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Preface
Time flies! Thirteen years ago, as a research professor at
Shanghai Institute of Microsystem and Information
Technology (SIMIT), Chinese Academy of Sciences (known
as Shanghai Institute of Metallurgy by that time), I was
charged with a challenging mission, to start a team on
superconducting electronics research. From the institute, it
was a quite straightforward decision, as the whole institute
had been gradually shifting from materials science
research toward electronics and systems. And for myself, it
was not so easy to start something new at the age over 40,
with a strong background on superconducting materials,
some basic knowledge on electronics but little on
superconducting electronics. Just when I was wondering
how to do that, Prof. P.H. Wu, a member of Chinese
Academy of Sciences, a famous professor in the field of
superconducting electronics in China, who had worked at
Research Center Julich (FZJ) Germany, recommended me
Dr. Yi Zhang, a reputable German scientist at FZJ, born in
Shanghai, acknowledged globally for his excellent research
on the development of high Tc radio‐frequency
superconducting quantum interference devices (high
temperature superconducting [HTS] rf SQUIDs), their
readout electronics and systems. I contacted FZJ without
hesitation, inviting Yi to act as a consultant to our first
project on SQUID‐based Magnetocardiography (MCG)
system. This request letter opened the door of cooperation
between SIMIT and FZJ. To date, our cooperation has
developed from a project collaboration between two
professors to the establishment of two joint research
laboratories and further to a virtual joint research institute.
The cooperation also has been extended from



superconductivity to topological insulators and quantum
computing.
After some formal procedures, I got the approval of my
request letter from Prof. Dr. Joachim Treusch, the former
chairman of the board of directors of FZJ, Prof. Dr.
Sebastian Schmidt, a current member of the board of
directors of FZJ, and Prof. Dr. Andreas Offenhäusser,
director of IBN2 (Institute of Bio and Nanoscience, now
Institute of Biological Information Processing), which Yi
belonged to. Besides the support from the top
management, the involvement of Prof. Dr. Hans‐Joachim
Krause, team leader of magnetic sensors in IBN2, was
another important step for our successful cooperation.
Our joint research on dc SQUID started from the
development of asymmetrical SQUID characteristics, in an
attempt to simply SQUID readout and system design. The
adventure was full of excitement and frustration. Early in
the morning, we sat together, planning the work of the day,
late in the evening, we summarized our results from the
notes we made during the day, sometimes exciting
progress, sometimes frustrating results, and sometimes
confusing results which we could not describe easily. I still
remember how excited we were when we first observed the
asymmetrical flux‐current characteristics of a SQUID on
the oscilloscope, and I remembered as well how much we
were frustrated when we learnt that the desired
asymmetrical characteristics did not lead to the lower noise
we had sought for so long. The notes piled up day after day,
getting thicker and thicker, we called them “Rabe's Diary.”
After numerous discussions back and forth, we succeeded
in interpreting our results, which led to our first joint
publication and our joint patent on the so‐called “SQUID
Bootstrap Circuit,” and to many other joint publications in
the following 10 more years.



The SQUID research was more difficult than we first
thought because setting up SQUID systems for applications
requires the involvement of people from several different
disciplines. A complete understanding for SQUID systems
needs comprehensive knowledge not only in quantum
physics and low‐temperature physics but also in material
science and electronics engineering. In fact, electrical or
electronics engineers are always needed for system
development. Therefore, it is very important to establish a
common language that is easily accessible for all people.
That was how we got the idea to write this book.
Yi Zhang contributed most to writing of this book, with his
experience in SQUID research for 34  years, including more
than 10 years of joint research with SIMIT. We have aimed
to write this book in a way that is easily understandable for
engineers and students, in order to overcome the
formidable barrier of “quantum” physics. In this book, e.g.
dc SQUIDs are simply treated as resistor‐like elements,
which are modulated by the magnetic flux. We hope that
this book will be appreciated by all people interested in
developing and working with SQUIDs and SQUID systems.
By inviting engineers into the SQUID “family,” we will have
a better chance to transform SQUID from a laboratory toy
to an enabling technology that will eventually shape our
life.
This book is largely a documentation of the joint
achievements accomplished in the cooperation between
SIMIT and FZJ in the field of superconducting electronics.
We believe that the ongoing collaboration between the two
parties will continue to grow, and the cooperation will bring
more achievements not only in the field of superconducting
electronics but also in other fields in the future.

