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Preface

The origin of gauge theory has been studied by scientists and historians of science
in recent decades, but a complex outlook taking into account the historical and
philosophical implications is still missing. The aim of this volume is to celebrate
hundred years of gauge theory, by considering as seminal starting point of its
history the publication of Hermann Weyl’s Raum-Zeit-Materie. In 1918 Hermann
Weyl published the first edition of his masterpiece in which he draws the conceptual
underpinnings of gauge invariance later reframed within the context of relativistic
quantum mechanics in 1929. This volume aims at stimulating the reflection upon
the origin and development of gauge theory and its scientific and philosophical
importance. Taking into account one of the central concepts of Weyl’s work,
symmetry, this volume sheds light on several aspects of Weyl’s work and gauge
theory and connects theoretical physics with other fields, including mathematics,
history and philosophy. The multidisciplinary approach proposed by the volume
makes it a unique in the landscape of previous books on the history of gauge theory.
Indeed, our scope is to discuss not only the historical and philosophical under-
pinnings of gauge theory, but also to put forward a discussion about future per-
spectives of gauge theory taking into account the state of art in both theoretical and
experimental physics.

Before resuming the content of the contributors, it is worth mentioning that our
aim is to stimulate the interaction and future collaborations among philosophers,
physicists and historians in order to grasp from a fresh perspective both Weyl’s
work and the development and rationale behind gauge theory. This is pretty much
in the spirit of Weyl’s thought. As it emerges in the contributions, Weyl strongly
supported the interaction between philosophical reflection and scientific research,
especially in the light of the great revolutions introduced by relativity theory and
Quantum Mechanics. For this reason, we decided to group the contributions in this
volume to constitute three parts focused on the historical and philosophical
underpinnings of gauge theory inspired by Weyl’s work, those devoted to Weyl’s
Raum-Zeit-Materie and the philosophical underpinning of his approach, and finally
those exploring the theoretical and mathematical physics of gauge theory.
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The first part of the volume is introduced by Norbert Straumann’s contribution
titled “Hermann Weyl’s Space-Time Geometry and the Origin of Gauge Theory
100 Years Ago”. It focuses on the historical roots of gauge theory by describing the
gradual recognition that a common feature of the known fundamental interactions is
their gauge structure. Central to his reconstruction is the work of Hermann Weyl
and Wolfgang Pauli’s early construction in 1953 of a non-Abelian Kaluza-Klein
theory. In “Gauging the Spacetime Metric—Looking Back and Forth a Century
Later”, Erhard Scholz reviews Weyl’s 1918 proposal for generalizing Riemannian
geometry by local scale gauge, its mathematical foundations, as well as his
philosophical and physical implications. Scholz reviews in detail Weyl’s disillusion
with this research programme and the rise of a convincing alternative for the gauge
idea by translating it to the phase of wave functions and spinor fields in quantum
mechanics. In mid-20th century years the question of conformal and/or local scale
gauge transformation were reconsidered in high energy physics (Bopp, Wess, et al.)
and, independently, in gravitation theory (Jordan, Fierz, Brans, Dicke). As Scholz
underlines, it is in this context that Weyl geometry attracted new interest among
different groups of physicists (Omote-Utiyama-Kugo, Dirac-Canuto-Maeder,
Ehlers-Pirani-Schild). The merit of Scholz’s contribution is to show that, albeit
modified, Weyl’s first proposal of his basic geometrical structure finds new interest
in present day studies of elementary particle physics, cosmology and philosophy of
physics. On the philosophical aspects that Weyl’s 1918 proposal implies, Sebastian
De Haro proposes an analysis regarding empirical equivalence and duality. In “On
Empirical Equivalence and Duality”, he argues that theories can be taken to be
empirically equivalent on the ground of the judicious reading: very
different-looking theories can have equivalent empirical content. The last two
contributions regarding this first part of our collection both mark the relevance of
gauge symmetry and the necessity of not taking it as mathematical redundancy.
This topic is briefly exposed in Carlo Rovelli’s contribution “Gauge Is More Than
Mathematical Redundancy” and largely debated from a conceptual standpoint by
Gabriel Catren in “Homotopic Identities and the Limits of the Interpretation of
Gauge Symmetries as ‘surplus structure’”.

In the second part of the volume, we grouped contributions that can fall under
the approach of integrating the history and philosophy of science. They are devoted
to Weyl’s Raum-Zeit-Materie, its conceptual roots and implications, as well as the
reconstruction of the debates surrounding philosophical debates. In Dennis Dieks’
contribution titled “Reichenbach, Weyl, Philosophy and Gauge”, Weyl’s approach
and phenomenologist stance is compared and contrasted with Reichenbach’s logical
empiricism. By following the guideline of the reflection upon the nature of space
and time and the revolution introduced by relativity, Dieks assesses the nature of
Weyl’s phenomenological stance, mostly influenced by Husserl’s philosophy. In
Dieks’ view, Weyl’s use of phenomenology should be seen as a case of personal
heuristics rather than as a systematic modern philosophy of physics. Also in
Thomas Ryckman’s contribution, Weyl’s philosophical views are taken into
account. In “Hermann Weyl, the Gauge Principle, and Symbolic Construction from
the ‘Purely Infinitesimal’”, Ryckman reconstructs the history of the development of
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Weyl’s 1918 formal unification of Einstein’s theory and electromagnetism. Then he
focuses on its consequences and Weyl’s purely mathematical turn in 1925–6 to Lie
theory and of course Lie groups and Lie algebras that played prominent roles in the
subsequent development of the gauge principle leading up to the Standard Model of
particle physics. In Ryckman’s view, Weyl’s predominant interest in Lie theory
stems from two complementary philosophical interests, phenomenology and an
epistemologically driven assumption of the “Nahewirkungsphysik”. Both inform
Weyl’s notion of symbolic construction, a pillar in his works from 1927 onward. In
Silvia De Bianchi’s “Weyl’s Raum-Zeit-Materie and the Philosophy of Science” the
philosophical underpinning of Weyl’s interpretation of Relativity as emerging from
the pages of Raum-Zeit-Materie is analysed in detail. In particular, the distinction
between the philosophical and the mathematical methods is underlined. De Bianchi
underscores the dichotomy and relationship between time and consciousness that is
identified by Weyl as the conceptual engine moving the whole history of Western
philosophy, and the revolutionary relevance of relativity for its representation is
investigated together with the conceptual underpinning of Weyl’s philosophy of
science. In identifying the main traits of Weyl’s philosophy of science in 1918, this
paper also offers a philosophical analysis of some underlying concepts of unified
field theory.

