

Practical Field Ecology

Second Edition

C. Philip Wheater,
Penny A. Cook and James R. Bell

WILEY Blackwell

Table of Contents

[Cover](#)

[List of Tables](#)

[List of Figures](#)

[List of Boxes](#)

[List of Case Studies](#)

[List of Plates](#)

[Preface to the Second Edition](#)

[Preface to the First Edition](#)

[Acknowledgements](#)

[About the Companion Website](#)

[1 Preparation](#)

[Choosing a topic for study](#)

[Ecological research questions](#)

[Creating aims, objectives, and hypotheses](#)

[Reviewing the literature](#)

[Practical considerations](#)

[Statistical considerations in project design](#)

[Choosing sampling methods](#)

[Summary](#)

[2 Monitoring Site Characteristics](#)

[Site selection](#)

[Site characterisation](#)

[3 Sampling Plants and Other Static Organisms](#)

[Sampling for static organisms](#)

[Quadrat sampling](#)

Pin-frames

Transects

Plotless sampling

Distribution of static organisms

Forestry techniques

4 Sampling Mobile Organisms

General issues

Invertebrates

Capturing aquatic invertebrates

Capturing soil-living invertebrates

Capturing ground-active invertebrates

Capturing invertebrates from plants

Capturing airborne invertebrates

Fish

Amphibians

Reptiles

Birds

Mammals

5 Analysing and Interpreting Information

Keys to tests

Exploring and describing data

Testing hypotheses using basic statistical tests and simple general linear models

More advanced general linear models for predictive analysis

Generalized linear models

Statistical methods to examine pattern and structure in communities: classification, indicator species, and ordination

6 Presenting Information

Written reports

Writing style

Computer files

Specific guidance for writing for a journal

Specific guidance for preparing a poster

Specific guidance for preparing an oral presentation

Summary

Appendix 1 Glossary of Statistical Terms

References

Index

End User License Agreement

List of Tables

Chapter 1

Table 1.1 Example timescales for a short research project.

Table 1.2 Random numbers. Coordinates can be extracted simply by taking pairs...

Table 1.3 Common statistical tests. Note that in each case, there are possibl...

Chapter 2

Table 2.1 Common factors influencing living organisms.

Table 2.2 Types of bioindicators for monitoring environmental conditions.

Table 2.3 Range of taxa used as bioindicators.

Table 2.4 Major taxonomic groups.

Table 2.5 Major divisions of the Raunkiær plant life-form system.

Chapter 3

Table 3.1 DAFOR, Braun-Blanquet, and Domin scales for vegetation cover.

Table 3.2 Abundance (ESACFORN) scales for littoral species.

Table 3.3 Recommended quadrat sizes for various organisms.

Chapter 4

Table 4.1 Some considerations in the choice of radio-tracking equipment.

Table 4.2 Summary of killing and preservation techniques for commonly studied...

Table 4.3 Factors to consider when using pitfall traps.

Table 4.4 Examples of baits and target insect groups.

Table 4.5 Factors to consider when choosing light traps to collect moths.

Table 4.6 Summary of different types of net.

Table 4.7 Example of timed species counts. Using 12 surveys, each of 1 hour (...).

Table 4.8 Comparison of bat detector systems.

Chapter 5

Table 5.1 Abundance of invertebrates in ponds. Percentages in parentheses may...

[Table 5.2 Summary of commonly used methods of population estimation based on ...](#)

[Table 5.3 Common diversity and evenness indices.](#)

[Table 5.4 Commonly used similarity measures.](#)

[Table 5.5 Statistics that should be reported for difference tests. These are ...](#)

[Table 5.6 Statistics that should be reported for relationship tests. These ar...](#)

[Table 5.7 Statistics that should be recorded for tests used to examine associ...](#)

[Table 5.8 Using dummy variables. Example of how two dummy variables \(large/no...](#)

[Table 5.9 A spider indicator species analysis. The respective overall indicat...](#)

