

Practical Field Ecology

Second Edition

C. Philip Wheater,
Penny A. Cook and James R. Bell

WILEY Blackwell

Practical Field Ecology

Practical Field Ecology

C. Philip Wheater

Manchester Metropolitan University
Manchester
UK, M1 5GD

Penny A. Cook

University of Salford
Salford, UK, M5 4WT

James R. Bell

Rothamsted Research, Harpenden, AL5 2JQ, UK /
Manchester Metropolitan University, Manchester
UK, M1 5GD

Second Edition

WILEY Blackwell

Edition History
Wiley (1e, 2011)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at <http://www.wiley.com/go/permissions>.

The right of C. Philip Wheater, Penny A. Cook and James R. Bell to be identified as the authors of this work has been asserted in accordance with law.

Registered Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

9600 Garsington Road, Oxford, OX4 2DQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Wheater, C. Philip, 1956- author. | Cook, Penny A., 1971- author. | Bell, James R., 1969- author.

Title: Practical field ecology / C. Philip Wheater, Penny A. Cook, James R. Bell.

Description: Second edition. | Hoboken, NJ : Wiley-Blackwell, 2020. |

Includes bibliographical references and index.

Identifiers: LCCN 2019034790 (print) | LCCN 2019034791 (ebook) | ISBN 9781119413226 (paperback) | ISBN 9781119413233 (adobe pdf) | ISBN 9781119413240 (epub)

Subjects: LCSH: Ecology—Research—Methodology. | Ecology—Fieldwork.

Classification: LCC QH541.2 .W54 2020 (print) | LCC QH541.2 (ebook) | DDC 577.072—dc23

LC record available at <https://lccn.loc.gov/2019034790>

LC ebook record available at <https://lccn.loc.gov/2019034791>

Cover Design: Wiley

Cover Images: 3D Color Bar © victorhe2002/Getty Images, Frog © Design Pics/Corey Hochachka/Getty Images, Mouse © Graham Codd/EyeEm/Getty Images, Ladybird © Jacky Parker Photography/Getty Images, Cropped Hand Of Person Holding Magnifying Glass © Prakasit Khuansawan/EyeEm/Getty Images, Close-Up Of Water Drops © Yuttasak Thongsan/EyeEm/Getty Images

Set in 10/12pt WarnockPro by SPi Global, Chennai, India

Since the publication of the first edition, three highly skilled field scientists who gave generously of their time and expertise for the first edition of this book have sadly passed away. All three were expert ecologists and each influenced many generations of young scientists.

We would like to dedicate this second edition to our friends and colleagues: Mike Hounsome, Rob Strachan, and Derek Yalden.

Contents

List of Tables	<i>xiii</i>
List of Figures	<i>xv</i>
List of Boxes	<i>xxi</i>
List of Case Studies	<i>xxiii</i>
List of Plates	<i>xxv</i>
Preface to the Second Edition	<i>xxvii</i>
Preface to the First Edition	<i>xxix</i>
Acknowledgements	<i>xxxi</i>
About the Companion Website	<i>xxxv</i>

1 Preparation 1

Choosing a topic for study	2
Ecological research questions	4
Monitoring individual species and groups of species	4
Monitoring species richness	5
Monitoring population sizes and density	5
Monitoring community structure	6
Monitoring behaviour	6
A note of caution	6
Creating aims, objectives, and hypotheses	9
Reviewing the literature	9
Primary literature	10
Secondary literature	10
Other sources of information	11
Search terms	11
Reading papers	12
Practical considerations	12
Legal aspects	13
Ethical issues	13
Health and safety issues	14
Implementation	16
Equipment and technical support	19
Field/laboratory notebook	19
Pilot studies	21

