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Preface

This book is a collection of recent advances on problems in dynamical systems,
optimal control and optimization. In many cases, computational aspects and tech-
niques are central. We dedicate this volume to Michael Dellnitz on the occasion of
his 60th birthday. In one way or the other, there is a connection to Michael’s
research in all of these contributions.

In Part I, we collect chapters related to problems in dynamical systems. We start
with a new technique for computing highly degenerate periodic orbits in ordinary
differential equations, so-called phase resetting curves which appear, e.g., in models
of spiking neurons. The second contribution employs concepts from singularity
theory in order to classify and compute homeostasis points, i.e., points in state space
of, e.g., biochemical networks, in which some output variable is roughly constant
while some input variable is changing. We continue with a review on recent
developments on the set-oriented approximation of invariant sets, a technique that
has been pioneered by Michael and which will reappear in several other chapters in
this volume. In the following paper, this technique is employed to approximate the
transfer operator in non-autonomous differential equations, enabling the computa-
tion of coherent behavior in otherwise turbulent fluid flows. In high-dimensional
systems with high-dimensional invariant sets, other concepts for an approximation
of the transfer operator have to be found—and this is the subject of the next chapter
where empirical bases are employed to construct a finite-rank approximation of this
operator. Eigenfunctions of the (approximate) transfer operator can be used in order
to detect, e.g., rare events like transitions between almost–invariant, respectively,
metastable subsets in state space—an observation which already appears in one
of the earlier works of Michael from the late 1990s. This is built upon in the
subsequent chapter where a new, weaker characterization of slowly changing
coordinates in noisy dynamical systems is proposed. Another way to address the
reliable detection of rare events is based on sampling techniques like importance
sampling and this addressed in the next chapter, where several sampling algorithms
are compared and validated. We close the first part of this book by a chapter which
demonstrates the usefulness of concepts from dynamical systems for solving
questions on the computational complexity of certain problems.
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Part II is dedicated to optimal control problems. In the first contribution, sym-
metric optimal control problems are investigated. Lie group symmetries and
associated motion primitives of mechanical systems are exploited to develop
numerical methods for multi-objective model predictive optimal control problems.
In the second contribution, we review the numerical treatment of a mixed-integer
optimal control problem governed by linear convection–diffusion equations and
binary control variables. Relaxation and sum-up rounding techniques are combined
with model order reduction to make the numerical approximation computationally
more efficient. In the third contribution, we review set-oriented methods for the
construction of globally optimal controllers. Based on a discrete version of
Bellman’s optimality principle applied to a dynamic game, a discrete feedback is
constructed which robustly stabilizes a given nonlinear control system. In the last
contribution, we review and highlight some connections between the problem of
nonlinear smoothing and optimal control problems involving control of probability
densities.

Finally, in Part III, we present three contributions related to optimization. The
first contribution deals with the occurrence of “dents” in Pareto fronts of continuous
multi-objective optimization problems. This can be helpful to obtain information
about the structure of the Pareto front without explicitly computing the entire Pareto
set. The second contribution deals with equality constrained bi-level multi-objective
optimization problems and proposes a novel set-oriented algorithm that aims for a
well-distributed finite-size approximation of the Pareto front of the higher-level
problem. The third contribution reviews the gradient subspace approximation which
allows one to compute descent directions in a best-fit manner from given neigh-
borhood information. The method works particularly well in combination with
set-oriented searchers such as evolutionary algorithms.

Oliver Junge
Oliver Schütze
Gary Froyland

Sina Ober-Blöbaum

April 2020

Kathrin Padberg-Gehle
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A Continuation Approach to Computing
Phase Resetting Curves

Peter Langfield1,2, Bernd Krauskopf3, and Hinke M. Osinga3(B)

1 IHU Liryc, Electrophysiology and Heart Modeling Institute,
Fondation Bordeaux Université, 33600 Pessac - Bordeaux, France

peter.langfield@u-bordeaux.fr
2 Institut de Mathématiques de Bordeaux UMR 5251,

Université de Bordeaux, 33400 Talence, France
3 Department of Mathematics, The University of Auckland,

Private Bag 92019, Auckland 1142, New Zealand
{b.krauskopf,h.m.osinga}@auckland.ac.nz

Abstract. Phase resetting is a common experimental approach to inves-
tigating the behaviour of oscillating neurons. Assuming repeated spiking
or bursting, a phase reset amounts to a brief perturbation that causes
a shift in the phase of this periodic motion. The observed effects not
only depend on the strength of the perturbation, but also on the phase
at which it is applied. The relationship between the change in phase
after the perturbation and the unperturbed old phase, the so-called
phase resetting curve, provides information about the type of neuronal
behaviour, although not all effects of the nature of the perturbation are
well understood. In this chapter, we present a numerical method based
on the continuation of a multi-segment boundary value problem that
computes phase resetting curves in ODE models. Our method is able
to deal effectively with phase sensitivity of a system, meaning that it is
able to handle extreme variations in the phase resetting curve, includ-
ing resets that are seemingly discontinuous. We illustrate the algorithm
with two examples of planar systems, where we also demonstrate how
qualitative changes of a phase resetting curve can be characterised and
understood. A seven-dimensional example emphasises that our method
is not restricted to planar systems, and illustrates how we can also deal
with non-instantaneous, time-varying perturbations.