In the third part of our collection, the reader will find a number of contributions
exploring past and current perspectives of gauge theory in different branches of
physics, including cosmology, quantum gravity and high energy physics.

Claus Kiefer in “Space, Time, Matter in Quantum Gravity” investigates the role
that the three central concepts of Weyl’s book play in a quantum theory of the
gravitational field. He focuses on quantum geometrodynamics where the key
concept is a wave functional on the configuration space of all three geometries and
matter fields (Wheeler’s superspace). At the most fundamental level, time is absent;
the standard notion of time (and spacetime) only emerges in an appropriate semi-
classical limit. He reviews ideas about the origin of matter from topology and from
a unified quantum theory of interactions—problems which so far remain unsolved.

Friedrich Hehl and Yuri Obukhov in “Conservation of Energy-Momentum of
Matter as the Basis for the Gauge Theory of Gravitation” give a concise overview
of gauge theories of gravity. These are constructed by starting from a rigid sym-
metry that is made local. Of great relevance is the Poincaré gauge theory of gravity
for which the global Poincaré symmetry of special relativity is employed.
Therefore, they emphasize the role that Gauge theories of gravity may play in the
construction of a unified field theory.

Christian Steinwachs in “Higgs Field in Cosmology” investigates features of the
Standard Model when applied to cosmology. A central role in this is played by the
Higgs field, and Steinwachs entertains the idea that this field could lead to the
inflationary expansion of the early universe. This is, in fact, a promising idea
because no new speculative field is needed in this case. Steinwachs also elaborates
on the role of Higgs inflation in quantum cosmology and the quantum equivalence
(or non-equivalence) of different field parametrizations.
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In “The Gauge Theoretical Underpinnings of General Relativity”, Thomas
Schücker compares various structural approaches to general relativity: the field
theoretic approach, chrono- and geometric approaches and, in more detail, the
gauge theoretic approach. The latter approach exhibits many similarities with the
gauge theory underlying the Standard Model, although important differences
remain.

Finally, we decided to close our volume with a contribution by Gerard ’t Hooft,
titled “Past and Future of Gauge Theory”. ‘t Hooft is himself one of the key figures
in the historic development of gauge theories. In his contribution, he gives a
colourful and personal account of this development and of the main scientists who
were involved in it. He makes a strong case for the importance of gauge theories in
the future and speculates in particular about the fundamental role that conformal
symmetry might play in the unification of the Standard Model with gravity.
Whatever the future will bring, gauge theories will continue being of interest for
another hundred years.

Barcelona, Spain Silvia De Bianchi
Cologne, Germany
April 2020

Claus Kiefer
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Hermann Weyl’s Space-Time
Geometry and the Origin of Gauge
Theory 100 Years Ago

Norbert Straumann

Abstract One of the major developments of twentieth century physics has been the
gradual recognition that a common feature of the known fundamental interactions
is their gauge structure. In this lecture the early history of gauge theory is reviewed,
emphasizing especially Hermann Weyl’s seminal contributions of 1918 and 1929.
Wolfgang Pauli’s early construction in 1953 of a non-Abelian Kaluza-Klein theory
is described in some detail.

1 Introduction

The history of gauge theories begins with General Relativity, which can be regarded
as a non-Abelian gauge theory of a special type. To a large extent the other
gauge theories emerged in a slow and complicated process gradually from General
Relativity. Their common geometrical structure—best expressed in terms of connec-
tions of fiber bundles—is now widely recognized.

It all began with Weyl [1], who made in 1918 the first attempt to extend General
Relativity in order to describe gravitation and electromagnetism within a unifying
geometrical framework. This brilliant proposal contains the germs of all mathe-
matical aspects of non-Abelian gauge theory. For what was later called by Weyl
‘gauge’ (German: ‘Eich-’) invariance he used in this paper the word scale-invariance
(‘Maßstab-Invarianz’), meaning invariance under change of length or change of
calibration.

Einstein admired Weyl’s theory as1 “a coup of genius of the first rate” but imme-
diately realized that it was physically untenable. After a long discussionWeyl finally
admitted that his attempt was a failure as a physical theory. (For a discussion of the
intense Einstein-Weyl correspondence, see Ref. [2].) It paved, however, the way for

1German original: “Es ist ein Genie-Streich ersten Ranges”.