November 2019.
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1
Introduction

1.1 Motivation
Superconducting QUantum Interference Devices (SQUIDs)
are well known because they are the most sensitive sensors
for measuring magnetic flux. In magnetometry, a SQUID
with a field‐to‐flux transformer circuit (converter) construct
is a magnetometer with high field sensitivity in the range of
fT/√Hz (one millionth of the earth's magnetic field).
Therefore, the study of SQUID systems has never stopped.
Many books and reviews have elaborated on the SQUID
principle and SQUID magnetometric systems as well as
SQUID applications, e.g. “Superconductor Applications:
SQUIDs and Machines” edited by B. B. Schwartz and S.
Foner [1], “Physics and Applications of the Josephson
Effect” edited by A. Barone and G. Paterno [2], and the
NATO proceedings “SQUID Sensors: Fundamentals,
Fabrication and Applications” edited by H. Weinstock [3].
In particular, “The SQUID Handbook,” edited in 2004 by
John Clarke and Alex I. Braginski comprehensively
summarizes SQUID's theory and practice since SQUIDs
have been discovered [4]. Hence, this book has become the
new “bible” for researchers in the field. Furthermore, the
review of “SQUID Magnetometers for Low‐Frequency
Applications” by Tapani Ryhänen et al. presented a novel
formulation for SQUID operation and SQUID
magnetometers for low‐frequency applications, taking into
account the coupling circuits and electronics [5].
Structurally, a direct current (dc) SQUID is a
superconducting ring interrupted with two Josephson



junctions. Predicatively, SQUIDs have very rich physical
meanings, e.g. the Aharonov–Bohm effect, flux
quantization, Meissner effect, Bardeen–Cooper–Schrieffer
(BCS) theory, and the Josephson tunnel effect. However,
starting from the view of electronic circuits, our first
question is on what a dc SQUID is. In magnetometry, a dc
SQUID should be regarded as a resistor‐like element where
its dynamic resistance is modulated by the flux Φ threading
the SQUID's loop. In the readout technique, the dynamic
resistance of the SQUID, Rd(Φ) = ∂V/∂I, i.e. the derivative of
the voltage with respect to current, is the fundamental
readout quantity, which is embodied in the current–voltage
(I–V) characteristics of the SQUID. Here, the changing I–V
characteristics are limited by two curves at the integer
(upper limit) and half‐integer (lower limit) of the flux
quantum Φ0, which reflect the quantity of magnetic flux in
the SQUID loop. There is already abundant “know‐how” to
read out a resistor R. For example, one can measure a
voltage V across R with a constant current flowing through
R or measure a current I through R when a constant
voltage V is connected to R in parallel. A dc SQUID can
either be operated at constant current by measuring the
voltage across it (called current bias mode) or at constant
voltage by measuring the current through it (called voltage
bias mode). In either bias mode, only the SQUID's V(Φ) or
I(Φ) characteristics emerge. Similar to the change in I–V
characteristics with the flux, V(Φ) and I(Φ) are also
modulated by Φ. In brief, the essence of all three SQUID
characteristics is recording the SQUID's dynamic
resistance changes, Rd(Φ).

Generally, a SQUID system consists of the SQUID sensor
and its readout electronics. The small SQUID signal leads
to difficulty in reading out the SQUID's signal without
additional noise contributions from the readout technique.
Conventionally, one hopes to suppress such noise



contribution below the intrinsic SQUID noise δΦs. In other
words, the measured system noise almost reaches δΦs.

