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Preface

This book contains all that is found in Gödel’s preserved shorthand note-
books on his research that led to the famous incompleteness theorems of
formal systems. The notes are followed by the original version of his ar-
ticle, before a dramatic change just a few days after it was handed in for
publication, and six lectures and seminars in consequence of his celebra-
ted result published in 1931. The notebooks and one of the lectures were
written in German Gabelsberger shorthand that I have translated into Eng-
lish, usually from an intermediate transcription into German, but at places
directly. I thank Tim Lethen for his help in the reading of many difficult
shorthand passages, and Maria Hämeen-Anttila for her support, especially
at the troublesome moment when I discovered Gödel’s tricky change of his
manuscript after it had been submitted for publication. Marcia Tucker of
the Institute for Advanced Study was very helpful during my visit to the
Firestone Library of Princeton University where the originals of Gödel’s
manuscripts are kept. Finally, I recollect with affection my mother’s deci-
sion to challenge her little boy by enrolling him in the German elementary
school of Helsinki, a choice without which I would not have learned to read
Gödel’s manuscripts.

Jan von Plato
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Part I

Gödel’s steps toward incompleteness
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1. THE COMPLETENESS PROBLEM

David Hilbert’s list of 23 mathematical problems from the Paris interna-
tional congress of mathematicians of 1900 had as the second problem the
question of the consistency of analysis: to show that no contradiction fol-
lows from the axioms for real numbers. A slip of paper with an additional
problem, to be placed last as a 24th one, was found some hundred years la-
ter, one that asked for criteria for the simplicity of proofs and in general, “to
develop a theory of proof methods in mathematics.” The development of
a theory to this effect, what Hilbert called proof theory, started in Göttingen
in 1917–18, when the First World War was coming to its end. Its main aim
was to provide answers to such questions as consistency.

After the war, German mathematicians were excluded from the inter-
national congress of mathematicians, held every four years. The reappea-
rance of Germans on the international scene took place in the internatio-
nal congress of Bologna in 1928, with Hilbert lecturing on “Problems in
the foundations of mathematics.” In his lecture, Hilbert surveyed the de-
velopment of mathematics in the past few decades, then listed four main
problems in its foundation. There was behind the list the most remarkable
period of research into logic and foundations of mathematics seen so far.
Hilbert had realised that Bertrand Russell’s Principia Mathematica of 1910–
13 offered the means for formalizing, not just mathematical axioms as in
geometry, but even the logical steps in mathematical proofs: “One could see
in the completion of this grandiose Russellian enterprise of axiomatization of
logic the crowning of the task of axiomatization as a whole.” (Hilbert 1918,
p. 153). Ten years later, the logic of the connectives and quantifiers had be-
en brought to perfection, presented in the book Grundzüge der theoretischen
Logik (Hilbert and Ackermann 1928). The formalization of arithmetic had
also been accomplished, with recursive definitions of the basic arithmetic
operations and an axiom system for proofs in arithmetic. Hilbert believed
at this time Wilhelm Ackermann and Johann von Neumann to have sol-
ved the problem of consistency for a strong system of arithmetic, but there
remained some doubts about it.

The first and second problems in Hilbert’s Bologna list of 1928 are about
the extension of Ackermann’s proof to higher areas of mathematics. The list
has as the third problem, from Gödel’s reading notes on Hilbert’s article:1

1 Part of document 050135, reel 36, frames 377 to 385 in the Gödel microfilms.
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III Completeness of the axiom system of number theory

i.e., to be proved:

1. S and S to be shown as not both free from contradiction.

2. When S is free from contradiction, it is also provable.

After a digression on the role of the principle of induction, there follows:

IV Completeness of logic (would follow from the completen-
ess of number theory) “Are all generally valid formulas prova-
ble?”

So far proved only for propositional logic and the logic of clas-
ses.