[Table 5.10 Types of stress measure for computing MDS solutions.](#)

Chapter 6

[Table 6.1 Mean number of individuals^{a\)} of invertebrate orders found in pollut...](#)

[Table 6.2 Uses of different types of graphs.](#)

[Table 6.3 Examples of words used unnecessarily when qualifying terms.](#)

[Table 6.4 SI units of measurement. To standardise the units in which measurem...](#)

[Table 6.5 Conventions for the use of abbreviations.](#)

[Table 6.6 Examples of Latin and foreign words and their emphasis.](#)

List of Illustrations

Chapter 1

[Figure 1.1 Flowchart of the planning considerations for research projects.](#)

[Figure 1.2 Example timescales for a medium-term research project. Note...](#)

[Figure 1.3 Example of a section of a data recording sheet for an investigati...](#)

[Figure 1.4 Examples of sampling designs. \(a\) Random sampling; \(b\) systematic...](#)

[Figure 1.5 Experimental layouts for five different treatments. \(a\) Clustered...](#)

[Figure 1.6 Data set approximating to a normal distribution.](#)

Chapter 2

[Figure 2.1 Phase 1 habitat map. In the UK, Phase 1 habitat surveys involve ma...](#)

[Figure 2.2 Portable weather station. Many automated weather stations will au...](#)

[Figure 2.3 Maximum/minimum thermometer. As the temperature rises, the alcoho...](#)

[Figure 2.4 Types of thermometers. Old style soil thermometers like the one s...](#)

[Figure 2.5 Whirling hygrometer. This is also called a psychrometer and cons...](#)

[Figure 2.6 Anemometers. \(a\) Cup anemometer – the device is held in the wind ...](#)

[Figure 2.7 Environmental multimeter.](#)

[Figure 2.8 Penetrometer. Comprises a gauge and a small cone connected to a r...](#)

Figure 2.9 **Soil augers**. (a) Soil gouge auger, core-removing tool, and mallet...

Figure 2.10 **Bulb planters**. Gardeners' bulb planters can be used to take core...

Figure 2.11 **Aquatic multimeters**. These can be used to measure the physico-ch...

Figure 2.12 **Secchi disk**. This is a circular disk of 0.2-0.3 m diameter, colo...

Figure 2.13 **Dynamometer to measure wave action**. As waves drag the ball, the ...

Figure 2.14 **Light meters**. (a) Light, or lux, meters such this can give an in...

Figure 2.15 **Using ranging poles to measure the inclination of a slope**. Rangi...

Figure 2.16 **Using a cross-staff to survey a shoreline**.

Figure 2.17 **Using a GPS**. GPS can be used to estimate location and/or altitud...

Figure 2.18 **Lichen zone scale for mean winter sulphur dioxide estimation on ...**

Chapter 3

Figure 3.1 **Quadrats**. From left to right – subdivided wire quadrat (with pin-...

Figure 3.2 **Recording positions on a subdivided quadrat**. Nine cords are set a...

Figure 3.3 **JNCC guideline usage of SACFOR scales**. (a) Scales used for organis...

Figure 3.4 **Two nested quadrat designs**. In (a) the area sampled and the total...

[Figure 3.5 Using random numbers to identify a position in a sampling grid. E...](#)

[Figure 3.6 Comparison of the perimeter to area ratios of circular, square, a...](#)

[Figure 3.7 Pin-frame. From left to right: used on its own, used with a...](#)

[Figure 3.8 Comparison of transect sampling techniques.](#)

[Figure 3.9 Kite diagram to indicate the abundance of different species along...](#)

[Figure 3.10 Using a clinometer. The angle from the horizontal to the top of...](#)

[Figure 3.11 Tree coring. Atlas Cedar \(*Cedrus atlantica*\), being cored in Mor...](#)

[Figure 3.12 Estimating canopy cover. Using a 10 × 10 grid on top of picture...](#)