1 Introduction

Measuring phase resetting is a common approach for testing neuronal responses
in experiments: a brief current injection perturbs the regular spiking behaviour of
a neuron, resulting generally in a shifted phase as the neuron returns to its regu-
lar oscillating behaviour. This phase shift can be advanced or delayed—meaning
that the next spike arrives earlier or later compared with the unperturbed spik-
ing oscillation—and which effect occurs also depends on the moment when the

c© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
O. Junge et al. (Eds.): SON 2020, SSDC 304, pp. 3–30, 2020.
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current is applied; see [9] for more details. A plot of the shifted phase ϑnew versus
the original phase ϑold at which the current was applied is known as the phase
transition curve (PTC). Experimentally, it is often easier to represent the reset
in terms of the resulting phase difference ϑnew −ϑold as a function of ϑold, which
can be measured as the time to the next spike; such a representation is called a
phase response curve or phase resetting curve (PRC).

The shape of a PTC or PRC of a given system obviously depends on the size
of the applied perturbation: already for quite small amplitudes, nonlinear effects
can dramatically affect a PTC or PRC. The shape of the PTC or PRC has been
used to classify neuronal behaviour [1,7,16], where the underlying assumption is
that the size of the applied perturbation is sufficiently small. Hodgkin [17] dis-
tinguished between so-called Type-I and Type-II excitable membranes, where
neurons with membranes of Type II are not able to fire at arbitrarily low fre-
quencies. Note that transitions from Type-I to Type-II can occur when system
parameters are changed [8]. Ermentrout [7] found that the PRC of a Type-I neu-
ron always has the same sign, while that of a Type-II neuron changes sign; this
means that the PTC is always entirely above or below the diagonal for Type-I
neurons, while it intersects the diagonal for Type-II neurons. In either case, the
PTC is invertible for sufficiently small perturbation amplitudes, since it can be
viewed as a continuous and smooth deformation of the identity, which is the
PTC in the limit of zero amplitude. Invertibility itself has also been used as a
distinguishing property of PTCs: noninvertible PTCs are said to be of type 0
(or strong) and invertible PTCs are of type 1 (or weak) [9,37]. If an increasingly
stronger perturbation is applied, for example, in the context of synchronisation,
it is well known that PTCs can change from type 1 to type 0, that is, become
noninvertible [11,37].

A motivation in recent work on phase resetting has been the idea of interpret-
ing the PTC as defining a one-dimensional phase-reduction model that, hope-
fully, captures the essential dynamics of a possibly high-dimensional oscillating
system. The main interest is in coupled systems, formed by two or more (pla-
nar) systems with known PRCs; for example, see [31,32] for mathematical as
well as experimental perspectives. Unfortunately, the convergence back to the
limit cycle after some perturbation can be quite slow for a coupled system, such
that only (infinitesimally) small perturbations are accurately described. Further-
more, it makes physiological sense to assume a time-varying input, usually in the
form of a short input pulse, rather than the instantaneous perturbation assumed
for the theoretical phase reset. Moreover, the perturbation may be repeated at
regular intervals. In this context, PTCs and PRCs can be useful for explaining
the resetting behaviour, though strictly speaking, the theory is only valid at low
firing rates [15,35]. More recently, the idea of a phase-amplitude description has
led to a better understanding of the effects resulting from these kinds of repeated
time-varying resets [2,3,26,30,34].

From a dynamical systems perspective, the key question of phase resetting is
how the perturbed initial conditions relax back to an attracting periodic orbit Γ
with period TΓ of an underlying continuous-time model, which we take here to
be a vector field on R

n, that is, a system of n first-order autonomous ordinary
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differential equations. All points in its basin B(Γ) converge to Γ, and they do so
with a given asymptotic phase. The subset of all points in B(Γ) that converge
to Γ in phase with the point γϑ ∈ Γ, where ϑ ∈ [0, 1) by convention, is called
the (forward-time) isochron of γϑ, which we refer to as I(γϑ). Isochrons were
defined and named by Winfree [36]. Guckenheimer [12] showed that I(γϑ) is,
in fact, an (n − 1)-dimensional invariant stable manifold of the attracting fixed
point γϑ ∈ Γ under the time-TΓ map. In particular, it follows that I(γϑ) is tangent
to the attracting linear eigenspace of γϑ and, hence, transverse to Γ. Moreover,
the ϑ-dependent family of all isochrons I(γϑ) foliates the basin B(Γ). In other
words, any point in B(Γ) has a unique asymptotic phase determined by the
isochron it lies on.

For a given ϑold, consider now the perturbed point γϑold+ Ad ∈ B(Γ), obtained
from γϑold ∈ Γ by applying the perturbation of strength A in the given direction
d. The asymptotic phase ϑnew is, hence, uniquely determined by the isochron
I(γϑnew ) on which this point lies. This defines a circle map P : [0, 1) → [0, 1) with
P(ϑold) = ϑnew. Therefore, finding the PTC is equivalent to determining how the
perturbed cycle Γ + Ad = {γϑold + Ad | ϑold ∈ [0, 1)} intersects the foliation of
B(Γ) by the isochrons I(γϑnew ) for ϑnew ∈ [0, 1). Notice further that the PTC
is the graph of the circle map P on the unit torus T

2, represented by the unit
square [0, 1) × [0, 1).