Gödel had studied the Hilbert-Ackermann book in late 1928, then began to
formalize proofs in higher-order arithmetic, for which purpose he invented
an impeccable system of linear natural deduction. A whole long notebook,
the “Übungsheft Logik” (exercise notebook logic) is devoted to this purpo-
se, with formal derivations of unprecedented complexity, more than eigh-
ty steps and up to four nested temporary hypotheses made (cf. von Plato
2018b).

Gödel’s interest shifted soon from the actual construction of formal de-
rivations to the completeness of a system of proof. The completeness of
quantificational logic is clearly formulated, independently of arithmetic,
in Hilbert-Ackermann. There is a shorthand notebook with the title “Diss.
unrein” (Dissertation draft), fifty pages long, with an outline of the first ten
chapter headings on page 16, slightly abbreviated here (document 040001):

1. Introduction

2. Notation and terminology

3. Basic theorems about the axiom system

4. Reduction to denumerable domains [Denkbereiche]

. . .

7. Independence of propositions and rules

8. Extension for the case in which = is incorporated

4



9. Extension for axiom systems with finitely and infinitely many
propositions

10. Systems with a finite basis and monomorphic systems

These items from 1 to 10 are detailed in the rest of the notebook.

Gödel’s proof of completeness for the “narrower functional calculus,”
i.e., first-order classical predicate logic, has disjunction, negation, and uni-
versal quantification as the basic notions. The simplest case of quantifica-
tion is the formula ∀xF(x) with F(x) a propositional formula. Gödel states
in a shorthand passage that if such a formula is “correct,” i.e., becomes true
under any choice of domain of individuals and relations for the relation
symbols of the formula, then the instance with a free variable x must be a
“tautology” of propositional logic. In the usual “Tarski semantics” that is—
unfortunately—included in almost every first course in logic, the truth of
universals is explained instead by the condition that every instance be true,
an explanation that with an infinite domain of objects becomes infinitely
long.

In Gödel, by contrast, with the free-variable formula F(x) a tautology,
it must be provable in propositional logic by the completeness of the latter,
a result from Paul Bernays’ Habilitationsschrift of 1918 and known to Gödel
from Hilbert-Ackermann. That book is also the place in which the rules of
inference for the quantifiers appear for the first time in an impeccable form
(p. 54, with the acknowledgment that the axiom system for the quantifiers
“was given by P. Bernays”). With the free-variable formula F(x) provable in
propositional logic, the rule of universal generalization gives at once that
even ∀xF(x) is derivable. The step is rather well hidden in Gödel’s com-
pleteness proof in the thesis that proceeds in terms of satisfiability. At one
point, he moves to provability of a free-variable formula, then universally
quantified “by 3,” the number given for the rule of generalization.

Gödel’s profound understanding of predicate logic, especially the need
for rules of inference for the quantifiers without which no proof of comple-
teness is possible, is evident through a comparison: Rudolf Carnap, whose
course he had followed in Vienna in 1928, published in 1929 a short presen-
tation of Russell’s Principia, the Abriss der Logistik, but one searches in vain
for the quantifier rules in this booklet. Other contemporaries who failed
in this respect include Ludwig Wittgenstein and Alfred Tarski. The former
was a dilettante in logic who thought that truth-tables would do even for

5



predicate logic. With the latter, no trace of the idea of the provability of uni-
versals through an arbitrary instance is found in his famous tract on the
concept of truth of 1935.

Gödel’s actual aim in his doctoral thesis was a proof of completeness of
arithmetic, as is witnessed by the last third of the planned contents of his
dissertation. It should be noted that Hilbert’s Bologna address that listed
the problem got published after Gödel had finished the thesis:

11. Application to geometry and arithmetic – connection bet-
ween the two – inclusion of functions over objects

a.) for the case of completeness b.) for the case that no finite
basis is at hand

