forms. Foursquare data [3, 5] and OpenStreetMap data [6] are two popular GIS point data sources that can be utilized for the identification of land-use utilization at a detailed level.

Foursquare [3, 5] is a mobile-based social networking service that facilitates to acquire user-location information using check-in and search history; and recommend places near the user's current location. These data contain the names, locations, and types of places. When providing

recommendations, the application makes use of its citizen-contributed database, the places a user goes, and the advice and comments given by other users on a place. This is a volunteered/crowdsourced VGI, that uses geographic data provided by the users. Thus, Foursquare data are used to identify land-use information with proper quality validation and consumes a low-cost mechanism.

OpenStreetMap [6] is a popular GIS data source that provides geographic data. This presents the physical features within a given area, such as commercial buildings, roads, waterways, railways, highways, and amenities using tags, and each of those tags describes a geographical attribute. Moreover, OpenStreetMap releases map data under a free and open license, which makes them available for researchers and as a data validation source.

1.2.3.2 *Aerial Data Sets*

An aerial data set is prepared by means of airborne methods and aerial photographs and Google satellite imagery some examples [2]. Satellite images of the Earth's surface captured by remote-sensing techniques have proven to be a useful data source for many research studies and applications in diverse fields [2, 7]. Satellite images enable wider geographical areas to be covered quickly with relative convenience. They provide a way of monitoring the Earth's surface, hence, eliminating the need to rely solely on labor-intensive processes, such as area frame surveys for maintaining up-to-date information on the Earth's surface, which tends to be a slow and a tedious process. Moreover, the digital format of satellite images enables to be directly processed digitally and integrated with other data sources with relative ease. Data retrieved from satellite images are used to successfully extract the required information on the land usage for decision making and predicting systems.

High elevation aerial photographs of the Earth's surface are a remote-sensing data source. They can be used to identify the coverage of lands. These visual interpretations are also used in conjunction with satellite images, particularly to fill areas which are not clear on satellite images due to prevalent atmospheric conditions, such as cloud cover at the time of capturing those. Aerial photographs are of high spatial resolution. Therefore, these images comprise a high level of information which is useful for various analytical and reference purposes associated with land-cover classifications. The spectral range of aerial photography is narrow, and therefore, a considerable number of photographs will have to be patched together to cover wider geographical areas. Further, the cost per surface unit is higher with aerial photographs compared with satellite images.

1.2.4 Related Studies

Among the variety of research studies, the study by Quercia and Saez [5], has described the feasibility of acquiring data from the locations of social-media users, considering the mining urban deprivation information in London city. This study has addressed the reliable, latest and inferring free data retrieval, and shown the use of Foursquare data in monitoring fine-grain resolutions, which cannot be obtained from other land-use data used in practice. However, this gives an insight into the limitations of Foursquare data such as demographic and geographic biases and the Foursquare categories not being fully structured. For instance, these can be biased by the penetration rate of the Foursquare data and a given location can be named with different category types based on the thinking patterns of the users who entered the Foursquare data.

A multidata approach (MDA) is presented by Bareth [4] to generate data related to land use. They have combined the traditional types of data for land usage with the information obtained from the different remote-sensing analysis. As a first step, remote sensing data were classified using supervised classification techniques and then the quality of the classified data was assessed. The second step of the research was to import the classified data into a GIS environment and overlay them with relevant 3rd-party data sources, such as official topographic or land-use data. The importance of this approach is that it enables useful and high-quality land-use information in various spatial databases, such as spatial biotope or biodiversity databases, spatial databases of national parks, and so on to be integrated with the results of remote-sensing analysis. Further, land-use data retrieved from official data sources can be integrated to MDA for cross-checking the results of remote-sensing analysis. Also, by incorporating the results of land-cover change models to MDA, they have simulated the change scenarios for the usage and coverage of the land.

According to the literature, satellite images are mainly used to identify urban land usage that covers a large area without frequent changes. However, it is challenging to obtain high-resolution images. Thus, there is a research direction toward the integration of these remote-sensing data with the social knowledge data for better analysis of the usage and coverage patterns of the land.