Chapter 4

[Figure 4.1 Observation and marking chambers for invertebrates. Invertebrates...](#)

[Figure 4.2 Use of ink or paint spots to identify individual invertebrates. U...](#)

[Figure 4.3 Differences in rhino horn shape and size that can be used to iden...](#)

[Figure 4.4 Survivorship curves. Where: \$l_x\$ is the number surviving to a parti...](#)

[Figure 4.5 'W' shaped transect walk. Similar designs using 'M' s...](#)

[Figure 4.6 Parabolic reflector concentrating sound onto the central micropho...](#)

[Figure 4.7 Pond nets suitable for catching surface, pelagic, and bottom acti...](#)

[Figure 4.8 Belleville mosquito larvae sampler. The cylinder \(without the fun...](#)

[Figure 4.9 Using a kick net and sorting the sample.](#)

[Figure 4.10 Kick screen or banner net. Ensure that the bottom net is as clos...](#)

[Figure 4.11 Surber sampler.](#)

[Figure 4.12 Hess sampler.](#)

[Figure 4.13 Drift net. Weights \(dark spheres shown in the diagram on the lef...](#)

[Figure 4.14 Plankton net. When the net is towed \(a\) or suspended \(b\) in the ...](#)

[Figure 4.15 Suction sampler for animals in burrows.](#)

[Figure 4.16 Naturalist's dredge. The mouth of this net is made of metal ...](#)

[Figure 4.17 Grabs for collecting benthic animals. \(a\) Ekman grab with a remo...](#)

[Figure 4.18 The Baermann funnel. A small sample is wrapped in muslin and pla...](#)

[Figure 4.19 Bidlingmayer sand extractor. The sample is spread over the base ...](#)

[Figure 4.20 Colonisation samplers. \(a\) Hester-Dendy multi-plate samplers are...](#)

[Figure 4.21 Crayfish traps. The funnel entrances allow the animals to enter ...](#)

[Figure 4.22 Crayfish refuge trap. The steel base frame can be pegged into th...](#)

[Figure 4.23 Soil sieves. \(a\) Gardener's soil sieve for separating coarse fra...](#)

[Figure 4.24 Tullgren funnels. The soil core or leaf litter should be dried s...](#)

[Figure 4.25 Kempson bowl extractor. The sample is placed between two grids, ...](#)

[Figure 4.26 Winkler sampler. Samples may be dry-sieved first using a fairly ...](#)

[Figure 4.27 Simple inclined tray light separator. As the sample dries out, a...](#)

[Figure 4.28 Baited pitfall trap.](#)

[Figure 4.29 Setting pitfall traps.](#)

[Figure 4.30 Barriers used with pitfall trap s. \(a\). Two or more traps can be ...](#)

[Figure 4.31 Birds -eye view of an H-trap. Barriers are made in t...](#)

[Figure 4.32 Ramp trap. More sophisticated versions can have a ramp on each s...](#)

[Figure 4.33 Suction sampler s. \(a\) and \(b\) G-vac based on a modified garden ...](#)

[Figure 4.34 Emergence traps. \(a\) Emergence traps that do not have a floor ca...](#)

[Figure 4.35 Pooter used to suck up small invertebrates. \(a\) Pooter \(aspirato...](#)

[Figure 4.36 Sweep net and sweep netting invertebrates from a bush. Sweeping ...](#)

Figure 4.37 Beating tray s. (a) Black and white versions and (b) in use beat...

Figure 4.38 Fogging in rainforest. The fogging illustrated was undertaken in...

Figure 4.39 Nets for catching airborne insects. (a) Types of nets: (from lef...

Figure 4.40 Rothamsted suction traps. From left to right: Rothamsted pop-up ...

Figure 4.41 Positioning of sticky traps.

Figure 4.42 Bottle trap for flies and other flying insects. These can be mad...

Figure 4.43 Attractant-based traps. (a) Funnel trap; (b) Delta trap. (...)