12. General construction of resultants and solution of the pro-
blem whether real roots are at hand

holds for which number systems?, decision procedure

13. Resolution of the Archimedean axiom, proof of the comple-
teness of the arithmetic axiom system

14. There is no finite basis for arithmetic propositions

15. Independence of the concepts ?

There seem to be no traces of how Gödel in 1929 thought he would prove
the completeness of arithmetic, though I have not studied the long note-
book in every detail yet—perhaps the above already indicates some doubt?
There is instead his announcement of the failure of any such proof the next
year, found at the end of the lecture he gave at the famous Königsberg
conference on the foundations of mathematics on 5–7 September 1930. The
conference is remembered for its presentation of the main approaches to
the foundations of mathematics, logicism, formalism, intuitionism, in three
widely read lectures by Rudolf Carnap, Johann von Neumann, and Arend
Heyting, respectively.

Gödel’s short and readable lecture about the completeness of predicate
logic—just twenty minutes were allotted for it— is preserved in shorthand
and very slightly changed in a typewritten form that got first published in
the third volume of Gödel’s Collected Works. Close to the end of that lecture,
we find the following passage (p. 28):

6



If one could prove the completeness theorem even for the hig-
her parts of logic (the extended functional calculus), it could be
shown quite generally that from categoricity, definiteness with
respect to decision follows.2 One knows for example that Pea-
no’s axiom system is categorical, so that the solvability of each
problem in arithmetic and analysis expressible in the Principia
Mathematica would follow. Such an extension of the completen-
ess theorem as I have recently proved is, instead, impossible,
i.e., there are mathematical problems that can be expressed in
the Principia Mathematica but which cannot be solved by the lo-
gical means of the Principia Mathematica.

It is clear from these remarks that Gödel’s first thought was to extend the
completeness result to higher-order logic, a point emphasised in Goldfarb
(2005). The above is an indication of his way to the first incompleteness
theorem from the time when the actual work was done, namely through a
failed attempt that led to the insight about undecidability.

The shorthand version of the Königsberg talk ends with (reel 24, frame
311):

I have succeeded, instead [of extending the completeness theo-
rem to higher-order logic], in showing that such a proof of com-
pleteness for the extended functional calculus is impossible or
in other words, that there are arithmetic problems that cannot
be solved by the logical means of the PM even if they can be
expressed in this system. These things are, though, still too little
worked through to go into more closely here.3

In the typewritten version, we read somewhat differently about his proof
of the failure of completeness (document 040009, page 10):

In this [proof], the reducibility axiom, infinity axiom (in the for-
mulation: there are exactly denumerable individuals), and even
the axiom of choice are allowed as axioms. One can express the
matter also as: The axiom system of Peano with the logic of the

2 Literal translation of the German “Entscheidungsdefinitheit.”
3 The last sentence reads in German: “Doch sind diese Dinge noch zu wenig durchgear-

beitet, um hier näher darauf einzugehen.”
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PM as a superstructure is not definite with respect to decision. I
cannot, though, go into these things here more closely.4

Then this last sentence is cancelled and the following written: “It would,
though, take us too far to go more closely into these things.”5 It would seem
that matters concerning the incompleteness proof had cleared in Gödel’s
mind between the writing of the shorthand text for the lecture and the ty-
pewritten version.

The shorthand text for the Königsberg lecture is found fairly early in
Gödel’s two notebooks about incompleteness. There is, about sixty pages
later, a shorthand draft for his two-page note on the two incompleteness
results that he had prepared just before departing for Königsberg, with
publication in October 1930. Whatever he had done about incompleten-
ess by that point must have been before early September 1930, and some of
it clearly earlier: Just a few pages before the Königsberg lecture text, Gödel
writes that the formally undecidable sentences have “the character of Gold-
bach or Fermat,” i.e., of universal propositions such that each of their in-
stances is decidable. These examples suggest that a formally undecidable
proposition ∀xF(x) can have each of its numerical instances F(n) provable,
but still, addition of the negation ¬∀xF(x) does not lead to an inconsisten-
cy. Were the free-variable instance F(x) provable, universal generalization
would at once give a contradiction.

