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Preface to the Second Edition

In this second edition, I have added new six chapters (Chaps. 17-22) and three
Appendices (A.7-A.9) to the first edition (which spanned Chaps. 1-16 and
Appendices A.1-A.6), together with correcting all known misprints and other errors
in the first edition. Furthermore, I have made minor modifications to some parts
of the first edition, in line with the additional chapters and appendices.

The chapters added in this second edition are as follows:

17. Advanced Matrix Operations

18. Exploratory Factor Analysis (Part 2)

19. Principal Component Analysis versus Factor Analysis
20. Three-way Principal Component Analysis

21. Sparse Regression Analysis

22. Sparse Factor Analysis

which form Part V (Advance Procedures) following Parts I-IV.

Chapter 17 serves as a mathematical preparation for the following chapters. In
Chap. 17, the Moore—Penrose (MP) inverse in particular is covered in detail,
emphasizing its definition through singular value decomposition (SVD). I believe
that the MP inverse is of secondary importance among matrix operations, with SVD
being of primary importance, as the SVD-based definition of the MP inverse allows
us to easily derive its properties and various matrix operations. In this chapter, we
also introduce an orthogonal complement matrix, as it is foreseeable that the need
for this matrix will increase in multivariate analysis procedures.

Chapter 18 is titled “Exploratory Factor Analysis (Part 2)”, while “(Part 1)” was
added to the title of Chap. 12 in the first edition. The contents of Chap. 12 remain
unchanged in this second edition, but the exploratory factor analysis (EFA) in
Chap. 18 is of a new type, i.e., the EFA procedure formulated as a matrix
decomposition problem. This differs from EFA based on the latent variable model
in Chap. 12. To emphasize the difference, the former (new) EFA is referred to as
matrix decomposition FA (MDFA), while the latter is called latent variable FA
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(LVFA) in Chap. 18. Its addition owes to recent developments after the publication
of the first edition, as studies of MDFA advanced rapidly. I believe that MDFA is
generally superior to LVFA in that the former makes the essence of FA more
transparent.

In Chap. 19, answers are given to the question of how solutions from principal
component analysis (PCA) and FA differ. No clear answer to this question is found
in other books, to the best of my knowledge. The answers in Chap. 19 also are
owing to advances in MDFA studies, with the MDFA formulation allowing for
straightforward comparisons to be made between FA and PCA.

Three-way principal component analysis (3WPCA) is treated in Chap. 20.
3WPCA refers to a specially modified PCA designed for three-way data sets. The
given example is a data array of inputs x outputs x boxes, whose elements are the
magnitudes of output signals elicited by input signals for multiple black boxes.
Three-way data are often encountered in various areas of sciences, and as such
3WPCA is a useful dimension reduction methodology. Its algorithms are very
matrix-intensive and suitably treated in this book.

Sparse estimation procedures are introduced in Chaps. 21 and 22. Here, sparse
estimation refers to estimating a number of parameters as zeros. Such procedures
are popular topics in the field of machine learning. This field can be defined as
learning attained by machines (in particular computers) as opposed to humans or
living organisms. Statistical analysis procedures are useful methodologies for
machine learning. Sparse estimation is also I believe a key property of human
learning: our perception performs sparse estimation too in that usually we only
cognize useful signals, neglecting useless ones as “zeros”. In this respect, it is very
important to enable machines to perform sparse estimation, as a complement to
humans. In Chap. 21, sparse regression analysis procedures are described, including
Tibshirani’s (1996) procedure called lasso which spurred the developments in
sparse estimation. Finally, sparse factor analysis (FA) procedures are introduced in
Chap. 22.

The Appendices added in this second edition are as follows:

A.7. Scale Invariance of Covariance Structure Analysis
A.8. Probability Densities and Expected Values with EM Algorithm
A.9. EM Algorithm for Factor Analysis.

Though the scale invariance in A.7 had been described with short notes in the first
edition, the notes were found too short and insufficient. Thus, the scale invariance is
described in more detail in Appendix A.7: Notes 9.3 and 10.2 in the first edition
have been expanded and moved to A.7 in this edition. The new Appendix A.9 is
necessary for explaining one of the two sparse FA procedures in Chap. 22 and is
also useful for deepening the understanding of the confirmatory and exploratory FA
treated in Chaps. 10 and 12. The foundations of the algorithm in A.9 are introduced
in the preceding new Appendix A.8. Further, this A.8 serves to deepen the
understanding of the treatment in Chap. 8.
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In the first edition, some parts of the bibliographical notes and exercises were
provided to allow readers to extend their understanding beyond the scope covered in
that edition. Such parts have become unnecessary in the second edition, as the
advanced contents are now described in the additional chapters. Hence, sections
of the bibliographical notes and exercises related to the new chapters (Chaps. 17-22)
have been deleted or moved to the relevant chapters in the second edition.