1.3 System Design

The primary focus of this study is to classify land usage into several categories, such as residential, hotels, restaurants, industrial, and so

on. Two data sources google satellite images for the coverage and foursquare point data for usage of the land are used for this study. First, the google satellite imagery is used to classify land-cover data that represent primitive categories, such as water, built-up, vegetation, and bare soil. Next, this output would be further differentiated using foursquare point data into the abovementioned land usage classes. Figure 1.1 shows the overall view of the proposed system.

System design mainly consists of four components. The data pre-processing component removes and purifies noises in the input data. The data classification component applies classification and clustering techniques on the preprocessed data. These results of heterogeneous data will be integrated into the data integration component. Then, data analysis component will evaluate the accuracy of the classified data. The main output of the system is a Shape file that adds a layer to Quantum Geographic Information System (QGIS). The QGIS is a free desktop application that supports different platforms. It has features to view, edit, and analyze geospatial data together with quality measures. The final system is expected to be used for urban planning and government officials who want to collect data, and so on.

Figure 1.2 shows the sequence diagram of the proposed Web application. It shows how such a user can easily retrieve the results produced by the system so that he can use this information in his respective work, such as sustainable urban development planning. First, the user will access a Web interface where he is provided with a google map. He can zoom in the map and select a rectangular area using the mouse pointer. The analyst can highlight the area from the map, which he wants the land-use classification. The common interface will send the boundaries (latitudes and

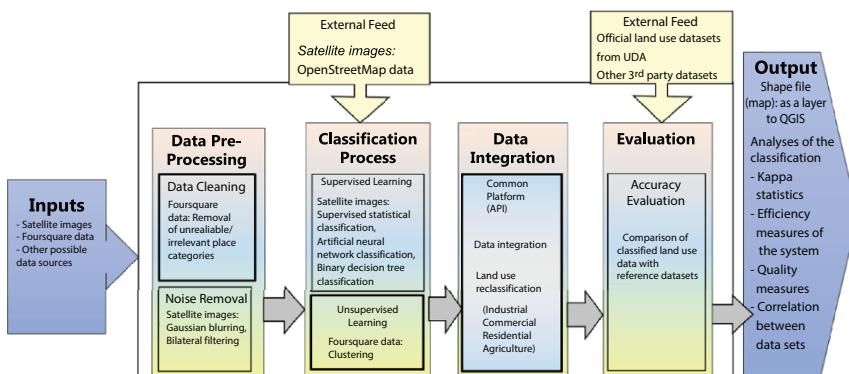


Figure 1.1 High-level design diagram.

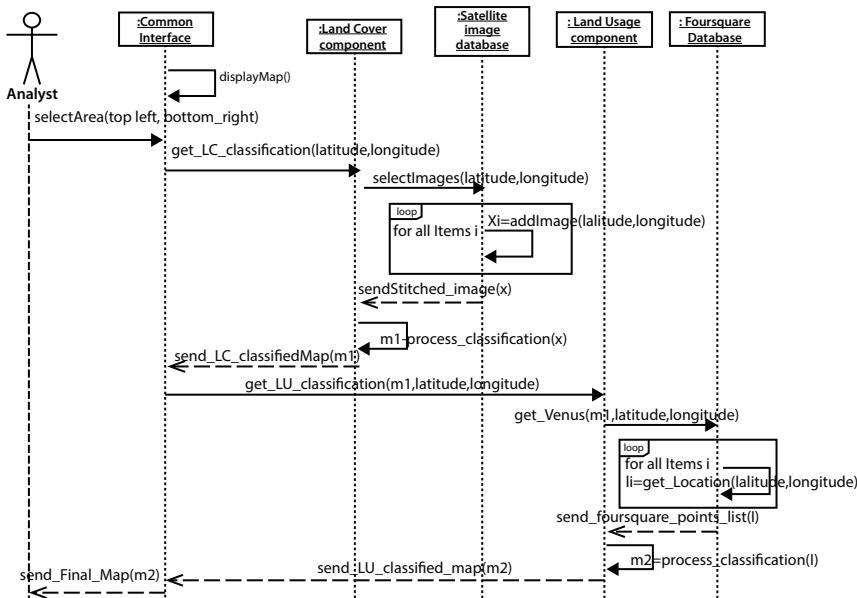


Figure 1.2 Process view of the land-use visualization Web application.