When considering the amplitude A of the perturbation as a parameter
(while keeping the direction d fixed throughout), one can deduce some impor-
tant properties of the associated PTC. Suppose that 0 < Amax is such that
ΓA := Γ + Ad ⊂ B(Γ) for all 0 ≤ A < Amax. Then none of these perturbed
cycles ΓA intersects the boundary of the basin B(Γ) and the associated circle
map P = PA is well defined for all ϑold ∈ [0, 1). The map P0 for zero perturbation
amplitude is the identity on T

2, which means that, as its graph, the PTC is the
diagonal on [0, 1) × [0, 1) and a 1:1 torus knot on T

2; in particular, P0 is invert-
ible, that is, it is injective and surjective. Because of smooth dependence on the
amplitude A and the fact that PA is a function over [0, 1), the PTC remains a
1:1 torus knot on T

2 and PA is surjective for all 0 ≤ A < Amax.
Since the isochrons are transverse to Γ, the circle map PA is C1-close to

the identity, and hence, also injective, for sufficiently small A. As the graph of
a near-identity transformation, the PTC is then strictly monotone, invertible,
and hence, of type 1 (or weak) in the notation of [9,37]. While surjectivity is
preserved, injectivity may be lost before A = Amax is reached. Indeed, the PTC
is either invertible for all 0 ≤ A < Amax, or there is a maximal 0 < Ainv < Amax

such that PA is invertible only for all 0 < A ≤ Ainv. The loss of injectivity of PA

at A = Ainv happens generically because of the emergence of an inflection point.
For 0 ≤ A < Amax this transition creates a local minimum and a local maximum
of the PTC, which is now no longer invertible and so of type 0 (or strong) in
the notation of [9,37]. As we will show, an inflection point of PA corresponds
to a cubic tangency between the perturbed cycle ΓA and an isochron. Indeed,
additional inflection points and, hence, local minima and maxima may appear at
subsequent cubic isochron tangencies. Since PA is a circle map, these must come
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in pairs; hence, counting the number of its local maxima (or minima) would
provide a further refinement of the notation of a type 0 (or strong) PTC.

The above discussion shows that, when the applied perturbation A is suffi-
ciently weak, it suffices to consider only the linear approximation to the isochron
family, which is given by the ϑ-family of stable eigenspaces of the time-TΓ map
for each ϑ. In practice, nonlinear effects are essential, especially when multiple
time scales are present or the phase reset involves relatively strong perturba-
tions. Isochrons are often highly nonlinear objects of possibly very complicated
geometry [21,36]. While the geometric idea of isochrons determining the phase
resets has been around since the mid 1970s, the practical implementation has
proven rather elusive. In practice, it is not at all straightforward to compute the
isochrons of a periodic orbit. In planar systems, when such isochrons are curves,
three different approaches have been proposed, based on Fourier averages [23,25],
a parametrisation formulated in terms of a functional equation [14,18], and
continuation of solutions to a suitably posed two-point boundary value prob-
lem [21,29]. In principle, all three approaches generalise to higher-dimensional
isochrons, but there are only few explicit examples [14,25].

From the knowledge of the isochron foliation of B(Γ), one can immediately
deduce geometrically the phase resetting for perturbations of any strength and in
any direction. However, already for planar and certainly for higher-dimensional
systems, this is effectively too much information when one is after the PTC
resulting from a perturbation in a fixed direction and with a specific ampli-
tude. In essence, finding a PTC or PRC remains the one-dimensional problem
of finding the asymptotic phase of all points on the perturbed cycle.

In this chapter, we show how this can be achieved with a multi-segment
boundary value problem formulation. Specifically, we adapt the approach
from [21,22] to set up the calculation of the circle map PA by continuation,
first in A from A = 0 for fixed ϑold, and then in ϑold ∈ [0, 1) for fixed A. In
this way, we obtain accurate numerical approximations of the PTC or PRC as
continuous curves, even when the system shows strong phase sensitivity. The
set-up is extremely versatile, and the direct computation of a PTC in this way
does not require the system to be planar. We demonstrate our method with a
constructed example going back to Winfree [37, Chapter 6], where we also show
how injectivity is lost in a first cubic tangency of ΓA with an isochron. The
robustness of the method is then illustrated with the computation of a PTC
of a perturbed cycle that cuts through a region of extreme phase sensitivity in
the (planar) FithHugh–Nagumo system; in spite of very large derivatives due to
this phase sensitivity, the PTC is computed accurately as a continuous curve.
Our final example of a seven-dimensional system from [20] modelling a type of
cardiac pacemaker cell shows that our approach also works in higher dimensions;
this system also features phase sensitivity due to the existence of different time
scales.

This chapter is organised as follows. In the next section, we provide pre-
cise details of the setting and explain the definitions used. Section 3 presents
the numerical set-up for computing a resetting curve by continuation of a
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multi-segment boundary value problem. We then discuss two planar examples in
depth, which are both taken from [22]: a variation of Winfree’s model in Sect. 4
and the FitzHugh–Nagumo system in Sect. 5. The third and higher-dimensional
example from [20] is presented in Sect. 6. A summary of the results is given in
Sect. 7, where we also discuss some consequences of our findings and directions
of future research.