Figure 4.44 Assembly trap. Virgin females are placed within the mesh contain...

Figure 4.45 Trap-nests for bees and wasps.

Figure 4.46 Window trap. Animals hit the window - made of Perspex or netting...

Figure 4.47 Malaise trap. Flies, wasps, and other insects hit the centre par...

Figure 4.48 Slam trap. (a) Flying insects hit one of the four netting vanes ...

Figure 4.49 Simple light trap s for insects. (a). Moths accumulating around a...

Figure 4.50 Moth collection tent. Moths attracted to the light hanging in th...

Figure 4.51 Examples of moth trap s. (a). Rothamsted trap with mains-run 200...

Figure 4.52 Different types of light used for moth traps. From left to right...

Figure 4.53 Rotary trap.

Figure 4.54 Water traps. (a) Coloured water (pan) traps. (b) Trap with lid a...

Figure 4.55 Slurp gun. The nozzle can be added or removed depending on the s...

Figure 4.56 Using snorkel and scuba gear to observe fish. Note: snorkelling

Figure 4.57 Sport fishing techniques. (a) Spear gun; (b) coastal fishing usi...

Figure 4.58 Examples of nets and traps. (a) Casting a net into shallow coast...

Figure 4.59 Bottle trap for newts. Cut a plastic bottle in half and insert t...

Figure 4.60 Drift fence with side-flap bucket trap. Animals move along...

Figure 4.61 Funnel traps for amphibians. The funnel entrances help to retain...

Figure 4.62 Examples of layouts for drift fencing. (a) Ring fencing a pond: ...

Figure 4.63 Artificial cover trap for amphibians. The trap is set in a suita...

Figure 4.64 Concrete housing for a camera trap. This design was used in a ju...

Figure 4.65 Equipment for catching reptiles at a distance. (a) Grabber; (b) ...

Figure 4.66 Refuges as traps for reptiles. (a) Refuge trap - from left to ri...

Figure 4.67 Measuring captured birds. (a) Tarsus length; (b) mass.

Figure 4.68 Permanent bird hide.

Figure 4.69 Bird observation tower. (a) Observation tower; (b) view over the...

Figure 4.70 Transect layout for Breeding Bird Survey. Birds are counted from...

Figure 4.71 Goose droppings surveyed using a quadrat. To survey bird droppin...

Figure 4.72 Mist net ting. (a) mist nets set; (b) greenfinch caught in net; ...

Figure 4.73 Propelled nets. (a) Clap net set. (b) Clap net launched. The net...

Figure 4.74 Marking birds. (a) Using a standard metal ring; (b) using colour...

Figure 4.75 Use of colour rings. Here, 15 individual birds have been marked ...

Figure 4.76 Deer becoming aware of the observer's presence.

Figure 4.77 Images caught using camera trap s in tropical forest. (a) Tapir;...

Figure 4.78 Small mammal tracking tunnel.

Figure 4.79 Mammal dung used as an indicator of species presence. (a) Hyena ...

Figure 4.80 Sampling mammal hair. (a) Badger hair and (b) sheep wool caught ...

Figure 4.81 Bat detector s. (a) Range of detectors – two heterodyne detector...

[Figure 4.82 Triangle bat walks with frequency settings appropriate for UK ba...](#)

[Figure 4.83 Small mammal traps. \(a\) Aluminium Longworth trap; \(b\) plastic Tr...](#)

[Figure 4.84 Longworth trap for small to medium sized mammals.](#)

[Figure 4.85 Poison bait dispenser. Used more in conservation work to remove ...](#)

[Figure 4.86 Mole traps. \(a\) Classic scissor trap. \(b\) Talpex type trap \(prof...](#)

[Figure 4.87 Harp trap.](#)

[Figure 4.88 Cage trap. \(a\) and \(b\) medium sized cage trap; \(c\) cage traps su...](#)

[Figure 4.89 Badger trap. \(a\) Trap from front; \(b\) trap set in undergrowth.](#)