The main noise source in readout electronics is the
preamplifier, which possesses two independent noise
sources: the voltage noise Vn and the current noise In. Both
of these noise sources are innate to the amplifier chip and
cannot be changed. In order to compare these two noise
contributions in a SQUID system, both types of electronic
noise should be translated into a flux noise, δΦe, in units of
Φ0/√Hz with SQUID's transfer coefficient of ∂V/∂Φ or ∂I/∂Φ.
In fact, the original SQUID parameters including the
transfer coefficients are also innate to the particular
SQUID and cannot be changed. However, the SQUID's
apparent parameters at the input terminal of the
preamplifier can be modified. Over the past half century,
people have developed different readout schemes, where
the electronic noise δΦe is suppressed by increasing the
apparent transfer coefficients once a preamplifier is
selected. Indeed, the modification of the apparent
parameters is the main thread running through the book.
Here, we will change the perspective to discuss the
optimization of the SQUID system noise, i.e. how to match
the SQUID parameters with the readout electronics.
According to the type of superconducting material used,
SQUIDs can be divided into two groups: the low‐
temperature superconducting (LTS) SQUID, also called low‐
Tc SQUID, usually operated at 4.2  K (liquid helium
temperature); and the high‐temperature superconducting
(HTS) SQUID, also called high‐Tc SQUID, usually operated
at 77  K (the liquid nitrogen temperature). The LTS material
is typically niobium and HTS material is yttrium barium
copper oxide (YB2Cu3O7−x).



However, according to the working principles, the dc
SQUID mentioned above is completely different from the
radio frequency (rf) SQUID, which is a superconducting
ring interrupted with only one junction. To read the signal
from an rf SQUID, it is inductively coupled to an rf tank
circuit, which connects to the readout electronics.
In this book, LTS (low‐Tc) dc SQUID and HTS (high‐Tc) rf
SQUID systems, which are often used in magnetometry, will
be highlighted. We will share our experiences and lessons,
mostly from our own works, with readers, college students,
and graduates in physics and engineering who have an
interest in SQUID techniques, e.g. how to set up a simple
SQUID system for themselves.

1.2 Contents of the Chapters
The book is organized into 12 chapters, where most of the
content (from Chapters 2–11) is about the dc SQUIDs, and
only the last chapter is related to rf SQUIDs. However, the
dc SQUID bias reversal scheme [6], the 1/f noise study
[7,8], and the special readout scheme for the nano‐SQUID
[9,10] are not included.
Chapter 1: This chapter is devoted to our motivation above
and the subsequent chapter contents – why did we write
this book, and what is it about?
Chapter 2: Because the Josephson junction (JJ) is the key
element of SQUIDs, Josephson's equations should be first
introduced. Then, JJs are analyzed with the resistively and
capacitively shunted junction (RCSJ) model, thus
introducing two important parameters: the Stewart–
McCumber parameter βc and the thermal rounding
parameter Γ. To observe the features of JJs, one often uses
the I–V characteristics, where the hysteresis behavior
depends on the values of both βc and Γ. Actually, the I–V



characteristics describe the changing dynamic resistances
Rd of the JJ, i.e. Rd = ∂V/∂I. It was experimentally verified
that the value of Rd depends not only on the junction shunt
resistor RJ but also on the junction critical current Ic.
Generally, JJs without hysteresis are suitable for SQUID
operation. In fact, one habitually transforms the
parameters βc and Γ of the JJ into SQUID operation.

Chapter 3: For readout electronics, the dc SQUID is
regarded as dynamic resistance Rd(Φ) modulated by the
flux threading into the SQUID loop. The SQUID's I–V
characteristics can be divided into three regions, and the
SQUID is operated in the flux‐modulated region (II). In fact,
the behavior of Rd(Φ) is embodied in a SQUID's I–V
characteristics. To measure a resistance Rd, one can
impress a known current (current bias) into a SQUID and
observe the voltage across the SQUID's dynamic resistance
Rd. Alternatively, one can apply a constant voltage to the
SQUID (voltage bias) and measure the current passing
through Rd. Owing to the small Rd  ≈  10  Ω of the SQUID, an
ideal current bias mode for SQUID operation can easily be
realized. In contrast, an ideal voltage bias mode can hardly
be achieved, as will be shown in the course of the chapter.
Chapter 4: Almost all SQUID readout electronics developed
over the past half century have a common feature: they
establish a so‐called flux‐locked loop (FLL) to realize
linearization of the output voltage Vout(Φ) of the readout
electronics; i.e. Vout is proportional to the flux change Φ. In
this chapter, the principle and realization of the FLL are
explained. It is a nulling method where a compensation flux
always follows the measured flux, thus resulting in a total
flux change of zero in the SQUID loop. In the FLL, the
concept of the working point W comes up, and the “locked”
and “unlocked” cases are discussed. In the FLL, a small