2. FROM SKOLEM’S PARADOX TO THE KÖNIGSBERG CONFERENCE

Later in his life, Gödel gave various explanations of how he found the
incompleteness results. He often repeated that he was thinking of self-
referential statements, as in the liar paradox: This sentence is false. Replacing
unprovable for false, one gets a statement that expresses its own unpro-
vability. The explanation is good as far as it goes, and indeed given as a
heuristic argument in Gödel’s 1931 paper, but it gives little clue as to how
one would start thinking along such lines in the first place. Gödel’s meticu-
lously kept notes and other material point at interesting circumstances that
concern his discovery of the undecidable sentences.

As a first source from the time Gödel had begun work on incompleten-
ess in the early summer of 1930 (by Wang 1996, p. 82; I would say perhaps

4 The last sentence is: “Auf diese Dinge kann ich aber hier nicht näher eingehen.”
5 “Doch würde es zu weit führen, auf diese Dinge näher einzugehen.”
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May) there is Fraenkel’s Einleitung in die Mengenlehre that, as is seen from
Gödel’s preserved library request cards, he had taken out in early April.
Fraenkel discusses the question of decidability in principle of any mathe-
matical problem, remarking that not a long time ago, every mathematician
would believe in such solvability (p. 234):

It is a fact that until today, no mathematical problem has be-
en proved to be “unsolvable.” The discovery of such a problem
would without doubt present an enormous novum for mathe-
matics, and not only for it.

Fraenkel is very clear about Skolem’s paradox: The propositions of a truly
formal system form a denumerably infinite class, and therefore in particu-
lar the provable propositions, i.e., the theorems. The seemingly paradoxical
consequence is that formal (first-order) theories of real numbers and of set
theory admit of interpretations in which the domain is only denumerably
infinite. In particular, it can be taken to be the domain of natural numbers.

Further down, Fraenkel notes that “there should be nothing absurd in
imagining that the unsolvability of a problem could even be proved” (p.
235).

A second early source bears the date 13 May when Gödel borrowed
Skolem’s “Über einige Grundlagenfragen der Mathematik.” This 49-page
article was published as a separate issue of an obscure Norwegian journal.
There Skolem gives a striking version of his paradox: The denumerable
infinity of propositions of a truly formal system can be ordered lexicographi-
cally. “Propositions about natural numbers,” in particular, can be likewise
thus ordered, but by contrast the properties of natural numbers cannot be
so ordered, by which (p. 269):

It would be an interesting task to show that every collection
of propositions about the natural numbers, formulated in first-
order logic, continues to hold when one makes certain changes
in the meaning of “numbers.”

Among the wealth of ideas in Skolem’s paper, there is an outline for a proof
that the consistency of classical arithmetic reduces to that of intuitionistic
arithmetic (p. 260), a result Gödel proved in 1932 through his well-known
double negation translation.
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Next to the library slips, two early notebooks give indications of Gödel’s
reading through his summaries of papers by others. It has turned out re-
cently that these were begun around August 1931, when Gödel accepted
the task of writing together with Heyting a short book on “Mathematical
Foundational Research.” The first notebook has two articles listed on each
page, on top and half-way down, at times with notes, at times not, alto-
gether over a hundred articles that relate to the topics Gödel was supposed
to write as his part of the book project. Then there is the earliest preserved
and clearly written-out notebook with the text Altes Excerptenheft I (1931—
. . . ) on the cover and a continuous page numbering (document 030079).
This Heft gathers together some of his most important sources at a time
when there were no photocopiers.

In his three-page summary of Skolem’s long article (Excerptenheft, pp.
25–27), Gödel begins with Skolem’s § 2, “proof of set-theoretical relativism”
in Gödel’s words, and then comes § 1, “enumeration of possible properties
(therefore also sets) in Fraenkel’s as well as Skolem’s separation axiom.”
The last item in Gödel is for Skolem’s §7, with the condition ah− bk = 1
pointing at the unique decomposition into prime elements in principal ide-
al domains:

§7 Example of a domain that is not isomorphic with the number
sequence even if it is an integral domain and even if for every
two relatively prime h, k, ah− bk = 1.