Yutaka Hirachi of Springer has encouraged me for publishing this revised ver-
sion, as well as when I prepared the drafts for the first edition. I am most grateful to
him. I am also thankful to the reviewers who read through drafts of this book.

Kyoto, Japan Kohei Adachi
February 2020
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A set of multivariate data can be expressed as a table, i.e., a matrix, of individuals
(rows) by variables (columns), with the variables interrelated. Statistical procedures
for analyzing such data sets are generally referred to as multivariate data analysis.
The demand for this kind of analysis is increasing in a variety of fields. Each
procedure in multivariate data analysis features a special purpose. For example,
predicting future performance, classifying individuals, visualizing inter-individual
relationships, finding a few factors underlying a number of variables, and exam-
ining causal relationships among variables are included in the purposes for the
procedures.

The aim of this book is to enable readers who may not be familiar with matrix
operations to understand major multivariate data analysis procedures in matrix
forms. For that aim, this book begins with explaining fundamental matrix calcu-
lations and the matrix expressions of elementary statistics, followed by an intro-
duction to popular multivariate procedures, with chapter-by-chapter advances in the
levels of matrix algebra. The organization of this book allows readers without
knowledge of matrices to deepen their understanding of multivariate data analysis.

Another feature of this book is its emphasis on the model that underlies each
procedure and the objective function that is optimized for fitting the model to data.
The author believes that the matrix-based learning of such models and objective
functions is the shortest way to comprehend multivariate data analysis. This book is
also arranged so that readers can intuitively capture for what purposes multivariate
analysis procedures are utilized; plain explanations of the purposes with numerical
examples precede mathematical descriptions in almost all chapters.

The preceding paragraph featured three key words: purpose, model, and
objective function. The author considers that capturing those three points for each
procedure suffices to understand it. This consideration implies that the mechanisms
behind how objective functions are optimized must not necessarily be understood.
Thus, the mechanisms are only described in appendices and some exercises.

ix
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This book is written with the following guidelines in mind:

(1) Not using mathematics except matrix algebra
(2) Emphasizing singular value decomposition (SVD)
(3) Preferring a simultaneous solution to a successive one.

Although the exceptions to (1) are found in Appendix A.6, where differential
calculus is used, and in some sections of Part III and Chap. 15, where probabilities
are used, those exceptional parts only occupy a limited number of pages; the
majority of the book is matrix-intensive. Matrix algebra is also exclusively used for
formulating the optimization of objective functions in Appendix A.4. For
matrix-intensive formulations, ten Berge’s (1983, 1993) theorem is considered to be
the best starting fact, as found in Appendix A.4.1.

Guideline (2) is due to the fact that SVD can be defined for any matrix, and a
number of important properties of matrices are easily derived from SVD. In the
former point, SVD is more general than eigenvalue decomposition (EVD), which is
only defined for symmetric matrices. Thus, EVD is only mentioned in Sect. 6.2.
Further, SVD takes on an important role in optimizing trace and least squares
functions of matrices: The optimization problems are formulated with the combi-
nation of SVD and ten Berge’s (1983, 1993) theorem, as found in Appendix A.4.2
and Appendix A.4.3.

Guideline (3) is particularly concerned with principal component analysis

(PCA), which can be formulated as minimizing ||X — FA’||2 over PC score matrix
F and loading matrix A for a data matrix X. In some of the literature, PCA is
described as obtaining the first component, the second, and the remaining com-
ponents in turn (i.e., per column of F and A). This can be called a successive
solution. On the other hand, PCA can be described as obtaining F and
A matrix-wise, which can be called a simultaneous solution. This is preferred in this
book, as the above formulation is actually made matrix-wise, and the simultaneous
solution facilitates understanding PCA as a reduced rank approximation of X.
This book is appropriate for undergraduate students who have already learned
introductory statistics, as the author has used preliminary versions of the book in a
course for such students. It is also useful for graduate students and researchers who
are not familiar with the matrix-intensive formulations of multivariate data analysis.
I owe this book to the people who can be called the “matricians” in statistics,
more exactly, the ones taking matrix-intensive approaches for formulating and
developing data analysis procedures. Particularly, I have been influenced by the
Dutch psychometricians, as found above, in that I emphasize the theorem by Jos
M. F. ten Berge (Professor Emeritus, University of Groningen). Yutaka Hirachi of
Springer has been encouraging me since I first considered writing this book. I am
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most grateful to him. I am also thankful to the reviewers who read through drafts of
this book. Finally, I must show my gratitude to Yoshitaka Shishikura of the pub-
lisher Nakanishiya Shuppan, as he readily agreed to the use of the numerical
examples in this book, which I had originally used in that publisher’s book.