N. Straumann (B)
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4 N. Straumann

Fig. 1 Hermann Weyl. Source ETH-Bibliothek Zürich, Bildarchiv. Licensed under the Creative
Commons Attribution-Share Alike 3.0 Unported license

the correct understanding of gauge invariance.Weyl himself reinterpreted in 1929 his
original theory after the advent of quantum theory in a grand paper [3]. Weyl’s rein-
terpretation of his earlier speculative proposal had actually been suggested before
by London [4]. Fock [5], Klein [6], and others arrived at the principle of gauge
invariance in the framework of wave mechanics along a completely different line. It
was, however, Weyl who emphasized the role of gauge invariance as a constructive
principle from which electromagnetism can be derived. This point of view became
very fruitful for our present understanding of fundamental interactions. (For a more
extensive discussion, see [7]) (Fig. 1).
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2 Weyl’s Attempt to Unify Gravitation and
Electromagnetism

On the 1st of March 1918 Weyl writes in a letter to Einstein ([8], Vol. 8B, Doc.472)2

“These days I succeeded, as I believe, to derive electricity and gravitation from
a common source …”. Einstein’s prompt reaction by postcard indicates already a
physical objection which he explained in detail shortly afterwards. Before we come
to this we have to describe Weyl’s theory of 1918.

Weyl’s starting point was purely mathematical. He felt a certain uneasiness about
Riemannian geometry, as is clearly expressed by the following sentences early in his
paper:

But in Riemannian geometry described above there is contained a last element of geometry
“at a distance” (ferngeometrisches Element)—with no good reason, as far as I can see; it is
due only to the accidental development of Riemannian geometry from Euclidean geometry.
The metric allows the two magnitudes of two vectors to be compared, not only at the same
point, but at any arbitrarily separated points. A true infinitesimal geometry should, however,
recognize only a principle for transferring the magnitude of a vector to an infinitesimally
close point and then, on transfer to an arbitrary distant point, the integrability of themagnitude
of a vector is no more to be expected than the integrability of its direction.

After these remarks Weyl turns to physical speculation and continues as follows:

On the removal of this inconsistency there appears a geometry that, surprisingly,when applied
to the world, explains not only the gravitational phenomena but also the electrical. According
to the resultant theory both spring from the same source, indeed in general one cannot separate
gravitation and electromagnetism in a unique manner. In this theory all physical quantities
have a world geometrical meaning; the action appears from the beginning as a pure number.
It leads to an essentially unique universal law; it even allows us to understand in a certain
sense why the world is four-dimensional.

3 Weyl’s Generalization of Riemannian Geometry

In this section we describe in some detail Weyl’s geometry in a bundle theoretical
language. I prefer this, because it is common with that of non-abelian gauge theories
(on the classical level).

InWeyl’s geometry the spacetimemanifoldM is equippedwith a conformal struc-
ture, i.e., with a class [g] of conformally equivalent Lorentz metrics g (and not a defi-
nite metric as in General Relativity). For such a conformal manifold (M, [g])we can
introduce the bundle of conformal frames, which are linear frames (X0, X1, X2, X3)

for which gp(Xμ, Xν) = exp(2λ(p))ημν , where η = (ημν) = diag(−1, 1, 1, 1), for
any (and thus all) g ∈ [g]. The setW (M)of conformal frames onM can be regarded in
an obviousmanner as the total space of a principle fibre bundle,whose structure group

2German original: “Dieser Tage ist es mir, wie ich glaube, gelungen, Elektrizität und Gravitation
aus einer gemeinsamen Quelle herzuleiten …”.
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G is the group consisting of all positive multiples of homogeneous Lorentz transfor-
mations, i.e., G ∼= O(1, 3) × R+. This conformal (Weyl) bundle is a reduction of the
bundle of linear frames L(M) (and an extension of the bundle of orthonormal frames
for every g ∈ [g]). AWeyl connection is a torsion-free connection onW (M), defined
by a connection form ω. (As such it has a unique extension to L(M).) The canonical
1-form θ on W (M), i.e., the restriction of the soldering form on L(M), satisfies
Dωθ = 0, where Dω is the exterior covariant derivative belonging to ω, expressing
the vanishing torsion. Since the connection form has values in the Lie algebra G of
G, i.e., in o(1, 3) ⊕ R, we can split ω uniquely

ω = ω̂ + φ · 1, (1)

where ω̂ has values in o(1, 3) and φ is anR-valued 1-form onW (M). Thus in matrix
notation

ω̂T η + ηω̂ = 0, ωT η + ηω = 2φη. (2)

A Weyl connection can be considered as a torsion free linear connection, which
is reducible to a connection in W (M). The restriction of ω̂ to any orthonormal
frame bundle Og(M) ⊂ W (M), g ∈ [g], defines a metric connection in Og(M)with
torsion. Since the torsion of theWeyl connection vanishes, the first structure equation
reads

dθ + ω ∧ θ = 0. (3)

The curvature � = Dωω is determined by the second structure equation

� = dω + ω ∧ ω, (4)

which can be written as

� = (dω̂ + ω̂ ∧ ω̂) + dφ · 1. (5)

A Weyl space is a conformal manifold together with a Weyl connection.
The frames σ(x) = {eμ(x)} of a local section σ : U → W (M) are dual to to the

components θμ of σ∗θ,
θμ(eν) = δμ

ν . (6)

For any metric g ∈ [g] we can choose local sections such that the frames {eμ(x)}
are orthonormal with respect to g,

g = ημνθ
μ ⊗ θν . (7)

The exterior covariant derivative of g has relative to the dual basis {θμ} the compo-
nents3

3In the local equations ωα
β denotes the pull-back σ∗(ωα

β).
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(Dg)μν = dημν − ωλ
μηλν − ωλ

νηλμ

(2)
︷︸︸︷= −2Aημν, (8)

with A := σ∗φ. Thus
Dg = −2A ⊗ g. (9)

If g is replaced by g̃ = e2λg ∈ [g] then Dg̃ = −2 Ã ⊗ g̃, where Ã = A − dλ.
This leads us to the concept of a covariantWeyl derivative on a conformalmanifold

(M, [g]): A covariant Weyl derivative ∇ on a conformal manifold (M, [g]) is a
covariant torsionless derivative on the spacetime manifold M which satisfies the
condition

∇g = −2A ⊗ g, (10)

where the map A : [g] → �1(M) satisfies

A(e2λg) = A(g) − dλ. (11)

A(g) is the gauge potential belonging to g, and (11) is what Weyl called a gauge
transformation.