Conjecture that the number sequence is not at all characterisable
by propositions of first-order logic.

At the end of this section, Gödel paraphrases Skolem’s conclusion: “There
is no possibility to introduce things nondenumerable as anything else but
a pure dogma.”

Gödel’s summary was written down after his work on incompleteness
had been finished and published. Still, Skolem’s paper contains important
ideas he had seen before that work. The way from these ideas to a first
intimation of incompleteness is not long. One would likely think along the
following lines:

Properties of natural numbers can be given as arithmetic propositions
F(x) with one free variable, and they can be listed in a lexicographical or-
der, F1(x), F2(x), . . . Fn(x) . . .. Each of these properties Fi(x) corresponds to
a set of natural numbers, those for which the property holds and usually

10



written as Mi = {x ε N|Fi(x)}. These sets form a denumerable sequence,
but the sets of natural numbers as a whole form a continuum; each of them
corresponds to a real number. The Mi give just a denumerable sequence
of real numbers that one can diagonalise by the familiar argument of Can-
tor. Then we have a set D of natural numbers that is different from all of
the Mi. Could we describe the diagonalization procedure within arithme-
tic itself, to form an expression in the language of arithmetic that corre-
sponds to the diagonal set D, i.e., some free-variable formula G(x) such
that D = {x ε N|G(x)}?

To realise a possibility is one thing. To express provability in a formal
system inside the system itself and to construct a proposition that expres-
ses its own unprovability is, then, the real discovery. The Gödel notes show
stages of the development of his ideas. The clearest turning point is one
connected to the Königsberg conference. Before that, Gödel’s argument was
to give a truth definition for propositions of Principia Mathematica, then to
prove that all theorems are true. If the proposition that expresses its own
unprovability were provable, it would be true, hence unprovable, so it can-
not be a theorem.

Gödel saw very clearly that the truth definition is the element in his
proof that cannot be expressed within the formal system. He asked what
it was that made his proof of undecidability possible. It was the said me-
tatheorem about the truth of all the theorems, by which it could be deci-
ded that the constructed self-referential proposition is not simply false. If
that decision could be made within the system, the unprovable proposition
would follow. Therefore the truth of theorems is unprovable in the system.

The above argument is, in brief, a proof that the consistency of the sys-
tem of Principia Mathematica cannot be proved within the system, or Gödel’s
original second incompleteness theorem. His later recollections dated its
discovery to the times of the Königsberg conference. At that time, he pre-
pared the mentioned short note of his results that appeared in October 1930,
the

Some metamathematical results on definiteness with respect to decisi-
on and on freedom from contradiction

This note was published in the Anzeiger der Akademie der Wissenschaften zu
Wien, communicated by “corresponding member H. Hahn,” Gödel’s pro-
fessor.
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No trace of Gödel’s original proof of the incompleteness theorems that
uses a truth definition is left in his published article, but the idea surfaced
from other quarters. Andrzej Mostowski knew Gödel from the late 1930s,
from his stay in Vienna as recorded in Gödel’s shorthand notes on the dis-
cussions they had. After the war, Mostowski became the author of the first
book on Gödel’s incompleteness theorems, the Sentences Undecidable in For-
malized Arithmetic: An Exposition of the Theory of Kurt Gödel of 1952. There he
describes two main ways of proving incompleteness, the first called syntac-
tic and followed in Gödel’s paper, the second semantic. The latter gives (p.
10) “an exact definition of what may be called the class of true sentences,”
with Gödel’s theorem following from three conditions: “Every theorem of
(S) is true,” secondly the condition that no negation of a theorem be true,
and as third the condition by which the truth predicate is equivalent to a
condition of unprovability. A footnote on the next page states that “the idea
of the semantical proof of the incompleteness theorem is due to A. Tarski,”
the long work on the concept of truth in formalized languages of 1935.