Time management	22
Statistical considerations in project design	24
Designing and setting up experiments and surveys	26
Choosing sampling methods	26
Types of data	27
Sampling designs	29
Planning statistical analysis	35
Describing data	35
Asking questions about data	36
Predictive analysis	37
Multivariate analysis	38
Examining patterns and structure in communities	39
Summary	39
2 Monitoring Site Characteristics	43
Site selection	43
Site characterisation	44
Habitat mapping	44
Examination of landscape scale	54
Measuring microclimatic variables	55
Monitoring substrates	60
Monitoring water	64
Other physical attributes	67
Measuring biological attributes	70
Identification	76
3 Sampling Plants and Other Static Organisms	85
Sampling for static organisms	88
Seeds, fecundity, and population dynamics	91
Quadrat sampling	92
Density estimation using quadrats	95
Frequency estimation using quadrats	95
Cover estimation using quadrats	96
Biomass estimation within quadrats	97
Quadrat size	99
Nested quadrats	100
Placement of quadrats	101
Quadrat shape	102
Pin-frames	103
Transects	104
Plotless sampling	106
Distribution of static organisms	109
Forestry techniques	110
Tree diameter	110
Tree basal area	113
Height of trees	113
Timber volume	114

Growth	114
Canopy cover	115
Age and mortality	115
4 Sampling Mobile Organisms	119
General issues	120
Distribution of mobile organisms	123
Direct observation	124
Behaviour	124
Indirect methods	130
Capture techniques	130
Marking individuals	133
Radio-Tracking	136
Population dynamics	138
Invertebrates	140
Direct observation	141
Butterfly census method	141
Indirect methods	143
Using insect sounds	143
Capture techniques	144
Killing and preserving invertebrates	145
Marking individuals	145
Capturing aquatic invertebrates	150
Netting	152
Suction sampling	156
Benthic coring	156
Drags, dredges, and grabs	157
Wet extraction	158
Artificial substrate samplers	159
Baited traps and refuges	159
Capturing soil-living invertebrates	161
Sieving	161
Floatation and phase-separation	161
Tullgren funnels and similar methods of dry extraction	162
Chemical extraction	164
Electrical extraction	166
Capturing ground-active invertebrates	167
Pitfall traps	167
Suction samplers	175
Emergence traps	178
Capturing invertebrates from plants	180
Pootering	182
Sweep netting	184
Beating	185
Fogging	185
Capturing airborne invertebrates	187
Sticky traps	190

Using attractants	191
Refuges	194
Flight interception traps	195
Light traps	197
Rotary traps	205
Water (pan) traps	206
Fish	208
Direct observation	210
Indirect methods	211
Capture techniques	211
Nets and traps	212
Collecting fish larvae	215
Electrofishing	215
Marking individuals	215
Amphibians	218
Direct observation	221
Indirect methods	221
Counting egg masses	221
Using environmental DNA (eDNA)	222
Capture techniques	222
Sampling adults in water	223
Sampling adults on land	224
Tadpoles	226
Juveniles/metamorphs	226
Marking individuals	226
Reptiles	228
Direct observation	228
Indirect methods	229
Capture techniques	230
Hand-capture	232
Traps	233
Marking individuals	235
Birds	236
Direct observation	237
Timed species count	239
Common bird census/breeding bird survey	240
Point counts	241
Transect line counts	242
Distance sampling	242
Flush counts	244
Indirect methods	245
Counting nests at a distance	246
Bird song	247
Capture techniques	247
Mist netting	248
Propelled nets	250
Marking individuals	250