Chapter 5

[Figure 5.1 Transformations for skewed distributions. The block arrows indica...](#)

[Figure 5.2 Truncation of percentage data.](#)

[Figure 5.3 Bimodal distribution.](#)

[Figure 5.4 Scatterplot of number of bird species found in urban parks with d...](#)

[Figure 5.5 Pie diagram of the numbers of invertebrates of common orders foun...](#)

[Figure 5.6 Stacked bar graph of the percentage composition of invertebrates ...](#)

[Figure 5.7 Clustered bar graph of the number of invertebrates of common orde...](#)

[Figure 5.8 The mean and standard deviation plotted on a data set that approx...](#)

[Figure 5.9 Comparison of different ways of displaying the variation around t...](#)

[Figure 5.10 Box and whisker plots indicating different ways of displaying me...](#)

[Figure 5.11 Du Feu estimates plotted against number of animals caught. Popul...](#)

[Figure 5.12 Using capture removal to estimate population sizes. The calculat...](#)

[Figure 5.13 Comparison of the central tendency of two samples. \(a\) non-overl...](#)

[Figure 5.14 Summary of stages in using inferential statistics.](#)

[Figure 5.15 Example of a scatterplot. Showing the hypothetical relationship ...](#)

[Figure 5.16 Trends of invertebrate numbers with organic pollution.](#)

[Figure 5.17 Regression line between the number of aphids found at different ...](#)

[Figure 5.18 Examples of common non-linear graph types in ecology. \(a\) ...](#)

[Figure 5.19 A canonical variates analysis \(CVA\) of spiders across three mana...](#)

[Figure 5.20 Types of cluster analysis.](#)

[Figure 5.21 Dendrogram following cluster analysis of different habitat types](#)

[Figure 5.22 TWINSPAN of quarry sites on the basis of their component plant s...](#)

[Figure 5.23 Ordination of a number of quarry sites on the basis of their com...](#)

Chapter 6

[Figure 6.1 Two formats for research report presentation. Use informative hea...](#)

[Figure 6.2 Study site in the Nordkette mountains, Austria, showing the steep...](#)

[Figure 6.3 Presenting graphs. \(a\) Scatterplot; \(b\) bar chart. Note that in b...](#)

[Figure 6.4 Examples of poster layouts. \(a\) Is a very uninspiring design for ...](#)

Practical Field Ecology

C. Philip Wheater

Manchester Metropolitan University
Manchester
UK, M1 5GD

Penny A. Cook

University of Salford
Salford, UK, M5 4WT

James R. Bell

Rothamsted Research, Harpenden, AL5 2JQ, UK /
Manchester Metropolitan University, Manchester
UK, M1 5GD

Second Edition

WILEY Blackwell

This edition first published 2020

© 2020 John Wiley & Sons Ltd

Edition History

Wiley (1e, 2011)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at <http://www.wiley.com/go/permissions>.

The right of C. Philip Wheater, Penny A. Cook and James R. Bell to be identified as the authors of this work has been asserted in accordance with law.

Registered Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

9600 Garsington Road, Oxford, OX4 2DQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages,

including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Wheater, C. Philip, 1956- author. | Cook, Penny A., 1971- author. |

Bell, James R., 1969- author.

Title: Practical field ecology / C. Philip Wheater, Penny A. Cook, James R. Bell.

Description: Second edition. | Hoboken, NJ : Wiley-Blackwell, 2020. |

Includes bibliographical references and index.

Identifiers: LCCN 2019034790 (print) | LCCN 2019034791 (ebook) | ISBN

9781119413226 (paperback) | ISBN 9781119413233 (adobe pdf) | ISBN

9781119413240 (epub)

Subjects: LCSH: Ecology-Research-Methodology. | Ecology-Fieldwork.