2 Basic Setting and Definitions

As mentioned in the introduction, we consider a dynamical system with an
attracting periodic orbit Γ. For simplicity, we assume that the state space is R

n

and consider the dynamical system

�x = F(x), (1)

where F : Rn
→ R

n is at least once continuously differentiable. We assume that
system (1) has an attracting periodic orbit Γ with period TΓ > 0, that is,

Γ := {γ(t) ∈ R
n
| 0 ≤ t ≤ TΓ with γ(TΓ) = γ(0)},

and TΓ is minimal with this property. We associate a phase ϑ ∈ [0, 1) with
each point γϑ ∈ Γ, defining γϑ := γ(t) with t = ϑTΓ. Here γ0 := γ(0) needs to
be chosen, which is usually done by fixing it to correspond to a maximum in
the first component. The (forward-time) isochron I(γϑ) associated with γϑ ∈ Γ

is then defined in terms of initial conditions x(0) of forward trajectories x :=
{x(t) ∈ R

n
| t ∈ R} of system (1) that accumulate on Γ, namely, as

I(γϑ) := {x(0) ∈ R
n
| lim
k→∞

x(k TΓ) = γϑ with k ∈ N}.

In other words, the trajectory x approaches Γ in phase with γϑ. Note that I(γϑ) is
the stable manifold of the fixed point γϑ of the time-TΓ return map; in particular,
this means that I(γϑ) is of dimension n − 1 and tangent at γϑ to the stable
eigenspace E(γϑ), which is part of the stable Floquet bundle of Γ [12,13]; we
utilise this property when computing isochrons, and also when computing a
PTC or PRC.

We are now ready to give formal definitions of the PTC and PRC; see also [9].

Definition 1 (Phase Transition Curve)
The phase transition curve or PTC associated with a perturbation of amplitude
A ≥ 0 in the direction d ∈ R

n is the graph of the map P : [0, 1) → [0, 1) defined as
follows. For ϑ ∈ [0, 1), the image P(ϑ) is the phase ϕ associated with the isochron
I(γϕ) that contains the point γϑ + Ad for γϑ ∈ Γ.

Definition 2 (Phase Response Curve)
The phase response curve or PRC associated with a perturbation of amplitude
A ≥ 0 in the direction d ∈ R

n is the graph of the phase difference Δ(ϑ) =

P(ϑ) − ϑ (mod 1), where the map P is as above.
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The definitions of the PTC and PRC are based on knowledge of the (forward-
time) isochron I(γϕ) associated with a point γϕ ∈ Γ. We previously designed an
algorithm based on continuation of a two-point boundary value problem (BVP)
that computes one-dimensional (forward-time and backward-time) isochrons of
a planar system up to arbitrarily large arclengths [21,22,29]. Here, we briefly
describe this algorithm in its simplest form, because this is useful for under-
standing the basic set-up, and for introducing some notation. The description
is presented in the style that is used for implementation in the software pack-
age Auto [4,5]. In particular, we consider a time-rescaled version of the vector
field (1), which represents an orbit segment {x(t) | 0 ≤ t ≤ T} of (1) as the orbit
segment {u(t) | 0 ≤ t ≤ 1} of the vector field

�u = T F(u), (2)

so that the total integration time T is now a parameter of the system.
We approximate I(γ0) as the set of initial points of orbit segments that end

on the linear space E(γ0), the linearised isochron of I(γ0), close to γ0 after integer
multiples of the period TΓ. These points are formulated as initial points u(0) of
orbit segments u that end on E(γ0) at a distance η from γ0; hence, η defines
a one-parameter family of orbit segments. Each orbit segment in this family is
a solution of system (2) with T = k TΓ for k ∈ N; the corresponding boundary
conditions are:

[u(1) − γ0] · v⊥0 = 0, (3)

[u(1) − γ0] · v0 = η, (4)

where v0 is the normalised vector that spans E(γ0) and v⊥0 is perpendicular to it.
Note that Γ itself, when starting from γ0, is a solution to the two-point BVP (2)–
(4) with T = TΓ and η = 0. This gives us a first solution to start the continuation
for computing I(γ0). We fix T = TΓ and continue the orbit segment u in η up to a
maximum prespecified tolerance η = ηmax. As the end point u(1) is pushed away
from γ0 along E(γ0), the initial point u(0) traces out a portion of I(γ0).

Once we reach η = ηmax, we can extend I(γ0) further by considering points
that map to E(γ0) after one additional period, that is, after time T = 2TΓ. We
start the continuation with the orbit segment formed by concatenation of the
final orbit segment with Γ; here, we rescale time such that this first orbit is again
defined for 0 ≤ t ≤ 1, we set T = 2TΓ, and η = 0. Note that this orbit segment
has a discontinuity at t = 1

2 , but it is very small and Auto will automatically
correct and close it as part of the first continuation step. This correction will
cause a small shift in η away from 0, but η will still be much smaller than
ηmax (in absolute value). We can keep extending I(γ0) further in this way, by
continuation with T = k TΓ, for integers k > 2. See [21,29] for more details on the
implementation and, in particular, see [19,29] for details on how to find E(γ0)
represented by the first vector v0 in the stable Floquet bundle of Γ.

The computational set-up forms a well-posed two-point BVP with a one-
parameter solution family that can be found by continuation, provided the equal-
ity NDIM − NBC + NPAR = 1 holds for the dimension NDIM of the problem, the
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number NBC of boundary conditions, and the number NPAR of free parameters.
Indeed, for the computation of I(γ0), we have NDIM = 2, because we assumed
that the system is planar; NBC = 2, namely, one condition to restrict u(1) to
the linearised isochron of I(γ0), and one condition to fix its distance to γ0; and
NPAR = 1, because we free the parameter η.