Kyoto, Japan Kohei Adachi
May 2016
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Part 1
Elementary Statistics with Matrices

This part begins with introducing elementary matrix operations, followed by
explanations of fundamental statistics with their matrix expressions. These initial
chapters serve as preparation for learning the multivariate data analysis procedures
that are described in Part II and thereafter.



Chapter 1 )
Elementary Matrix Operations I

The mathematics for studying the properties of matrices is called matrix algebra or
linear algebra. This first chapter treats the introductory part of matrix algebra
required for learning multivariate data analysis. We begin by explaining what a
matrix is, in order to describe elementary matrix operations.

In later chapters, more advanced properties of matrices are described, where
necessary, with references to Appendices for more detailed explanations.

1.1 Matrices

Let us note that Table 1.1 is a 6 teams X 4 items table. When such a table (i.e., a
two-way array) is treated as a unit entity and expressed as

0.617 731 140 3.24
0.545 680 139 4.13
0.496 621 143 3.68
0.493 591 128 4.00 |’
0.437 617 186 4.80
0.408 615 184 4.80

this is called a 6 (rows) X 4 (columns) matrix, or a matrix of 6 rows by 4 columns.
“Matrices” is the plural of “matrix”. Here, a horizontal array and a vertical one are
called a row and a column, respectively. For example, the fifth row of A is “0.437,
617, 0.260, 4.80”, while the third column is “140, 139, 143, 128, 186, 184”.
Further, the cell at which the fifth row and third column intersect is occupied by
186, which is called “the (5,3) element”. Rewriting the rows of a matrix as columns
(or its columns as rows) is referred to as a transpose. The transpose of X is denoted
as X"

© Springer Nature Singapore Pte Ltd. 2020 3
K. Adachi, Matrix-Based Introduction to Multivariate Data Analysis,
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4 1 Elementary Matrix Operations

Table 1.1 Averages of the Team Item

Wk [ [ [ea
Tigers 0.617 731 140 3.24
Dragons 0.545 680 139 4.13
BayStars 0.496 621 143 3.68
Swallows 0.493 591 128 4.00
Giants 0.437 617 186 4.80
Carp 0.408 615 184 4.80

0.617 0.545 0.496 0.493 0.437 0.408
731 680 621 591 617 615

I
X = 140 139 143 128 186 184
324 413 368 4.00 4.80 4.80
Let us describe a matrix in a generalized setting. The array of a; (i = 1,2, ..., n;
j=1,2, ..., m)arranged in n rows and m columns, i.e.,
apjp ap - Qim
ay axp - Qo
A= , (1.1)
apl  ap2 o Apm

is called an n x m matrix with a; its (i, j) element. The transpose of A is an
m X n matrix

apiy  dzr ot dpl

, dapp daxp - dp
A= T T (1.2)

Aim  Am - Apm

The transpose of a transposed matrix is obviously the original matrix, with
(A" = A.

The expression of matrix A as the right-hand side in (1.1) takes a large amount
of space. For economy of space, the matrix A in (1.1) is also expressed as

A = (ay), (1.3)

using the general expression a;; for the elements of A. The statement “We define an
n X m matrix as A = (a;)” stands for the matrix A being expressed as (1.1).
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1.2 Vectors

A vertical array,

aj
a

a=| .|, (1.4)
ay

is called a column vector or simply a vector. In exactness, (1.4) is said to be an
n x 1 vector, since it contains n elements. Vectors can be viewed as a special case
of matrices; (1.4) can also be called an n X 1 matrix. Further, a scalarisa 1l x 1
matrix. The right side of (1.4) is vertically long, and for the sake of the economy of
space, (1.4) is often expressed as

a=la,a,...,a,) ora =lay,a,... a), (1.5)

using a transpose. A horizontal array as a’ is called a row vector.
We can use vectors to express a matrix: by using n x 1 vectors