It is not difficult to show that there is a bijective relation between the set of
covariant Weyl derivatives on a conformal manifold (M, [g]) and the set of Weyl
connection forms on the corresponding conformal bundle.
Existence of covariant Weyl derivatives For the existence and explicit formulae
of covariant Weyl derivatives we generalize the well-known Koszul treatment of the
Levi-Civita connection. In particular we generalize the Koszul formula (see, e.g.,
[9], Eq. (15.42)) for the covariant Levi-Civita derivative ∇LC to

g(∇ZY, X) = g(∇LC
Z Y, X) + [−A(X)g(Y, Z) + A(Y )g(Z , X) + A(Z)g(X,Y )].

(12)
This equation defines ∇X in terms of g and A.

Derivation of (12). Equation (10) reads explicitly

(∇Xg)(Y, Z) = Xg(Y, Z) − g(∇XY, Z) − g(Y,∇X Z) = −2A(X)g(Y, Z). (13)

Since the torsion vanishes, i.e., ∇XY − ∇Y X − [X,Y ] = 0, we can write this as

Xg(Y, Z) = g(∇Y X, Z) + g([X,Y ], Z) + g(Y,∇X Z) + 2A(X)g(Y, Z). (14)

After cyclic permutations, we obtain as in the derivation of the standard Koszul
formula, Eq. (12).

With routine calculations one verifies that the generalized Koszul formula (12)
defines a covariant derivative with vanishing torsion, and moreover it satisfies the
defining property (10). (In these calculations one uses that the Levi-Civita derivative
has vanishing torsion and that the metricity of ∇LC is equivalent to the Ricci identity
[9], Eq. (15.39)).
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Local formula. Choose in (12) X = ∂μ, Y = ∂ν, , Z = ∂λ of local coordinates.
Then we obtain

〈∇∂μ
∂ν, ∂λ〉 = 1

2
(−gνμ,λ + gμλ,ν + gλν,μ)) + (−Aμg jk + Aνgνλ + Aλgμν). (15)

In other words, one has to perform in the Christoffel symbols of the Levi-Civita
connection the substitution

gμν,λ → gμν,λ − 2Aλgμν . (16)

Consider now a curve γ : [0, 1] → M and a parallel-transported vector field X
along γ. If l(t) is the length of X (t), measured with a representative g ∈ [g], we
obtain from (10)

l̇

l
= 1

2l2
(∇γ̇g)(X (t), X (t)) = −A(γ̇), (17)

and thus the following relation between l(p) for the initial point p = γ(0) and l(q)

for the end point q = γ(1):

l(q) = exp

(

−
∫

γ

A

)

l(p). (18)

Equation (11) implies that this relation holds for all g ∈ [g]. Therefore, the ratio of
lengths in q and p (measured with g ∈ [g]) depends in general on the connecting
path γ (see Fig. 2). The length is only independent of γ if the exterior differential of
A,

F = d A (Fμν = ∂μAν − ∂ν Aμ), (19)

vanishes.

Fig. 2 Path dependence of parallel displacement and transport of length in Weyl spacetime
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Note that (18) holds in particular for a geodesic (∇γ̇ γ̇ = 0) and X = γ̇. So the
length ot the tangent vector γ̇ does not remain constant as in the pseudo-Riemannian
case.

4 Electromagnetism and Gravitation

Turning to physics, Weyl assumes that his “purely infinitesimal geometry” describes
the structure of spacetime and consequently he requires that physical laws should
satisfy a double-invariance: 1. Theymust be invariantwith respect to arbitrary smooth
coordinate transformations. 2. They must be gauge invariant, i.e., invariant with
respect to substitutions

g → e2λg, A → A − dλ, (20)

for an arbitrary smooth function λ.
Nothing is more natural to Weyl, than identifying Aμ with the vector potential

and Fμν in Eq. (19) with the field strength of electromagnetism. In the absence
of electromagnetic fields (Fμν = 0) the scale factor exp(− ∫

γ A) in (18) for length
transport becomes path independent (integrable) and one can find a gauge such that
Aμ vanishes for simply connected spacetime regions. In this special case one is in
the same situation as in General Relativity.