To compute I(γϕ) for other ϕ ∈ [0, 1), this same approach can be used, working
with a shifted periodic orbit Γ so that its head point is γϕ , and determining the
associated direction vector vϕ that spans the eigenspace E(γϕ) to which I(γϕ)
is tangent. In [29], approximations of γϕ and vϕ are obtained by interpolation
of the respective mesh discretisations from Auto. We describe an alternative
approach in [21], where we consider I(γϕ) as the set of initial points of orbit
segments that end in the linear space E(γ0) of I(γ0) sufficiently close to γ0 after
total integration time T = k TΓ + (1 − ϕ)TΓ.

For the computation of a phase resetting curve, we use a combination of these
two approaches, but rather than interpolation, we shift the periodic orbit by
imposing a separate two-point BVP. More precisely, we set up a multi-segment
BVP comprised of several subsystems of two-point BVPs; the set-up for this
extended BVP is explained in detail in the next section.

3 Algorithm for Computing a Phase Resetting Curve

Based on the definition of PTC and PRC, one could now calculate a sufficiently
large number of isochrons and determine the resetting curve numerically from
data. We prefer to compute the PTC or PRC directly also with a BVP set-up
and continuation. The major benefit of such a direct approach is that it avoids
accuracy restrictions arising from the selection of computed isochrons; in partic-
ular, any phase sensitivity of the PTC or PRC will be dealt with automatically
as part of the pseudo-arclength continuation with Auto [4,5].

For ease of presentation, we will formulate and discuss our continuation set-
up for the case of a planar system. We remark, however, that it can readily be
extended for use in R

n with n > 2, because the dimensionality of the problem is
not determined by the dimension n − 1 of the isochrons but by the dimension of
the PTC or PRC, which is always one; see also the example in Sect. 6.

The essential difference between calculating a resetting curve rather than
an isochron is the following: for an isochron I(γϑ), we compute orbit segments
with total integration time T = TΓ (or integer multiples), where we move the
end point u(1) along the linear approximation of I(γϑ) to some distance η from
Γ, while the initial point u(0) traces out a new portion of I(γϑ); imagining the
same set-up, if we move u(0) transverse to I(γϑ), the end point u(1) will move
to lie on the linearisation of an isochron I(γϕ) with a different phase ϕ. (Here,
one should expect that the distance to Γ also changes, but we assume it is still
less than ηmax). The key idea behind our approach is that we find a way to
determine the different phase ϕ, or the phase shift ϕ − ϑ, by allowing Γ and its
corresponding stable Floquet bundle to rotate as part of an extended system. We
ensure the head point of Γ moves with the phase-shifted point, that is, the first
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point on Γ will be γϕ. In this way, we can determine the shifted phase ϕ along
any prescribed arc traced out by u(0), provided it lies in the basin of attraction
of Γ. For the PTC or PRC associated with a perturbation of amplitude A ≥ 0
in the direction d ∈ R

n, this prescribed arc is the perturbed cycle Γ + Ad, that
is, u(0) traces out the closed curve {γϑ + Ad | ϑ ∈ [0, 1)}.

3.1 Continuation Set-Up for Rotated Representation of Γ

We formulate an extended BVP that represents a rotated version of Γ with a
particular phase, meaning that we automatically determine the phase of the head
point relative to γ0. To this end, we assume that the zero-phase point γ0 ∈ Γ

and its associated linear vector v0, or more practical, its perpendicular v⊥0 , are
readily accessible as stored parameters, or constants that do not change. Hence,
even when Γ is rotated and its first point is γϕ for some different ϕ ∈ [0, 1), we
can still access the coordinates of γ0 and v⊥0 from the parameter/constants list.

The extended BVP consists of three components, one to define Γ, one to
define the associated (rotated) linear bundle, and one to define the associated
phase. We start by representing Γ as a closed orbit segment g that solves sys-
tem (2) for T = TΓ. Hence, we define

�g = TΓ F(g), (5)

with periodic boundary condition

g(1) − g(0) = 0. (6)

The stable Floquet bundle of Γ is coupled with the BVP (5)–(6) via the first
variational equation. More precisely, we consider a second orbit segment vg, such
that each point vg(t) represents a vector associated with points g(t) of the orbit
segment that solves (5). The orbit segment vg is a solution to the linearised flow
such that vg(0) is mapped to itself after one rotation around Γ. The length of
vg(0) is contracted after one rotation by the factor exp(TΓ λs), which is the stable
Floquet multiplier of Γ. We prefer formulating this in logarithmic form, which
introduces the stable Floquet exponent λs to the first variational equation, rather
than affecting the length of vg(0). Therefore, the BVP (5)–(6) is extended with
the following system of equations:

�vg = TΓ
[
DgF(g) vg − λs vg

]
, (7)

vg(1) − vg(0) = 0, (8)

||vg(0) ||= 1. (9)

In particular, vg(0) = vg(1) is the normalised vector that spans the local linearised
isochron associated with g(0).