. ~ /
a; = [alj,azj, .. .,anj] ,J=1,2,...,m, and m x 1 vectors a; = [a;1,apn,. - ., Q| s
i=1,2, ..., n, and the matrix (1.1) or (1.3) is expressed as
~/
~,1
a, o .,
A=la,a,..,a,)=| | =[a,a,...,3,] = (g). (1.6)
a,

In this book, a bold uppercase letter such as X is used for denoting a matrix, a
bold lowercase letter such as x is used for a vector, and an italic letter (not bold)
such as x is used for a scalar. Though a series of integers has so far been

expressed as i = 1, 2, ..., n, this may be rewritten as i = 1, ..., n, omitting 2 when

it obviously follows 1. With this notation, (1.1) or (1.6) is rewritten as
aig v Aim

A= | =la,...,a, =a,.. a3,
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1.3 Sum of Matrices and Their Multiplication by Scalars

The sum of matrices can be defined when they are of the same size. Let matrices
A and B be equivalently n x m. Their sum A + B yields the n x m matrix, each of
whose elements is the sum of the corresponding ones of A = (a;;) and B = (b;): The
sum is defined as

A+B:(dij+bij), (17)

3 -2 6

2 0 _2] and

using the notation in (1.3). For example, when X:[

2 1 -9
=[5 3

342 241 6-97] [5 -1 -3
X+Y_{8—7 042 —2—3}_[1 2 —5]'

The multiplication of matrix A = (a;) by scalar s is defined as all elements of
A being multiplied by s:

sA = (s x ay), (1.8)

8§ -2 6
-5 0 =3

using the notation in (1.3). For example, when Z = [

—0122{ —0.1x8 —01x(-2) —01x6 ]
' —0.1x(=5) —0.1x0 —0.1x(=3)
_[-08 02 —06
_{0.5 0 0.3}

The sum of the matrices multiplied by scalars is defined simply as the combi-
nation of (1.7) and (1.8):

VA +wB = (va; + wby). (1.9)

4 -2 6 2 1 -9
Forexample,whenX—{8 0 _2} andY—[_7 2 _3},

o.5x+(—2)Y:[24 -1-2 3+18]:[2 -3 21}

4414 0-4 —-1+46 18 —4 5
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Obviously, setting v = 1 and w = —1 in (1.9) leads to the definition of the matrix

difference A — B.
The above definition is generalized as

K K
kaAk = V1A1 + - +VKAK = (Z vka,jk>, (110)

k=1 k=1

where Ay, ..., Ak are of the same size and a;; is the (i, j) element of A, (k = 1, ..., K).

1.4 Inner Product and Norms of Vectors

The inner product of the vectors a = [ay, ..., a,,]' and b = [by, ..., b,,,]' is defined as
by m

a’b:b’a: [al,...7a,,,] :a1b1—|— +ambm:Zakbk. (lll)
bm k=1

Obviously, this can be defined only for the vectors of the same size. The inner
product is expressed as a'b or b'a, i.e., the form of a transposed column vector (i.e.,
row vector) followed by a column vector, so as to be congruous to the matrix
product introduced in the next section.

The inner product of the identical vectors a and a is in particular called the
squared norm of a and denoted as |[al|*:

aj m
lal’=a'a=lai,...an'| | | =ai+ - +ay =) a. (1.12)

Aam

The square root of ||al|, that s, |

...y Qy,]" with
lal| = /a3 + - +a2. (1.13)

It is also called the length of a, for the following reason. If m = 3 with a = [ay, a,,
a3]’ and a is viewed as the line extending from the origin to the point whose
coordinate is [ay, as, a3]’, as illustrated in Fig. 1.1: (1.13) expresses the length of the
line. It also holds for m = 1, 2. If m > 3, the line cannot be depicted or seen by
those of us (i.e., the human beings living in three-dimensional world), but the length
of a is also defined as (1.13) for m > 3 in mathematics (in which the entities that do
not exist in the real world are also considered if they are treated logically).