Mammals	253
Direct observation	254
Indirect methods	257
Capture techniques	264
Marking individuals	272
5 Analysing and Interpreting Information	275
Keys to tests	278
Exploring and describing data	285
Transforming and screening data	285
Graphical display of data	288
Measures of central tendency and sample variability	290
Spatial and temporal distributions	292
Population estimation techniques: densities and population sizes	292
Richness and diversity	297
Similarity, dissimilarity, and distance coefficients	297
Recording descriptive statistics	300
Testing hypotheses using basic statistical tests and simple general linear models	301
Differences between samples	304
Relationships between variables	307
Associations between frequency distributions	312
More advanced general linear models for predictive analysis	314
Multiple regression	314
Analysis of covariance and multivariate analysis of variance	316
Discriminant function analysis	318
Generalized linear models	319
Extensions of the generalized linear model	323
Extensions of generalized linear models and GAMs into mixed-effects models	324
Statistical methods to examine pattern and structure in communities: classification, indicator species, and ordination	325
Classification	325
Classification techniques when the number of groups is known	326
Significance testing for group membership: analysis of similarity (ANOSIM)	328
Classification techniques when the number of groups is unknown	329
Indicator species analysis	331
Ordination	332
Indirect gradient analysis	333
Comparing ordinations and matrix data	338
Direct gradient analysis	339
6 Presenting Information	343
Written reports	344
Title	345
Abstract	345

Acknowledgements	346
Contents	346
Introduction	347
Methods	347
Results	348
Illustrations (Tables, Figures, Plates, Equations, etc.)	349
Discussion	354
References	354
Citing papers	355
Appendices	358
Archiving data	359
Authors' contributions	359
Writing style	359
Tense	362
Passive tense	362
Numbers	362
Abbreviations	363
Punctuation	364
Choice of font	365
Common mistakes	366
Computer files	368
Specific guidance for writing for a journal	368
Specific guidance for preparing a poster	371
Specific guidance for preparing an oral presentation	376
Summary	379

Appendix 1 Glossary of Statistical Terms 381

References 387

Index 409

List of Tables

Table 1.1	Example timescales for a short research project.....	23
Table 1.2	Random numbers.....	33
Table 1.3	Common statistical tests.....	36
Table 2.1	Common factors influencing living organisms.....	45
Table 2.2	Types of bioindicators for monitoring environmental conditions.....	71
Table 2.3	Range of taxa used as bioindicators.....	72
Table 2.4	Major taxonomic groups.....	82
Table 2.5	Major divisions of the Raunkiær plant life-form system.....	83
Table 3.1	DAFOR, Braun–Blanquet, and Domin scales for vegetation cover.....	96
Table 3.2	Abundance (ESACFORN) scales for littoral species.....	98
Table 3.3	Recommended quadrat sizes for various organisms.....	100
Table 4.1	Some considerations in the choice of radio-tracking equipment.....	137
Table 4.2	Summary of killing and preservation techniques for commonly studied invertebrates.....	146
Table 4.3	Factors to consider when using pitfall traps.....	176
Table 4.4	Examples of baits and target insect groups.....	192
Table 4.5	Factors to consider when choosing light traps to collect moths.....	205
Table 4.6	Summary of different types of net.....	214
Table 4.7	Example of timed species counts.....	240
Table 4.8	Comparison of bat detector systems.....	261
Table 5.1	Abundance of invertebrates in ponds.....	290
Table 5.2	Summary of commonly used methods of population estimation based on mark–release–recapture techniques.....	295
Table 5.3	Common diversity and evenness indices.....	298
Table 5.4	Commonly used similarity measures.....	299
Table 5.5	Statistics that should be reported for difference tests.....	306
Table 5.6	Statistics that should be reported for relationship tests.....	308
Table 5.7	Statistics that should be recorded for tests used to examine associations between two frequency distributions.....	313

Table 5.8	Using dummy variables.....	315
Table 5.9	A spider indicator species analysis.....	331
Table 5.10	Types of stress measure for computing MDS solutions.....	337
Table 6.1	Mean number of individuals of invertebrate orders found in polluted and clean ponds.....	350
Table 6.2	Uses of different types of graphs.....	352
Table 6.3	Examples of words used unnecessarily when qualifying terms.....	361
Table 6.4	SI units of measurement.....	363
Table 6.5	Conventions for the use of abbreviations.....	364
Table 6.6	Examples of Latin and foreign words and their emphasis.....	366