We have not specified a phase condition and, indeed, we allow g to shift and
start at any point γϑ ∈ Γ. Consequently, the linear bundle vg will also shift such
that vg(0) still spans the local linearised isochron associated with g(0).
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Phase shifting the periodic orbit and its linear bundle by continuation in this
way has been performed before [8]. However, the implementation in [8] requires
accurate knowledge of the coordinates of the point γϑ in order to decide when to
stop shifting. Our approach uses another BVP set-up to monitor the phase shift,
so that both γϑ and vϑ are determined up to the accuracy of the computation.
To this end, we introduce a third orbit segment w that lies along Γ, with initial
point w(0) equal to g(0), and end point w(1) equal to γ0. The total integration
time associated with this orbit segment w is the fraction of the period TΓ that
g(0) lies away from γ0 along Γ; hence, it is directly related to the phase of g(0).
We extend the BVP (5)–(9) with the following system of equations:

�w = ν TΓ F(w), (10)

w(0) = g(0), (11)

[w(1) − γ0] · v⊥0 = 0. (12)

Here, we do not impose w(1) = γ0. Instead, condition (12) allows w(1) to move
in the linearisation of I(γ0) at γ0; this relaxation is necessary to ensure that the
BVP remains well posed and the discretised problem has a solution. In practice,
since w(0) ∈ Γ, the difference between w(1) and γ0 will be of the same order
as the overall accuracy of the computation. Note that it is important to ensure
ν ≥ 0 in Eq. (10), because w(1) may diverge from γ0 along E(γ0) otherwise. We
found it convenient to start the calculation with ν = 1, which corresponds to the
orbit segment w = g.

The combined solution {g, vg,w} to the multi-segment BVP (5)–(12) repre-
sents a rotated version of Γ and its stable Floquet bundle so that the head point
is γϕ with phase ϕ = 1 − ν (mod 1). We remark here that this extended set-up
can also be used to compute I(γϕ), for any phase 0 < ϕ < 1, with the method for
I(γ0) described in Sect. 2; such a computation would approximate each isochron
up to the same accuracy, without introducing an additional interpolation error.

3.2 Continuation Set-Up for the Phase Reset

Recall the set-up for computing a phase reset by moving u(0) transversely to
I(γϑ), so that the end point u(1) will move and lie on the linearisation of an
isochron I(γϕ) with a different phase ϕ. Here, the orbit segment u is a solution
of

�u = k TΓ F(u), (13)

for some k ∈ N. The end point u(1) should lie close to Γ on the linearisation of
I(γϕ), for some ϕ ∈ [0, 1). We stipulate that the rotated version of Γ is shifted
such that u(1) lies close to g(0) along the direction vg(0). Hence, we require the
two boundary conditions

[u(1) − g(0)] · vg(0) = η, (14)

[u(1) − g(0)] · vg(0)⊥ = 0, (15)
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where vg(0)⊥ is the vector perpendicular to vg(0). Here, η measures the (signed)
distance between u(1) and g(0), which is along vg(0). Since u is a solution of (13)
and k ∈ N, the initial point u(0) has the same phase as the last point u(1), and
the combined multi-segment BVP (5)–(15) ensures that u(1) has (approximate)
phase 1 − ν (mod 1). In practice, we should choose k ∈ N large enough such that
η < ηmax. If u(0) lies close to Γ, it will be sufficient to set k = 1. In order to
consider phase resets of large perturbations, for which u(0) starts relatively far
away, we need k > 1, to allow for sufficient time to let u converge and have u(1)
lie close to Γ.

At this stage, the multi-segment BVP (5)–(15) is a system of NDIM = 8
ordinary differential equations (for the case of a planar system), with NBC = 10
boundary conditions, and NPAR = 4 free parameters, namely, TΓ, λs, ν, and η;
the period TΓ and stable Floquet exponent λs must remain free parameters to
ensure that the discretised problem has a solution, but their variation will be
almost zero. Hence, NDIM − NBC + NPAR = 2 � 1, and one more condition is
needed to obtain a one-parameter family of solutions.

The final step in the set-up is to impose an extra condition that specifies
how u(0) moves along an arc or closed curve in the phase plane. Consequently,
since k TΓ is fixed, the orbit segment u changes, so that u(1) will move as well,
and g(0), along with vg(0) will shift accordingly. This causes a variation in ν to
maintain w(0) = g(0), and these ν-values precisely define the new phase in the
continuation run as a function of the position along the chosen arc or closed
curve.

To compute the PRC, we need to let u(0) traverse the closed curve {γϑ +

Ad | ϑ ∈ [0, 1)} obtained by the (instantaneous) perturbation of Γ in the direction
d for distance A. We can impose this relatively complicated path on u(0) by
including another system of equations to the multi-segment BVP, namely, the
BVP that defines Γ in terms of another rotated orbit segment gu. Furthermore, in
order to keep track of the phase ϑ along this path, we introduce another segment
wu that plays the same role as w in Sect. 3.1; compare with equations (5)–(6)
and (10)–(12). In other words, we extend the BVP (5)–(15) by the following
system of equations

�gu = T̂Γ F(gu), (16)

gu(1) − gu(0) = 0. (17)

�wu = (1 − ϑ) T̂Γ F(wu), (18)

wu(0) = gu(0), (19)

[wu(1) − γ0] · v⊥0 = 0. (20)

Here, we decrease ϑ from 1 to 0, during which wu grows and gu tracks γϑ . In
order for a solution to exist, the periods TΓ and T̂Γ must be two different free
parameters, although they remain constant (and equal) to within the accuracy
of the computation. The phase reset is now obtained by imposing

u(0) = gu(0) + Ad. (21)
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The multi-segment BVP (5)–(21) is now a system of dimension NDIM = 12,
with NBC = 17 boundary conditions, and NPAR = 6 free parameters, which are
TΓ, λs, ν, η, T̂Γ, and either ϑ or A. Since, NDIM − NBC + NPAR = 1, we obtain
a one-parameter solution family by continuation. As the first solution in the
continuation, we use the known solution g = w = u = gu = Γ, which starts with
the head point γ0, the associated stable linear bundle v0 that we assumed has
been pre-computed, and wu = γ0; then TΓ = T̂Γ and λs are set to their known
computed values, η = A = 0, and ν = ϑ = 1. Initially, k = 1, and one should
monitor η to make sure it does not exceed ηmax.