Weyl proceeds to find an action which is generally invariant as well as gauge
invariant and which would give the coupled field equations for g and A. We do not
want to enter into this, except for the following remark. In his first paper [1] Weyl
proposes what we call nowadays the Yang-Mills action

S(g, A) = −1

4

∫

Tr(� ∧ ∗�). (21)

Here� denotes the curvature form and∗� itsHodge dual. Note that the latter is gauge
invariant, i.e., independent of the choice of g ∈ [g]. InWeyl’s geometry the curvature
form splits as � = �̂ + F , where �̂ is the metric piece [10]. Correspondingly, the
action also splits,

S(g, A) = −1

4

∫

Tr(�̂ ∧ ∗�̂) − 1

4

∫

F ∧ ∗F. (22)

The second term is just the Maxwell action. Weyl’s theory thus contains formally all
aspects of a non-Abelian gauge theory.4

Weyl emphasizes, of course, that the Einstein-Hilbert action is not gauge invariant.
Later work by Pauli [12] and by Weyl himself [1, 11] led soon to the conclusion that

4The integrand in Eq. (21) is in local coordinates indeed identical to the scalar density
RαβγδRαβγδ√−gdx0 ∧ . . . ∧ dx3 which is used by Weyl (Rαβγδ= the curvature tensor of the
Weyl connection).
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the action (21) could not be the correct one, and other possibilities were investigated
(see the later editions of Weyl’s classic treatise [11]).

Independent of the precise form of the actionWeyl shows that in his theory gauge
invariance implies the conservation of electric charge in much the same way as gen-
eral coordinate invariance leads to the conservation of energy and momentum.5 This
beautiful connection pleased him particularly 6 “…[it] seems tome to be the strongest
general argument in favour of the present theory—insofar as it is permissible to talk
of justification in the context of pure speculation.” The invariance principles imply
five ‘Bianchi type’ identities. Correspondingly, the five conservation laws follow in
two independent ways from the coupled field equations and may be “termed the
eliminants” of the latter. These structural connections hold also in modern gauge
theories.

4.1 Einstein’s Objection and Reactions of Other Physicists

After this sketch of Weyl’s theory we come to Einstein’s striking counterargument
which he first communicated toWeyl by postcard. The problem is that if the idea of a
nonintegrable length connection (scale factor) is correct, then the behavior of clocks
would depend on their history. Consider two identical atomic clocks in adjacentworld
points and bring them along different world trajectories which meet again in adjacent
world points. According to (21) their frequencies would then generally differ. This
is in clear contradiction with empirical evidence, in particular with the existence of
stable atomic spectra. Einstein therefore concludes (see [8], Vol. 8B, Doc. 507) 7

…(if) one drops the connection of the ds to the measurement of distance and time, then
relativity loses all its empirical basis.

Nernst sharedEinstein’s objection and demanded on behalf of theBerlinAcademy
that it should be printed in a short amendment to Weyl’s article. Weyl had to
accept this. We have described the intense and instructive subsequent correspon-
dence between Weyl and Einstein elsewhere [2] (see also Vol. 8B of [8]). As an
example, let us quote from one of the last letters of Weyl to Einstein ([8], Vol. 8B,
Doc. 669):

This [insistence] irritates me of course, because experience has proven that one can rely on
your intuition; so unconvincing as your counterarguments seem to me, as I have to admit …

5We adopt here the somewhat naive interpretation of energy-momentum conservation for generally
invariant theories of the older literature.
6German original:“…[dies] erscheint mir als eines der stärksten Argumente zugunsten der hier
vorgetragenen Theorie—soweit im rein Spekulativen überhaupt von einer Bestätigung die Rede
sein kann”.
7German original:“Lässtman den Zusammenhang des dsmitMassstab- undUhr-Messungen fallen,
so verliert die Relativitätstheorie ihre empirische Basis”.
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By the way, you should not believe that I was driven to introduce the linear differential form
in addition to the quadratic one by physical reasons. I wanted, just to the contrary, to get rid
of this ‘methodological inconsistency (Inkonsequenz)’ which has been a bone of contention
to me already much earlier. And then, to my surprise, I realized that it looked as if it might
explain electricity. You clap your hands above your head and shout: But physics is not made
this way ! (Weyl to Einstein 10.12.1918).

Weyl’s reply to Einstein’s criticism was, generally speaking, this: The real behav-
ior of measuring rods and clocks (atoms and atomic systems) in arbitrary electro-
magnetic and gravitational fields can be deduced only from a dynamical theory of
matter.

Not all leading physicists reacted negatively. Einstein transmitted a very positive
first reaction by Planck, and Sommerfeld wrote enthusiastically to Weyl that there
was “…hardly doubt, that you are on the correct path and not on the wrong one.”

In his encyclopedia article on relativity [13] Pauli gave a lucid and precise pre-
sentation of Weyl’s theory, but commented on Weyl’s point of view very critically.
At the end he states8

…In summary one may say that Weyl’s theory has not yet contributed to getting closer to
the solution of the problem of matter.

Also Eddington’s reaction was at first very positive but he soon changed his mind
and denied the physical relevance of Weyl’s geometry.

The situation was later appropriately summarized by F. London in his 1927 paper
[4] as follows:

In the face of such elementary experimental evidence, it must have been an unusually strong
metaphysical conviction that prevented Weyl from abandoning the idea that Nature would
have to make use of the beautiful geometrical possibility that was offered. He stuck to his
conviction and evaded discussion of the above-mentioned contradictions through a rather
unclear re-interpretation of the concept of “real state”, which, however, robbed his theory of
its immediate physical meaning and attraction.

In this remarkable paper, London suggested a reinterpretation of Weyl’s principle of
gauge invariance within the new quantum mechanics: The role of the metric is taken
over by the wave function, and the rescaling of the metric has to be replaced by a
phase change of the wave function.

In this context an astonishing early paper by Schrödinger [14] has to be men-
tioned, which also used Weyl’s “World Geometry” and is related to Schrödinger’s
later invention of wave mechanics. This relation was discovered by Raman and For-
man [15]. (See also the discussion by Yang [18].)