List of Figures

Figure 1.1	Flowchart of the planning considerations for research projects.	3
Figure 1.2	Example timescales for a medium-term research project.	22
Figure 1.3	Example of a section of a data recording sheet for an investigation into the distribution of woodland birds.	28
Figure 1.4	Examples of sampling designs.	34
Figure 1.5	Experimental layouts for five different treatments.	35
Figure 1.6	Data set approximating to a normal distribution.	38
Figure 2.1	Phase 1 habitat map.	46
Figure 2.2	Portable weather station.	56
Figure 2.3	Maximum/minimum thermometer.	56
Figure 2.4	Types of thermometers.	57
Figure 2.5	Whirling hygrometer.	58
Figure 2.6	Anemometers.	59
Figure 2.7	Environmental multimeter.	60
Figure 2.8	Penetrometer.	61
Figure 2.9	Soil augers.	62
Figure 2.10	Bulb planters.	63
Figure 2.11	Aquatic multimeters.	65
Figure 2.12	Secchi disk.	66
Figure 2.13	Dynamometer to measure wave action.	67
Figure 2.14	Light meters.	68
Figure 2.15	Using ranging poles to measure the inclination of a slope.	69
Figure 2.16	Using a cross-staff to survey a shoreline.	69
Figure 2.17	Using a GPS.	70
Figure 2.18	Lichen zone scale for mean winter sulphur dioxide estimation on trees with moderately acidic bark in England and Wales.	75
Figure 3.1	Quadrats.	95
Figure 3.2	Recording positions on a subdivided quadrat.	97
Figure 3.3	JNCC guideline usage of SACFOR scales.	99

Figure 3.4	Two nested quadrat designs.	101
Figure 3.5	Using random numbers to identify a position in a sampling grid.	102
Figure 3.6	Comparison of the perimeter to area ratios of circular, square, and oblong quadrats.	103
Figure 3.7	Pin-frame.	103
Figure 3.8	Comparison of transect sampling techniques.	104
Figure 3.9	Kite diagram to indicate the abundance of different species along a transect from the high water line.	105
Figure 3.10	Using a clinometer.	113
Figure 3.11	Tree coring.	114
Figure 3.12	Estimating canopy cover.	116
Figure 4.1	Observation and marking chambers for invertebrates.	134
Figure 4.2	Use of ink or paint spots to identify individual invertebrates.	135
Figure 4.3	Differences in rhino horn shape and size that can be used to identify individual animals.	136
Figure 4.4	Survivorship curves.	138
Figure 4.5	'W' shaped transect walk.	142
Figure 4.6	Parabolic reflector concentrating sound onto the central microphone.	144
Figure 4.7	Pond nets suitable for catching surface, pelagic, and bottom active invertebrates.	152
Figure 4.8	Belleville mosquito larvae sampler.	153
Figure 4.9	Using a kick net and sorting the sample.	154
Figure 4.10	Kick screen or banner net.	154
Figure 4.11	Surber sampler.	155
Figure 4.12	Hess sampler.	155
Figure 4.13	Drift net.	156
Figure 4.14	Plankton net.	156
Figure 4.15	Suction sampler for animals in burrows.	157
Figure 4.16	Naturalist's dredge.	157
Figure 4.17	Grabs for collecting benthic animals.	158
Figure 4.18	The Baermann funnel.	158
Figure 4.19	Bidlingmayer sand extractor.	159
Figure 4.20	Colonisation samplers.	160
Figure 4.21	Crayfish traps.	160
Figure 4.22	Crayfish refuge trap.	160
Figure 4.23	Soil sieves.	162
Figure 4.24	Tullgren funnels.	163
Figure 4.25	Kempson bowl extractor.	163