a|| is simply called the norm of the vector a = [a;,
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Fig. 1.1 Graphical [ai, ..., am]’
representation of a vector
a
[0, ..., 0]
1.5 Product of Matrices
Let n x m and m X p matrices be defined as
all ayy o aip bll blp
Alif=1: ¢ i fadB=[bibl=| o1
a;z (27 BN bml T bmp
blj
respectively, with a; = [a;1,...,ap](i=1,...,n) andb;= | : |[(i=1,...,p).
bmj
Then, the post-multiplication of A by B is defined as
alb; --- alb,
AB = |: L = (ajb)), (1.14)
ab, --- ab,

using the inner products of the row vectors of the preceding matrix A and the
column vectors of the following matrix B. The resulting matrix AB is the
n X p matrix whose (i, j) element is the inner product of the ith row of A and the jth
column of B:

a;bj = [aila . ~;aim] = ailblj * + Qi Zazkbk] (115)
L Dmj
e (] (2 —4] 4, -3 1
For example, if A = [3'2_ = [1 . ],B— [by by] = [ ) _S}Jhen
AB = [
a'b, a2b2 (=3)+7x2 1 x147x(=5)

alb, abz] [ 3)+(—4)x2 2><1+(—4)><(—5)}
9}

[
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As found above, the matrix product AB is defined only when the following
holds:

the number of columns in A = the number of rows in B. (1.16)
The resulting matrix AB is
(the number of rows in A) x (the number of columns in B). (1.17)
Thus, the product is sometimes expressed as

A B = C, or,moresimply, ,A,B, =,C,, (1.18)

nXmmxp nxp

with which we can easily verify (1.16) and (1.17). If n = p, we can define products
AB and BA. Here, we should note

AB +# BA, (1.19)

except for special A and B, which is different from the product of scalars with
st = ts, the inner product (1.11), and that of scalar s and matrix A with

SA =A Xs. (1.20)

For this reason, we call AB “the post-multiplication of A by B” or “the pre-
multiplication of B by A”, so as to clarify the order of the matrices.

Here, four examples of matrix products are presented as follows:

3 5 4
Ex.l.ForX:{_zz 3 4l]andY: -1 0 -2,
0 6 O
XY — 2x343x(=1)+(-1)x0 2x543%x04+(=1)x6 2x44+3x(-2)+(-1)x0
_{72><3+0><(71)+4><0 —2x54+0x04+4%x6 —2x440x(=2)+4x%x0
(3 4 2
_[—6 14 —8}'
_23 _01 -4 1
Ex. 2. For F = andA=| 6 -3/,
1 3 5 5
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T2 -1
pa_ |30 [4 6 2]
1 3|l1 =35
2 -3
2x(—4)+(-1)x1  2x64(=1)x(=3) 2x2+(-1)x5
-3 x(-4)+0x1 -3 x6+4+0x (-3) —3x2+0x5
B 1 x(—4)+3x1 1 x6+3x(=3) 1x2+3x%x5
| —2X(—4)+(-3)x1 —2x6+(-3)x(-3) —-2x2+(-3)x5
-9 15 -1
12 —-18 -6
-t =3 17 |
LS -3 -19

where it should be noted that A has been transposed in the product.

Ex. 3. In statistics, the product of a matrix and its transpose is often used.

—4 1
For A= | 6 -3/, the post-multiplication of A by A’, which we denote
2 5
by S, is
(—4)* 412 —4x64+1x(=3) —4x2+1x5
S=AA"= |6 x (—4)+(-3) x 1 6% + (=3)? 6x2+(=3)x5
2x(-4)+5x1 2x6+4+5x(=3) 22452
17 27 -3
=|-27 45 -3
| -3 -3 29

The pre-multiplication of A by A’, which we denote by T, is

(—4)% + 6% +22 (=4) X 146 x (=3)+2 x5
I x (—4)+(=3) x 6+5x2 124 (=3)° + 5

(56 —12
S l-12 35 |

Ex. 4. The product of vectors is a_special case of that of matrices:

2 -2
Foru=|—-1|andv= | 3

3 —4

T=AA=

s
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the inner product yields a scalar as

uv=2x(=2)+(-1)x3+3x (—4) = —19,

but the post-multiplication of 3 x 1 vector u by 1x 3 v’ gives a 3 X 3 matrix with

2 2% (-2) 2x3  2x(-4)
w' = | —1|[-2 3 —4]=|(-1)x(=2) (-)x3 (=1)x(-4)
3 3x(=2)  3x3  3x(-4)
4 6 -8
=2 -3 4
-6 9 -12

1.6 Two Properties of Matrix Products
The transposed product of matrices satisfies
(AB) = B'A’; (ABC) = C'B'A’ (1.21)

Let A and B be matrices of size n x m; let C and D be those of m x [. Then, the
product of their sums multiplied by scalars s, t, u, and v satisfies