Even earlier than London, Fock [5] arrived along a completely different line at
the principle of gauge invariance in the framework of wave mechanics. His approach
was similar to the one by Klein [6].

The contributions by Schrödinger [14], London [4] and Fock [5] are commented
in [17], where also English translations of the original papers can be found. Here,
we concentrate on Weyl’s seminal paper “Electron and Gravitation”.

8“Zusammenfassend kann man sagen, dass es der Theorie von Weyl bisher nicht gelungen ist, das
Problem der Materie der Lösung näher zu bringen”.
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5 Weyl’s 1929 Classic: “Electron and Gravitation”

Shortly before his death late in 1955, Weyl wrote for his Selecta [19] a postscript to
his early attempt in 1918 to construct a ‘unified field theory’. There he expressed his
deep attachment to the gauge idea and adds (p. 192)9

Later the quantum-theory introduced the Schrödinger-Dirac potential ψ of the electron-
positron field; it carried with it an experimentally-based principle of gauge-invariance which
guaranteed the conservation of charge, and connected the ψ with the electromagnetic poten-
tials Aμ in the sameway thatmy speculative theory had connected the gravitational potentials
gμν with the Aμ, and measured the Aμ in known atomic, rather than unknown cosmological
units. I have no doubt but that the correct context for the principle of gauge-invariance is
here and not, as I believed in 1918, in the intertwining of electromagnetism and gravity.

This re-interpretationwas developed byWeyl in one of the great papers of the 20th
century [3]. Weyl’s classic does not only give a very clear formulation of the gauge
principle, but contains, in addition, several other important concepts and results—in
particular his two-component spinor theory.

The modern version of the gauge principle is already spelled out in the introduc-
tion:

The Dirac field-equations for ψ together with the Maxwell equations for the four potentials
f p of the electromagnetic field have an invariance property which is formally similar to the
one which I called gauge-invariance in my 1918 theory of gravitation and electromagnetism;
the equations remain invariant when one makes the simultaneous substitutions

ψ by eiλψ and f p by f p − ∂λ

∂x p
,

whereλ is understood to be an arbitrary function of position in four-space. Here the factor e
ch ,

where−e is the charge of the electron, c is the speed of light, and h
2π is the quantum of action,

has been absorbed in f p . The connection of this “gauge invariance” to the conservation of
electric charge remains untouched. But a fundamental difference, which is important to
obtain agreement with observation, is that the exponent of the factor multiplying ψ is not
real but pure imaginary. ψ now plays the role that Einstein’s ds played before. It seems to
me that this new principle of gauge-invariance, which follows not from speculation but from
experiment, tells us that the electromagnetic field is a necessary accompanying phenomenon,
not of gravitation, but of the material wave-field represented by ψ. Since gauge-invariance
involves an arbitrary function λ it has the character of “general” relativity and can naturally
only be understood in that context.

We shall soon enter into Weyl’s justification which is, not surprisingly, strongly
associated with General Relativity. Before this we have to describe his incorporation

9Später führte die Quantentheorie die Schrödinger-Diracschen Potentiale ψ des Elektron-Positron-
Feldes ein; in ihr trat ein aus derErfahrunggewonnenes unddieErhaltung derLadunggarantierendes
Prinzip auf, das die ψ mit den elektromagnetischen Potentialen ϕi in ähnlicher Weise verknüpft
wie meine spekulative Theorie die Gravitationspotentiale gik mit den ϕi , wobei zudem die ϕi in
einer bekannten atomaren statt in einer unbekannten kosmologischen Einheit gemessen werden. Es
scheint mir kein Zweifel, dass das Prinzip der Eichinvarianz hier seine richtige Stelle hat, und nicht,
wie ich 1918 geglaubt hatte, im Zusammenspiel von Gravitation und Elektrizität”.
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of the Dirac theory into General Relativity which he achieved with the help of the
tetrad formalism.

One of the reasons for adapting the Dirac theory of the spinning electron to
gravitation had to do with Einstein’s recent unified theory which invoked a distant
parallelism with torsion. Wigner [20] and others had noticed a connection between
this theory and the spin theory of the electron. Weyl did not like this and wanted to
dispense with teleparallelism. In the introduction he says:

I prefer not to believe in distant parallelism for a number of reasons. First my mathematical
intuition objects to accepting such an artificial geometry; I find it difficult to understand the
force that would keep the local tetrads at different points and in rotated positions in a rigid
relationship. There are, I believe, two important physical reasons as well. The loosening
of the rigid relationship between the tetrads at different points converts the gauge-factor
eiλ, which remains arbitrary with respect to ψ, from a constant to an arbitrary function
of space-time. In other words, only through the loosening the rigidity does the established
gauge-invariance become understandable.

This thought is carried out in detail afterWeyl has set up his two-component theory
in special relativity, including a discussion of P and T invariance. He emphasizes
thereby that the two-component theory excludes a linear implementation of parity
and remarks: “It is only the fact that the left-right symmetry actually appears in
Nature that forces us to introduce a second pair of ψ-components.” To Weyl the
mass-problem is thus not relevant for this.10 Indeed he says: “Mass, however, is
a gravitational effect; thus there is hope of finding a substitute in the theory of
gravitation that would produce the required corrections.”

5.1 Tetrad Formalism

In order to incorporate his two-component spinors into General Relativity, Weyl was
forced to make use of local tetrads (Vierbeine). In Sect. 2 of his paper he devel-
ops the tetrad formalism in a systematic manner. This was presumably independent
work, since he does not give any reference to other authors. It was, however, mainly
E. Cartan who demonstrated with his work [21] the usefulness of locally defined
orthonormal bases –also called moving frames– for the study of Riemannian geom-
etry.