Figure 4.26	Winkler sampler.....	164
Figure 4.27	Simple inclined tray light separator.....	165
Figure 4.28	Baited pitfall trap.....	168
Figure 4.29	Setting pitfall traps.....	171
Figure 4.30	Barriers used with pitfall traps.....	174
Figure 4.31	Birds-eye view of an H trap.....	174
Figure 4.32	Ramp trap.....	175
Figure 4.33	Suction samplers.....	178
Figure 4.34	Emergence traps.....	179
Figure 4.35	Pooter used to suck up small invertebrates.....	183
Figure 4.36	Sweep net and sweep netting invertebrates from a bush.....	184
Figure 4.37	Beating trays.....	185
Figure 4.38	Fogging in rainforest.....	186
Figure 4.39	Nets for catching airborne insects.....	187
Figure 4.40	Rothamsted suction traps.....	190
Figure 4.41	Positioning of sticky traps.....	191
Figure 4.42	Bottle trap for flies and other flying insects.....	192
Figure 4.43	Attractant-based traps.....	193
Figure 4.44	Assembly trap.....	194
Figure 4.45	Trap-nests for bees and wasps.....	194
Figure 4.46	Window trap.....	195
Figure 4.47	Malaise trap.....	196
Figure 4.48	Slam trap.....	196
Figure 4.49	Simple light traps for insects.....	200
Figure 4.50	Moth collection tent.....	200
Figure 4.51	Examples of moth traps.....	202
Figure 4.52	Different types of light used for moth traps.....	204
Figure 4.53	Rotary trap.....	206
Figure 4.54	Water traps.....	207
Figure 4.55	Slurp gun.....	209
Figure 4.56	Using snorkel and scuba gear to observe fish.....	210
Figure 4.57	Sport fishing techniques.....	212
Figure 4.58	Examples of nets and traps.....	213
Figure 4.59	Bottle trap for newts.....	224
Figure 4.60	Drift fence with side-flap bucket trap.....	225
Figure 4.61	Funnel traps for amphibians.....	225
Figure 4.62	Examples of layouts for drift fencing.....	225
Figure 4.63	Artificial cover trap for amphibians.....	226

Figure 4.64	Concrete housing for a camera trap	229
Figure 4.65	Equipment for catching reptiles at a distance.....	233
Figure 4.66	Refuges as traps for reptiles.....	234
Figure 4.67	Measuring captured birds.	237
Figure 4.68	Permanent bird hide.	238
Figure 4.69	Bird observation tower.	239
Figure 4.70	Transect layout for Breeding Bird Survey.	241
Figure 4.71	Goose droppings surveyed using a quadrat.	245
Figure 4.72	Mist netting.	249
Figure 4.73	Propelled nets.	251
Figure 4.74	Marking birds.	252
Figure 4.75	Use of colour rings.	252
Figure 4.76	Deer becoming aware of the observer's presence.	255
Figure 4.77	Images caught using camera traps in tropical forest.....	255
Figure 4.78	Small mammal tracking tunnel.	258
Figure 4.79	Mammal dung used as an indicator of species presence.	258
Figure 4.80	Sampling mammal hair.	259
Figure 4.81	Bat detectors.	262
Figure 4.82	Triangle bat walks with frequency settings appropriate for UK bats.	263
Figure 4.83	Small mammal traps.	265
Figure 4.84	Longworth trap for small to medium sized mammals.	265
Figure 4.85	Poison bait dispenser.	267
Figure 4.86	Mole traps.	268
Figure 4.87	Harp trap.	268
Figure 4.88	Cage trap.	271
Figure 4.89	Badger trap.	272
Figure 5.1	Transformations for skewed distributions.	286
Figure 5.2	Truncation of percentage data.	287
Figure 5.3	Bimodal distribution.	287
Figure 5.4	Scatterplot of number of bird species found in urban parks with differing habitat diversities.	288
Figure 5.5	Pie diagram of the numbers of invertebrates of common orders found in clean ponds.	288
Figure 5.6	Stacked bar graph of the percentage composition of invertebrates of common orders found in clean ponds.	289
Figure 5.7	Clustered bar graph of the number of invertebrates of common orders found in clean ponds.	289
Figure 5.8	The mean and standard deviation plotted on a data set that approximates to a normal distribution.	291