Classification: LCC QH541.2 .W54 2020 (print) | LCC QH541.2 (ebook) | DDC

577.072-dc23

LC record available at <https://lccn.loc.gov/2019034790>

LC ebook record available at <https://lccn.loc.gov/2019034791>

Cover Design: Wiley

Cover Images: 3D Color Bar © victorhe2002/Getty Images, Frog © Design Pics/Corey Hochachka/Getty Images, Mouse © Graham Codd/EyeEm/Getty Images, Ladybird © Jacky Parker Photography/Getty Images, Cropped Hand Of Person Holding Magnifying Glass © Prakasit Khuansuwan/EyeEm/Getty Images, Close-Up Of Water Drops © Yuttasak Thongsan/EyeEm/Getty Images

Since the publication of the first edition, three highly skilled field scientists who gave generously of their time and expertise for the first edition of this book have sadly passed away. All three were expert ecologists and each influenced many generations of young scientists.

We would like to dedicate this second edition to our friends and colleagues: Mike Hounsome, Rob Strachan, and Derek Yalden.

List of Tables

Table 1.1	Example timescales for a short research project.
Table 1.2	Random numbers.
Table 1.3	Common statistical tests.
Table 2.1	Common factors influencing living organisms.
Table 2.2	Types of bioindicators for monitoring environmental conditions.
Table 2.3	Range of taxa used as bioindicators.
Table 2.4	Major taxonomic groups.
Table 2.5	Major divisions of the Raunkiær plant life-form system.
Table 3.1	DAFOR, Braun-Blanquet, and Domin scales for vegetation cover.
Table 3.2	Abundance (ESACFORN) scales for littoral species.
Table 3.3	Recommended quadrat sizes for various organisms.
Table 4.1	Some considerations in the choice of radio-tracking equipment.
Table 4.2	Summary of killing and preservation techniques for commonly studied invertebrates.
Table 4.3	Factors to consider when using pitfall traps.

Table 4.4	Examples of baits and target insect groups.
Table 4.5	Factors to consider when choosing light traps to collect moths.
Table 4.6	Summary of different types of net.
Table 4.7	Example of timed species counts.
Table 4.8	Comparison of bat detector systems.
Table 5.1	Abundance of invertebrates in ponds.
Table 5.2	Summary of commonly used methods of population estimation based on mark-release-recapture techniques.
Table 5.3	Common diversity and evenness indices.
Table 5.4	Commonly used similarity measures.
Table 5.5	Statistics that should be reported for difference tests.
Table 5.6	Statistics that should be reported for relationship tests.
Table 5.7	Statistics that should be recorded for tests used to examine associations between two frequency distributions.
Table 5.8	Using dummy variables.
Table 5.9	A spider indicator species analysis.
Table	Types of stress measure for computing MDS

5.10	solutions.
Table 6.1	Mean number of individuals of invertebrate orders found in polluted and clean ponds.
Table 6.2	Uses of different types of graphs.
Table 6.3	Examples of words used unnecessarily when qualifying terms.
Table 6.4	SI units of measurement.
Table 6.5	Conventions for the use of abbreviations.
Table 6.6	Examples of Latin and foreign words and their emphasis.

List of Figures

Figure 1.1	Flowchart of the planning considerations for research projects.
Figure 1.2	Example timescales for a medium-term research project.
Figure 1.3	Example of a section of a data recording sheet for an investigation into the distribution of woodland birds.
Figure 1.4	Examples of sampling designs.
Figure 1.5	Experimental layouts for five different treatments.
Figure 1.6	Data set approximating to a normal distribution.
Figure 2.1	Phase 1 habitat map.
Figure 2.2	Portable weather station.
Figure 2.3	Maximum/minimum thermometer.
Figure 2.4	Types of thermometers.
Figure 2.5	Whirling hygrometer.
Figure 2.6	Anemometers.
Figure 2.7	Environmental multimeter.
Figure	Penetrometer.