In the tetrad formalism themetric is described by an arbitrary basis of orthonormal
vector fields {eα(x);α = 0, 1, 2, 3}. If {eα(x)} denotes the dual basis of 1-forms, the
metric is given by

g = ημνe
μ(x) ⊗ eν(x), (ημν) = diag(1,−1,−1,−1). (23)

10At the time it was thought by Weyl, and indeed by all physicists, that the 2-component theory
requires a zero mass. In 1957, after the discovery of parity nonconservation, it was found that the
2-component theory could be consistent with a finite mass. See K. M. Case, [22].
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Weyl emphasizes, of course, that only a class of such local tetrads is determined by
the metric: the metric is not changed if the tetrad fields are subject to spacetime-
dependent Lorentz transformations:

eα(x) → �α
β(x)eβ(x). (24)

With respect to a tetrad, the connection forms ω = (ωα
β) have values in the Lie

algebra of the homogeneous Lorentz group:

ωαβ + ωβα = 0. (25)

(Indices are raised and lowered with ηαβ and ηαβ , respectively.) They are determined
(in terms of the tetrad) by the first structure equation of Cartan:

deα + ωα
β ∧ eβ = 0. (26)

(For a textbook derivation see, e.g., [9], especially Sects. 2.6 and 8.5.) Under local
Lorentz transformations (24) the connection forms transform in the same way as the
gauge potential of a non-Abelian gauge theory:

ω(x) → �(x)ω(x)�−1(x) − d�(x)�−1(x). (27)

The curvature forms � = (�μ
ν) are obtained from ω in exactly the same way as the

Yang-Mills field strength from the gauge potential:

� = dω + ω ∧ ω (28)

(second structure equation).
For a vector field V , with components V α relative to {eα}, the covariant derivative

DV is given by
DV α = dV α + ωα

βV
β . (29)

Weyl generalizes this in a unique manner to spinor fields ψ belonging to representa-
tions ρ of SL(2,C):

Dψ = dψ + ρ∗(ω)ψ = dψ + 1

4
ωαβσαβψ. (30)

Here, ρ∗ denotes the induced representation of the Lie algebra. For a Dirac field σαβ

are the familiar matrices

σαβ = 1

2
[γα, γβ]. (31)

(For 2-component Weyl fields one has similar expressions in terms of the Pauli
matrices.)
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With these tools the action principle for the coupled Einstein-Dirac system can
be set up. In the massless case the Lagrangian is

L = 1

16πG
R − iψ̄γμDμψ, (32)

where thefirst term is just theEinstein-HilbertLagrangian (which is linear in�).Weyl
discusses, of course, immediately the consequences of the following two symmetries:

(i) local Lorentz invariance,
(ii) general coordinate invariance.

5.2 The New Form of the Gauge-Principle

All this is a kind of a preparation for the final section of Weyl’s paper, which has the
title “electric field”. Weyl says:

We come now to the critical part of the theory. In my opinion the origin and necessity
for the electromagnetic field is in the following. The components ψ1 ψ2 are, in fact, not
uniquely determined by the tetrad but only to the extent that they can still be multiplied
by an arbitrary “gauge-factor” eiλ. The transformation of the ψ induced by a rotation of
the tetrad is determined only up to such a factor. In special relativity one must regard this
gauge-factor as a constant because here we have only a single point-independent tetrad. Not
so in General Relativity; every point has its own tetrad and hence its own arbitrary gauge-
factor; because by the removal of the rigid connection between tetrads at different points the
gauge-factor necessarily becomes an arbitrary function of position.

In this manner Weyl arrives at the gauge-principle in its modern form and empha-
sizes: “From the arbitrariness of the gauge-factor in ψ appears the necessity of
introducing the electromagnetic potential.” The first term dψ in (30) has now to be
replaced by the covariant gauge derivative (d − i A)ψ and the nonintegrable scale
factor (19) of the old theory is now replaced by a phase factor:

exp

(

−
∫

γ

A

)

→ exp

(

−i
∫

γ

A

)

,

which corresponds to the replacement of the original gauge group R by the compact
group U (1). Accordingly, the original Gedankenexperiment of Einstein translates
now to the Aharonov-Bohm effect, as was first pointed out by Yang [16]. The close
connection between gauge invariance and conservation of charge is again uncovered.
The current conservation follows, as in the original theory, in two independent ways:
On the one hand it is a consequence of the field equations for matter plus gauge
invariance, at the same time, however, also of the field equations for the electro-
magnetic field plus gauge invariance. This corresponds to an identity in the coupled
system of field equations which has to exist as a result of gauge invariance. All this is
nowadays familiar to students of physics and does not need to be explained in more
detail.
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Much ofWeyl’s paper penetrated also into his classic book “The Theory of Groups
andQuantumMechanics” [23]. There hementions also the transformationof his early
gauge-theoretic ideas: “This principle of gauge invariance is quite analogous to that
previously set up by the author, on speculative grounds, in order to arrive at a unified
theory of gravitation and electricity. But I now believe that this gauge invariance
does not tie together electricity and gravitation, but rather electricity and matter.”
When Pauli saw the full version of Weyl’s paper he became more friendly and wrote
[24]:

In contrast to the nasty things I said, the essential part of my last letter has since been
overtaken, particularly by your paper in Z. f. Physik. For this reason I have afterward even
regretted that I wrote to you. After studying your paper I believe that I have really understood
what youwanted to do (thiswas not the case in respect of the little note in the Proc.Nat.Acad.).
First let me emphasize that side of the matter concerning which I am in full agreement with
you: your incorporation of spinor theory into gravitational theory. I am as dissatisfied as
you are with distant parallelism and your proposal to let the tetrads rotate independently at
different space-points is a true solution.