Figure 5.9	Comparison of different ways of displaying the variation around the mean using point charts.	291
Figure 5.10	Box and whisker plots indicating different ways of displaying median and quartile data.	292
Figure 5.11	Du Feu estimates plotted against number of animals caught.	296
Figure 5.12	Using capture removal to estimate population sizes.	296
Figure 5.13	Comparison of the central tendency of two samples.	301
Figure 5.14	Summary of stages in using inferential statistics.	303
Figure 5.15	Example of a scatterplot.	309
Figure 5.16	Trends of invertebrate numbers with organic pollution.	309
Figure 5.17	Regression line between the number of aphids found at different levels of pirimicarb (pesticide) application.	310
Figure 5.18	Examples of common non-linear graph types in ecology.	312
Figure 5.19	A canonical variates analysis (CVA) of spiders across three management treatments.	328
Figure 5.20	Types of cluster analysis.	330
Figure 5.21	Dendrogram following cluster analysis of different habitat types.	330
Figure 5.22	TWINSPAN of quarry sites on the basis of their component plant species.	332
Figure 5.23	Ordination of a number of quarry sites on the basis of their component plant species.	336
Figure 6.1	Two formats for research report presentation.	344
Figure 6.2	Study site in the Nordkette mountains, Austria, showing the steep-sided slopes to the north.	351
Figure 6.3	Presenting graphs.	353
Figure 6.4	Examples of poster layouts.	373

List of Boxes

Box 1.1	Some sources of ecology projects	3
Box 1.2	Suggested minimum equipment required for fieldwork	15
Box 1.3	Keeping a field notebook	20
Box 1.4	Some tips on time management	23
Box 1.5	Differences between interval and ratio data	27
Box 1.6	Terms used in sampling theory	29
Box 1.7	Aspects to be considered when determining the sample size	30
Box 1.8	Species accumulation curves for two sites	31
Box 1.9	Checklist for field research planning	42
Box 2.1	Notes on the resources available for the National Vegetation Classification (NVC)	47
Box 2.2	Examples of vegetation classification systems	48
Box 2.3	An example of a code of practice for the use of drones	50
Box 2.4	Calculations of soil moisture and organic contents	61
Box 2.5	Measurements of freshwater invertebrates used in habitat quality and pollution monitoring	73
Box 2.6	Examples of identification guides for British insects	77
Box 3.1	Calculating population and density estimates from counts of static organisms	86
Box 3.2	Techniques used to identify and count microbial diversity	88
Box 3.3	Commonly used plotless sampling methods	107
Box 3.4	Describing the distribution of static organisms using quadrat-based methods	109
Box 3.5	Describing the distribution of static organisms using T-square sampling methods	110
Box 4.1	Avoiding problems in behavioural studies	128
Box 4.2	Butterfly census method	142
Box 4.3	Calculating the density of flying insects from census walks	143
Box 4.4	Taking account of missing traps	172

Box 4.5	Common birds census for territory mapping	240
Box 4.6	Restrictions on handling birds	248
Box 5.1	A note of caution about the examples used in this chapter	276
Box 5.2	Some commonly used statistical software	276
Box 5.3	Important terms used in the keys	279
Box 5.4	Some suggested statistical texts	280
Box 5.5	The Peterson (Lincoln index) method of population estimation	293
Box 5.6	Testing for significance when carrying out multiple tests	304
Box 5.7	Multiple comparison tests	307
Box 5.8	Using a contingency table in frequency analysis	313
Box 5.9	Analysis of covariance	316
Box 5.10	Using classification tables in predictive discriminant function analysis	318
Box 5.11	Generalized linear model: a worked example using a binomial regression	321
Box 5.12	Generalized additive model (GAM)	323
Box 5.13	Distance measurements	326
Box 5.14	Use of ANOSIM	329
Box 5.15	Examples of agglomerative clustering methods	330
Box 5.16	Using principal components analysis for data compression	333
Box 5.17	Using principal components analysis to produce biplots	335
Box 5.18	Example of distance placement using MDS	338
Box 5.19	Techniques for comparing ordinations and matrix data	339
Box 5.20	Example of use of canonical correspondence analysis	340
Box 6.1	Citing works using the Harvard system	355
Box 6.2	Reference lists using the Harvard system	357
Box 6.3	Commonly misused words	367