2.8	
Figure 2.9	Soil augers.
Figure 2.10	Bulb planters.
Figure 2.11	Aquatic multimeters.
Figure 2.12	Secchi disk.
Figure 2.13	Dynamometer to measure wave action.
Figure 2.14	Light meters.
Figure 2.15	Using ranging poles to measure the inclination of a slope.
Figure 2.16	Using a cross-staff to survey a shoreline.
Figure 2.17	Using a GPS.
Figure 2.18	Lichen zone scale for mean winter sulphur dioxide estimation on trees with moderately acidic bark in England and Wales.
Figure 3.1	Quadrats.
Figure 3.2	Recording positions on a subdivided quadrat.
Figure 3.3	JNCC guideline usage of SACFOR scales.
Figure 3.4	Two nested quadrat designs.
Figure	Using random numbers to identify a position in a

3.5	sampling grid.
Figure 3.6	Comparison of the perimeter to area ratios of circular, square, and oblong quadrats.
Figure 3.7	Pin-frame.
Figure 3.8	Comparison of transect sampling techniques.
Figure 3.9	Kite diagram to indicate the abundance of different species along a transect from the high water line.
Figure 3.10	Using a clinometer.
Figure 3.11	Tree coring.
Figure 3.12	Estimating canopy cover.
Figure 4.1	Observation and marking chambers for invertebrates.
Figure 4.2	Use of ink or paint spots to identify individual invertebrates.
Figure 4.3	Differences in rhino horn shape and size that can be used to identify individual animals.
Figure 4.4	Survivorship curves.
Figure 4.5	'W' shaped transect walk.
Figure 4.6	Parabolic reflector concentrating sound onto the central microphone.
Figure 4.7	Pond nets suitable for catching surface, pelagic, and bottom active invertebrates.
Figure 4.8	Belleville mosquito larvae sampler.

Figure 4.9 Using a kick net and sorting the sample.

Figure 4.10 Kick screen or banner net.

Figure 4.11 Surber sampler.

Figure 4.12 Hess sampler.

Figure 4.13 Drift net.

Figure 4.14 Plankton net.

Figure 4.15 Suction sampler for animals in burrows.

Figure 4.16 Naturalist's dredge.

Figure 4.17 Grabs for collecting benthic animals.

Figure 4.18 The Baermann funnel.

Figure 4.19 Bidlingmayer sand extractor.

Figure 4.20 Colonisation samplers.

Figure 4.21 Crayfish traps.

Figure 4.22 Crayfish refuge trap.

Figure 4.23 Soil sieves.

Figure Tullgren funnels.

4.24	
Figure	Kempson bowl extractor.
4.25	
Figure	Winkler sampler.
4.26	
Figure	Simple inclined tray light separator.
4.27	
Figure	Baited pitfall trap.
4.28	
Figure	Setting pitfall traps.
4.29	
Figure	Barriers used with pitfall traps.
4.30	
Figure	Birds-eye view of an H trap.
4.31	
Figure	Ramp trap.
4.32	
Figure	Suction samplers.
4.33	
Figure	Emergence traps.
4.34	
Figure	Pooter used to suck up small invertebrates.
4.35	
Figure	Sweep net and sweep netting invertebrates from a bush.
4.36	
Figure	Beating trays.
4.37	
Figure	Fogging in rainforest.
4.38	
Figure	Nets for catching airborne insects.
4.39	

Figure 4.40	Rothamsted suction traps.
Figure 4.41	Positioning of sticky traps.
Figure 4.42	Bottle trap for flies and other flying insects.
Figure 4.43	Attractant-based traps.
Figure 4.44	Assembly trap.
Figure 4.45	Trap-nests for bees and wasps.
Figure 4.46	Window trap.
Figure 4.47	Malaise trap.
Figure 4.48	Slam trap.
Figure 4.49	Simple light traps for insects.
Figure 4.50	Moth collection tent.
Figure 4.51	Examples of moth traps.
Figure 4.52	Different types of light used for moth traps.
Figure 4.53	Rotary trap.
Figure 4.54	Water traps.
Figure	Slurp gun.