To obtain the PTC or PRC we first perform a homotopy step, where we fix
ϑ = 1 and vary the amplitude A until the required value is reached. This continu-
ation run produces a one-parameter family of solutions representing the effect of
a reset of varying amplitude A from the point γ0. In the main continuation run,
we then fix A and decrease ϑ until ϑ = 0, so that it covers the unit interval; the
associated solution family of the multi-segment BVP (5)–(21), hence, provides
the resulting phase ϑnew := 1 − ν (mod 1) as a function of the phase ϑold := ϑ
along the perturbed periodic orbit.

4 Illustration of the Method with a Model Example

We illustrate our method for computing a PTC with a constructed exam-
ple, namely, a parametrised version of the model introduced by Winfree [37,
Chapter 6], which we also used in [22]; it is given in polar coordinates as

{
�r = (1 − r) (r − a) r,
�ψ = −1 − ω (1 − r).

In Euclidean coordinates, the system becomes

⎧⎪⎪⎨

⎪⎪
⎩

�x = (1 −

√
x2 + y2)

(
x (
√
x2 + y2 − a) + ωy

)
+ y,

�y = (1 −

√
x2 + y2)

(
y (
√
x2 + y2 − a) − ωx

)
− x.

(22)

Note that this system is invariant under any rotation about the origin; moreover,
its frequency of rotation only depends on r =

√
x2 + y2; see [22] for details. We

now fix the parameters to a = 0 and ω = −0.5, as in [22]. Then the unit circle is
an attracting periodic orbit Γ with period TΓ = 2π and the origin is an unstable
equilibrium x∗.

4.1 Computing the PTC

We choose γ0 = (1, 0) and compute the normalised linear direction associated
with its isochron as v0 ≈ (−0.83,−0.55). As was explained in Sect. 3.2, the com-
putation is performed in two separate continuation runs: first, we apply a per-
turbation to the point γ0 in a fixed direction d, where we vary the amplitude
A from 0 to 0.75 during the homotopy step. Next, we fix A = 0.75 and apply



14 P. Langfield et al.

Fig. 1. Phase reset of system (22) at fixed γ0 in the direction d = (−1, 0) with amplitude
A ∈ [0, 0.75] (a), and continuation set-up at the three labelled points (b), (c), and (d).
Panel (b) shows the initial set-up when A = 0 and ϑnew = 1, in panel (c) the continuation
has progressed to A = 0.4 and ϑnew = ϑc ≈ 0.96, and in panel (d) A = 0.75 has been
reached and ϑnew = ϑd ≈ 0.76.

the same perturbation to each point γϑ ∈ Γ. For the purpose of visualising the
computational set-up, we choose the (somewhat unusual) direction d = (−1, 0)
and set the maximum distance along the linearised isochron to the relatively
large value of ηmax = 0.2.

The first continuation run of the multi-segment BVP (5)–(21) is illustrated in
Fig. 1. Here, the free amplitude A increases while ϑ = 1 = 0 (mod 1) is fixed and,
hence, the perturbation is always applied at γ0 and grows in size. Figure 1(a)
shows the resulting phase ϑnew as a function of A. Three points are labelled,
indicating the three stages during the continuation that are illustrated in pan-
els (b), (c) and (d). In each of these panels we show the periodic orbit Γ in black,
and the current orbit segment u of the continuation run in green. Note that Γ is
rotated here and its head point g(0) lies at the point on Γ with phase ϑnew. A
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short segment of the associated linearisation of the isochron of γϑnew is shown in
blue. We do not plot the orbit segment w that determines the value of ϑnew, but
it follows Γ from g(0) back to g(0) and then extends (approximately) along Γ to
γ0. Indeed, notice in Fig. 1(a) that ϑnew is decreasing, which means that ν > 1 is
increasing so that w becomes longer. We also do not show the orbit segments gu
and wu that determine the phase ϑ = ϑold at which the perturbation is applied,
because ϑold = 1 is fixed in this continuation run.

Figure 1(b) shows the initial set-up, with g = w = u = gu = Γ, wu = γ0, TΓ = T̂Γ
and λs set to their known values, and ν = 1, η = A = 0, with k = 1 and ϑ = 1.
The dotted line segment in Fig. 1(b) indicates the direction d of the intended
perturbation away from γ0; its length is the maximal intended amplitude A =

0.75. An intermediate continuation step when A = 0.4 is shown in Fig. 1(c). The
perturbation has pushed u(0) out along d, such that u(1) now lies (approximately)
on the linearised isochron, parametrised as g(0) + η vg(0) with 0 < η ≤ ηmax,
associated with the rotated head point g(0) = γϑc , where ϑc ≈ 0.96. Note that
the orbit segment w (not shown) has now changed from its initialisation to match
the solution to subsystem (10)–(12) with ν ≈ 1.04. Figure 1(d) illustrates the last
step of the first continuation run, when A = 0.75. The head point g(0) ∈ Γ has
rotated further to γϑd

with ϑd = 1 − ν ≈ −0.24 = 0.76 (mod 1). Notice that u(1)
lies quite far along the linearised isochron, because we allow a relatively large
distance η. The corresponding orbit segment u is determined for an integration
time of only one period, that is, for k = 1. We show this case for illustration
purposes, but in practice, it would be worth choosing a smaller value for ηmax,
so that u would be extended, and the integer multiple of TΓ set to k = 2, before
reaching A = 0.75.