longitudes) of the area to the land-cover classification module, which will return the stitched image. Next, the common interface will send the land-cover classified map along with the boundaries to the land usage classification module. This module will get the Foursquare locations and their respective classes from the Foursquare database, perform the land-use classification, and return the final land usage classified map to the analyst. In addition, a legend is also provided with the different categories of land usage classes, such as residential, restaurants, hotels, and so on, and their assigned colors will also appear with the final map.

Figure 1.3 shows the architectural view of the proposed system, which complies with the overall view, and the components are described with the workflow given in Figure 1.4. The module “Input Data Manager” handles the input data types to the system. The current system uses satellite images, Foursquare data, and official land-use data. The architecture is designed in an extensible feature to incorporate other data types, such as OpenStreetMap. The module “Visualization Manager” visualizes the processed Foursquare data and point location data in terms of land-use classification with a color-coded layer based on the predefined categories and described in detail in the chapter. The logical layer comprises three main

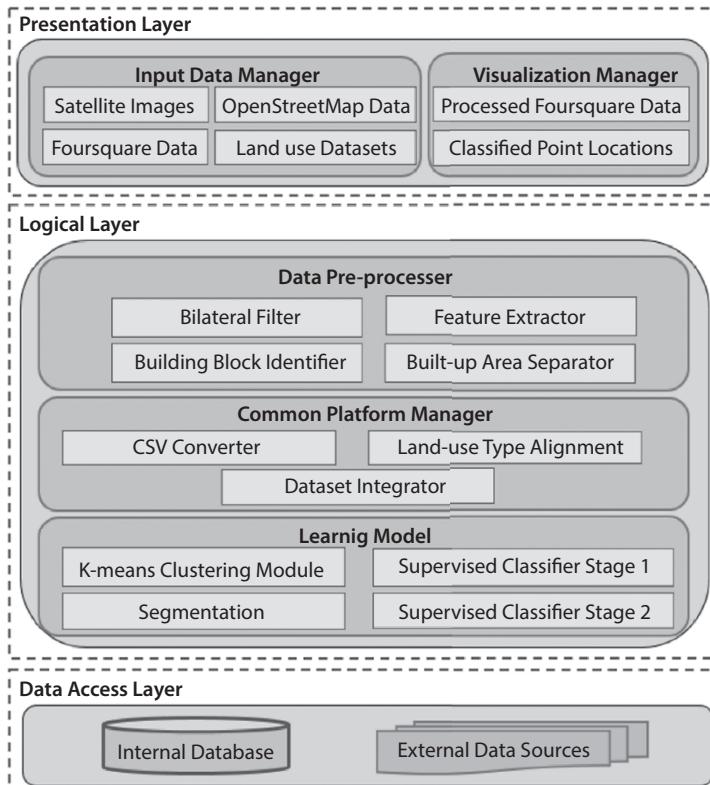


Figure 1.3 Architectural view of the system.

modules responsible to preprocess data, integrate data sources, and the learning process.

Figure 1.4 describes the workflow of the system, which is an extension of our previous work [7]. Initially, Google satellite imagery and Foursquare data of Colombo District, which contains instances of varieties of land uses were collected and preprocessed separately. The satellite imagery was subjected to bilateral filtering [8] to remove the Gaussian noise [9]. Next, edge enhancement techniques were applied to enhance the important features of satellite images, such as sharp edges, which helps to identify built-up areas. Foursquare data also need to be cleaned because they contain irrelevant and unreliable data, such as location names inserted with English and Tamil. Next, the preprocessed satellite images are classified using supervised learning techniques, such as random forest, and unsupervised classification techniques, such as k-means clustering. The foursquare point