(sA +1B)(uC 4+ vD) = suAC + svAD + uBC + tvBD. (1.22)

1.7 Trace Operator and Matrix Norm

A matrix with the number of rows equivalent to that of columns is said to be

Si1 S12 S
. S21 S22t S

square. For a square matrix S= | . . . |, the elements on the
Snl Sn2 S

diagonal, i.e., 1y, ..., Su., are called the diagonal elements of S. Their sum is called

a trace and is denoted as

trS = 511 + 852+ - + S (123)
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Obviously,
rS’ = S (1.24)

The trace fulfills important roles when it is defined for the product of matrices.
=~/

a; an o dim
Let us consider A=fa;---a,]=|:!|=/]"! : : and B=
ﬁ; apl  cc Apm
b, by -+ by,
by b= | : | = : : - |. Then, AB and BA are n x n and
b, byt -+ b
m X m square matrices, respectively, for which traces can be defined, with
ajb, # ba #
AB = . and BA = .
# a b, # f):nam

Here, # is used for all elements other than the diagonal ones. In this book, the
matrix product precedes the trace operation:

trAB = tr(AB). (1.25)

Thus,

tI'AB = ﬁ;bl = Z (ailbli + - +al~mbmi) = aijbﬁ, (126)

i=1 i=1 i=1 j=1
m

wBA = b = ij (bjayj+ -+ +bjany) = Z bjiaij = Xn: > aib.

j=1 j=1 j=1 i=1 i=1 j=1

=

(1.27)
Both are found to be equivalent, i.e.,
trAB = trBA, (1.28)

and express the sum of a;b;; over all pairs of i and j.

It is an important property of the trace that (1.28) implies

trABC = trCAB = trBCA; trABCD = trBCDA = trCDAB = t¢DABC. (1.29)
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Using (1.21), (1.28), and (1.29), we also have

tr(AB)" = rB'A’ = trA’B’; tr(ABC)' = trC'B’'A’ = rA'C'B’ = tB'A’C’. (1.30)

Substituting A" into B in (1.25), we have trAA’ = rA’'A = 71| ™" | a; which
is the sum of the squared elements of A. This is called the squared norm of A, i.e.,
the matrix version of (1.12), and is denoted as ||A||*:

A|*= trAA" = rtA'A = > "a;. (1.31)

i=1 j=1

This is also referred to as the squared Frobenius norm of A, with Frobenius (1849—
1917) a German mathematician. The squared norm of the sum of matrices weighted
by scalars is expanded as

[sX + 1Y]]> = tr(sX + 1Y) (sX + 1Y)
= tr(s"X'X + XY + 15Y'X + £Y'Y)
= s2uX'X + sttrX'Y + setrX'Y + Y'Y (1.32)
= strX'X + 2sttrX'Y + Y'Y
= &2||X]|> + 2s1trX'Y + 22| Y%

1.8 Vectors and Matrices Filled with Ones or Zeros

A zero vector refers to a vector filled with zeros. The p x 1 zero vector is denoted
as 0, using the boldfaced zero:

0,=1.1. (1.33)
0
A zero matrix refers to a matrix whose elements are all zeros. In this book, the
n X p zero matrix is denoted as ,0,, using the boldfaced “O”:

0O --- 0
0,= 0 ] (1.34)
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A vector of ones refers to a vector filled with ones. The n x 1 vector of ones is
denoted as 1,,, with the boldfaced one:

1
L=1.1 (1.35)

The n x p matrix filled with ones is given by

1 - 1
;- .
Ll =1: ... 1. (1.36)
1 - 1
1.9 Special Square Matrices
A square matrix S = (s;;) satisfying
S= Sl7 i‘e., Sij = Sji (137)
is said to be symmetric. An example of a 3 x 3 symmetric matrix is
2 -4 9
S=|—-4 6 —7|. The products of a matrix A and its transpose, AA’ and
9 -7 3

A'A, are symmetric; using (1.21), we have
(AA")'= (AY’A’ = AA’and (A'A)'= A/(A)'= A'A. (1.38)

This has already been exemplified in Ex. 3 (Sect. 1.5).
The elements of A = (a;;) with i # j are called the off-diagonal elements of A. A
square matrix D whose off-diagonal elements are all zeros,

d 0 - 0
p— |0 = 0 ] (1.39)
: 0 . 0
0 -~ 0 d

is called a diagonal matrix. The products of two diagonal matrices are easily
obtained as