The second continuation run uses the fixed perturbation of size A = 0.75
along d = (−1, 0), and varies the phase ϑ at which it is applied. Since ϑ controls
the integration time associated with the orbit segment wu, the multi-segment
BVP (16)–(20) with solution {gu,wu} and parameter T̂Γ now plays an important
role. For each ϑ, the head point gu(0) of gu lies (approximately) at γϑ ∈ Γ, and
wu represents the remaining part of Γ from γϑ to γ0; hence, the total integration
time of wu is the fraction 1 − ϑ of T̂Γ, which is equal, up to the computational
accuracy, to the period TΓ of Γ.

Figure 2 illustrates different aspects of this continuation run. As ϑold = ϑ
decreases from 1, the multi-segment BVP (5)–(21) determines the orbit segment
u with u(0) = γϑ + Ad and uses the rotated orbit segment g and w to establish the
resulting phase ϑnew = 1− ν (mod 1) of u(1). Panel (a) shows the PTC computed
for A = 0.75. Note that ν takes values in the covering space R; the output is then
folded onto the unit torus by taking ϑnew = 1−ν (mod 1), giving the solid curve in
Fig. 2. The points labelled (b) and (c) in this panel correspond to ϑold = 0.9 and
ϑold = 0.1, respectively. The continuation set-up for these two cases is shown
in the corresponding panels (b) and (c). As in Fig. 1, the periodic orbit Γ is
black and u is green. The path traced by the initial point u(0) is the magenta
dotted circle, which is Γ shifted by A = 0.75 in the direction d = (−1, 0); hence,
for fixed ϑ, the point u(0) corresponds to the perturbation of the point γϑ ∈ Γ
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Fig. 2. PTC of Γ in system (22) for d = (−1, 0) and A = 0.75 (a), and continuation
set-up at ϑold = 0.9 (b) and at ϑold = 0.1 (c) with w and wu in (d), (d1), (d2) and (e),
(e1), (e2), respectively.
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that lies horizontally to the right of u(0), as indicated by the magenta dotted
line segment. The end point u(1) lies on the linearised isochron, parametrised as
g(0) + η vg(0) with 0 < η ≤ ηmax, associated with the rotated head point of g,
which is determined by subsystem (5)–(9). The phase of this head point is given
by ϑnew = 1 − ν (mod 1), where ν is determined from subsystem (10)–(12) that
defines the orbit segment w.

Hence, the two orbit segments w and wu essentially determine the PTC, that
is, the map P : ϑold �→ ϑnew. Their x-coordinates are plotted versus time in
panel (d) for ϑold = 0.9 and in panel (e) for ϑold = 0.1, respectively, overlaid
on two copies of Γ (black curve), that is, time t runs from 0 to 4π. The further
panels (d1) and (d2) for ϑold = 0.9 and panels (e1) and (e2) for ϑold = 0.1 show w
(yellow curve) and wu (orange curve) individually, relative to the periods TΓ and
T̂Γ, respectively. Note that both w and wu end at x = 1, for t = 4π and t = 2π,
respectively, as required, but their initial points differ. As ϑ decreases from 1
to 0 during the continuation, the orbit segment wu lengthens as expected, but
note that w lengthens as well; this is due to the (near-)monotonically increasing
nature of the PTC for this example.

4.2 Loss of Invertibility

Recall that any PTC is the identity for A = 0, and invertible for sufficiently small
amplitude A of the perturbation, because its graph remains a 1:1 torus knot on
the torus parametrised by the two periodic variables ϑold and ϑnew. However,
the PTC in Fig. 2(a) for A = 0.75 is no longer near the identity: it is not injective
and, hence, not invertible.

To show how injectivity of the PTC is lost as A is increased, we consider again
model (22), but now with a = 0.25; see also [22]. Apart from the attracting unit
circle Γs = Γ with period TΓ = 2π, there exists then also a repelling circle Γu with
radius r = a = 0.25 and period 2π/(1 + ω (1 − a)) = 3.2 π; note that Γu forms the
boundary of the basins of attraction of both Γs and the equilibrium x∗ at the
origin, which is now attracting.

We consider three phase resets of Γs of the form Γs + Ad in the positive
direction d = (1, 0) and with A = 0.54, A = 0.59, and A = 0.64. Figure 3 shows the
three corresponding PTCs, the corresponding PRCs, and the perturbed cycles
Γs+Ad in increasingly darker shades of magenta as A increases in panels (a), (b),
and (c), respectively. Panel (a) shows that the first PTC for A = 0.54 is injective
and invertible. As A is increased to approximately A = 0.59, the graph has a
cubic tangency near (ϑold, ϑnew) = (0.45, 0.24), because the associated map P has
an inflection point at ϑold ≈ 0.45. For larger values of A, such as for A = 0.64,
the PTC has a local maximum followed by a local minimum and is, hence, no
longer invertible. Note from Fig. 3(b) that this qualitative change of the PTC
does not lead to a corresponding qualitative change of the PRC.

Figure 3(c) and the enlargement near the basin boundary Γu in panel (d)
show that the loss of injectivity of the PTC is due to a cubic tangency between
the perturbed cycle Γs+ Ad and the foliation of the basin of Γs by (forward-time)
isochrons; ten isochrons are shown in panel (c) and one hundred in panel (d),