In brackets Pauli adds:

Here I must admit your ability in Physics. Your earlier theory with g′
ik = λgik was pure

mathematics and unphysical. Einstein was justified in criticizing and scolding. Now the
hour of your revenge has arrived.

Then he remarks in connection with the mass-problem

Your method is valid even for the massive [Dirac] case. I thereby come to the other side of
the matter, namely the unsolved difficulties of the Dirac theory (two signs of m0) and the
question of the 2-component theory. In my opinion these problems will not be solved by
gravitation …the gravitational effects will always be much too small.

This remark indicates a major physical problem with classical spinor fields. Soon
afterwards, beginning with Dirac’s hole theory that led to the quantization of such
fields with anticommutation relations, the problem was solved within special rela-
tivity, but remains in GR.

Many years later, Weyl summarized this early tortuous history of gauge theory in
an instructive letter [25] to the Swiss writer and Einstein biographer C. Seelig, which
we reproduce in an English translation.

The first attempt to develop a unified field theory of gravitation and electromagnetism dates
to my first attempt in 1918, in which I added the principle of gauge-invariance to that
of coordinate invariance. I myself have long since abandoned this theory in favour of its
correct interpretation: gauge-invariance as a principle that connects electromagnetism not
with gravitation but with thewave-field of the electron.—Einstein was against it [the original
theory] from the beginning, and this led to many discussions. I thought that I could answer
his concrete objections. In the end he said “Well, Weyl, let us leave it at that! In such
a speculative manner, without any guiding physical principle, one cannot make Physics.”
Today one could say that in this respect we have exchanged our points of view. Einstein
believes that in this field [Gravitation and Electromagnetism] the gap between ideas and
experience is so wide that only the path of mathematical speculation, whose consequences
must, of course, be developed and confronted with experiment, has a chance of success.
Meanwhile my own confidence in pure speculation has diminished, and I see a need for a
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closer connection with quantum-physics experiments, since in my opinion it is not sufficient
to unify Electromagnetism and Gravity. The wave-fields of the electron and whatever other
irreducible elementary particles may appear must also be included.

Independently of Fock [26] also incorporated theDirac equation intoGeneral Rel-
ativity by using the same method. On the other hand, Tetrode [27], Schrödinger [28]
and Bargmann [29] reached this goal by starting with space-time dependent γ-
matrices, satisfying{γμ, γν} = 2 gμν . A somewhat later work by Infeld et al. [30]
is based on spinor analysis.

6 Gauge Invariance and QED

Gauge invariance became a serious problem when Heisenberg and Pauli began to
work on a relativistically invariantQuantumElectrodynamics that eventually resulted
in two important papers “On the Quantum Dynamics of Wave Fields” [31, 32].
Straightforward application of the canonical formalism led, already for the free elec-
tromagnetic field, to nonsensical results. Jordan and Pauli on the other hand, pro-
ceeded to show how to quantize the theory of the free field case by dealing only with
the field strengths Fμν(x). For these they found commutation relations at different
space-time points in terms of the now famous invariant Jordan-Pauli distribution that
are manifestly Lorentz invariant.

The difficulties concerned with applying the canonical formalism to the electro-
magnetic field continued to plague Heisenberg and Pauli for quite some time. By
mid-1928 both were very pessimistic, and Heisenberg began to work on ferromag-
netism.11 In fall of 1928 Heisenberg discovered a way to bypass the difficulties. He
added the term − 1

2ε(∂μAμ)2 to the Lagrangian, in which case the component π0 of
the canonical momenta

πμ = ∂L

∂(∂0Aμ)

does no more vanish identically (π0 = −ε∂μAμ). The standard canonical quantiza-
tion scheme can then be applied. At the end of all calculations one could then take
the limit ε → 0.

In their second paper, Heisenberg and Pauli stressed that the Lorentz condition
cannot be imposed as an operator identity but only as a supplementary condition

11Pauli turned to literature. In a letter of 18 February 1929 he wrote from Zürich to Oskar Klein:
“For my proper amusement I then made a short sketch of a utopian novel which was supposed
to have the title ‘Gulivers journey to Urania’ and was intended as a political satire in the style of
Swift against present-day democracy. [...] Caught in such dreams, suddenly in January, news from
Heisenberg reached me that he is able, with the aid of a trick ... to get rid of the formal difficulties
that stood against the execution of our quantum electrodynamics” [31].
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selecting admissible states. This discussion was strongly influenced by a paper of
Fermi from May 1929.

For this and the further main developments during the early period of quantum
field theory, we refer to Chap.1 of [33].

7 On Pauli’s Invention of Non-Abelian Kaluza-Klein
Theory in 1953

There are documents which show that Wolfgang Pauli constructed in 1953 the first
consistent generalization of the five-dimensional theory of Kaluza, Klein, Fock and
others to a higher dimensional internal space. Because he saw no way to give masses
to the gauge bosons, he refrained from publishing his results formally. This is still a
largely unknown chapter of the early history of non-Abelian gauge and Kaluza-Klein
theories (Fig. 3).

Fig. 3 Wolfgang Pauli
around 1956. Source
ETH-Bibliothek Zürich,
Bildarchiv. Licensed under
the Creative Commons
Attribution-Share Alike 3.0
Unported license