flux change ΔΦ near the working point W appears
transiently, and a counter flux −ΔΦ immediately
compensates it so that the SQUID is continuously operated
at a constant flux state. Therefore, the SQUID's Rd(Φ) near
W can be expressed as Rd(Φ) = Rd  +  ΔRd, where Rd is
considered a fixed resistance and ΔRd is a minor change
with flux. According to the SQUID's bias modes, ΔRd is
translated into the readout quantity ΔV (or ΔI). For
example, in practice, a current‐biased SQUID can be
regarded as a voltage source, ΔV =  ΔΦ  ×  (∂V/∂Φ),
connecting to the fixed Rd in series (which seems to be the
internal resistance of the voltage source), where (∂V/∂Φ) is
the SQUID's flux‐to‐voltage transfer coefficient at the
working point W. The description of the SQUID by means of
a differential dynamic resistance is a new model concept.
Chapter 5: In the case of a direct readout scheme (DRS)
where the SQUID directly connects to a preamplifier, the
electronics noise δΦe is usually much larger than the
SQUID intrinsic noise δΦs. Two types of preamplifiers,
commercial op‐amps (e.g. AD797 from Analog Devices Inc.
or LT1028 from Linear Technology Corp.) and parallel‐
connected bipolar pair transistors (PCBTs) (e.g. 3  × 
SSM2210 or 3 × SSM2220 from Analog Devices Inc.), are
the most commonly used. Here, the noise characteristics,
Vn and In, of these two types of preamplifiers are measured
separately. Nevertheless, a DRS exhibits several
advantages; e.g. the SQUID's original parameters can be
directly determined, and the noise contributions from both
sides, δΦe and δΦs, can be separately analyzed. Especially,
the SQUID's transfer coefficient ∂V/∂Φ (∂I/∂Φ) at the
working point W plays two important roles: (i) it bridges
different kinds of noise sources, thus unifying all noise in
units of Φ0/√Hz, as the SQUID is a flux sensor; and (ii) a



large transfer coefficient is beneficial for reducing δΦe. In
fact, it was experimentally confirmed that the noise
contribution of δΦe does not depend on the SQUID's bias
modes. Furthermore, for strongly damped SQUIDs, δΦe in
DRS dominates the system noise δΦsys.

Chapter 6: In a SQUID magnetometric system, one strives
for a high magnetic field sensitivity δBsys, which involves
two aspects: a field‐to‐flux transformer circuit (converter)
and an ordinary SQUID system with an FLL. The former
converts a magnetic field signal B into a flux Φ threading
the SQUID loop, while the latter reads out the picked‐up Φ.
In Section 6.1, the requirements of the converter are
discussed. In Section 6.2, we show that the SQUID system
is characterized by three dimensionless parameters, βc, Γ,
and βL. Note that the definitions of βc and Γ for only a
single JJ are given in Chapter 2. During SQUID operation,
both parameters must be given a new connotation. Four
SQUIDs with different βc values were characterized. Here,
a reasonable interpretation of the observed absence of
hysteresis in the SQUID's I–V characteristics at high βc is
given. For SQUID operation, the dimensionless parameter
βL particularly describes the modulation depth of the
SQUID. Importantly, βL  ≈  1 imposes a design condition on
the product LsIc – namely, all electrically readable values of
SQUID parameters increase with increase in the SQUID's
nominal βc.

Chapter 7: The flux modulation scheme (FMS) was first
introduced to the SQUID readout in 1968 and quickly
became the standard readout technique for current‐biased
SQUIDs. To date, FMS electronics have been the most
extensively used. The basic idea of the FMS is to perform
an up‐conversion of the SQUID's voltage swing at the input
terminal of the preamplifier with a step‐up transformer,