List of Case Studies

Case Study 1.1	The development of a novel net for sampling bats emerging from tree roosts	7
Case Study 1.2	Processing and transporting marine microbes from one of the most remote places on earth	17
Case Study 1.3	Monitoring dung beetle richness in East Africa	40
Case Study 2.1	Proximal sensing from lightweight drones	50
Case Study 3.1	The Park Grass experiment	93
Case Study 3.2	Studying tree growth and condition	111
Case Study 4.1	Using DNA metabarcoding to analyse the gut contents of spiders	121
Case Study 4.2	Cracking the chemical code in mandrills	125
Case Study 4.3	Barnacle larva trap	131
Case Study 4.4	Tarantula distribution and behaviour	147
Case Study 4.5	Stream invertebrates	150
Case Study 4.6	Collecting insects in Costa Rica	169
Case Study 4.7	Butterfly life cycles	180
Case Study 4.8	The birds and the bees	188
Case Study 4.9	Constructing low-cost moth traps	197
Case Study 4.10	Lake fish populations	216
Case Study 4.11	Breeding behaviour of neotropical tree frogs	219
Case Study 4.12	Reptile diet	230
Case Study 4.13	Counting parrots	243
Case Study 4.14	Bat conservation ecology	269
Case Study 6.1	Poster presentation	374

List of Plates

- Plate 1** A land cover map of Greater Manchester combining digitised and remotely-sensed data with detail on an area of South Manchester (inset)
- Plate 2** Environmental monitoring apps
- Plate 3** Examples of smartphone apps for species identification
- Plate 4** Alignment of sequences from several common terrestrial invertebrate orders at the sites of the original COI barcoding primers
- Plate 5** Bird markets
- Plate 6** Bird feeders
- Plate 7** Dormouse nest box
- Plate 8** Example of poster presentation

Preface to the Second Edition

Ecology is a rapidly evolving subject, not least in the techniques available to the field ecologist. Since the publication of our first edition of this project guide, advances have been made in several areas, most notably those that take advantage of modern technological developments. Whilst field ecologists have always sought to invent new methods and improve existing ones for monitoring plants and animals, new mobile technologies increasingly enable the tools for identification and verification of organisms to be literally in a researcher's back pocket. Similar advances in mobile phone apps have facilitated environmental monitoring, which has the potential to reduce the amount of equipment the researcher has to carry and perhaps go some way to providing standardisation of monitoring tools. There has been continued refinement of previously laboratory-based techniques that provide access to information more cheaply and immediately in the field where once we would have had to take samples back to sophisticated laboratories for analysis. Further developments in other technologies have opened up new and exciting opportunities to survey our environment (in the case of drone technology, the sky is literally the limit!). As these developments bed in, it is appropriate to review the tools available to field researchers.

We have extended this second edition to cover a wider range of methods, with a special focus on more recent developments, emphasising the direction of travel of modern field ecology. Following positive feedback from many students and colleagues, we have increased the number of case studies, which demonstrate the realities of working in the field. Developments have also been made recently in the analysis of ecological data, and this is reflected in a broader coverage of some of the more accessible techniques and available software. Since communication of scientific results is highly relevant in today's confusing mix of fact and opinion, we have also expanded our coverage of presentation skills to include publishing in scientific journals and presentation at conferences.

We have been privileged to have had expert advice and constructive criticism from a large number of experts who, in addition to the input to the first edition of this book, have reviewed the plans and implementation of the second edition, provided case studies and photographs, read and commented on individual sections, and generally encouraged us in our endeavours.