The second series of Gödel’s notes contains, about six pages before the
Königsberg break, the following (page 300R below):

We go now into the exact definition of a concept “true proposi-
tion.” The idea of such a definition has been expressed [cancel-
led: simultaneously] independently of me by Mr A. Tarski from
Warsaw.

On the next page, we read:

Now one arrives also quite exactly at proving (through comple-
te induction) that

Each provable proposition is true.

Tarski had visited Vienna in February 1930 and gave some lectures there
that Gödel followed. A hint on their discussions is given by a letter Gödel
wrote to Bernays on 2 April 1931. One finds there a “class sign” W(x) read
as “x is a true proposition,” with truth of negation, disjunction, and universal
quantification defined in the standard way (Collected Works IV, p. 96):

The idea to define the concept of a “true proposition” along this
way has been, incidentally, developed simultaneously and in-
dependently of me by Mr A. Tarski (as I gather from an oral
communication).
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The characteristic of Gödel’s pre-Königsberg proof of the incompleteness
theorems was that he used whatever means of classical mathematics, ana-
lysis and set theory included, in metamathematics. After the Königsberg
meeting, the concept of truth and even the intuitive notion of “correct-
ness” disappeared absolutely from his notes on incompleteness: one sim-
ply doesn’t even find these words anymore, but instead an emphasis on
the constructiveness of his proofs achieved through an “arithmetization of
metamathematics” by elementary means. A hint of his original proof me-
thod is contained in the lectures Gödel gave on incompleteness in Princeton
in the spring of 1934. There is a brief heuristic discussion of an arithmetic
predicate T(zn) that expresses the “truth of the formula with number n,”
similar to the truth predicate W of his earlier writings.

There has been some lament about Gödel not acknowledging Tarski’s
approach to incompleteness. In the light of the above, the matter was dejà
vu for Gödel, and not original to Tarski. From what has come out above,
Gödel had begun work on incompleteness in May or June 1930. How does
this fit together with Tarski’s visit several months earlier, if the concept of
“true proposition” was developed simultaneously? Gödel had arranged for
an opportunity to discuss with Tarski and knew in that way about Tarski’s
ideas. In February 1930, he was in need of a truth definition for the aim that
comes out so clearly from the Königsberg lecture, namely for the comple-
teness of higher-order logic, the type theory of Russell’s Principia, to be a
well-posed problem. Such a concept would cover his system of proof in the
1928/29 Übungsheft, also to decide what axioms to accept in higher-order
logic. The topic of a truth definition was of great systematic value for Gödel
who mentions in his shorthand notes from the 1930s several times a folder
named “The concept of truth” (Mappe “Wahrheitsbegriff”).

3. FROM THE KÖNIGSBERG CONFERENCE TO VON NEUMANN’S LETTER

Among Gödel’s audience in Königsberg sat Johann von Neumann who re-
acted at once and wanted more explanations. The two had discussions at
the conference and in Berlin, where Gödel stayed for a few days immedia-
tely after the conference. The most detailed account of these events is Wang
(1996), section “Some facts about Gödel in his own words,” that describes
the first approach to incompleteness as follows (pp. 82–84):

I represented real numbers by predicates in number theory and

13



found that I had to use the concept of truth to verify the axioms
of analysis. By an enumeration of symbols, sentences, and proofs
of the given system, I quickly discovered that the concept of
arithmetic truth cannot be defined in arithmetic.
. . .

Note that this argument can be formalized to show the existence
of undecidable propositions without giving any individual in-
stances.

Gödel’s words are different from those of his notebooks of 1930; The “veri-
fication of the axioms of analysis” means that a concept of truth is establis-
hed by which the axioms turn out true and the rules of inference maintain
truth. The formulation of 1930 was that each provable proposition of Rus-
sell’s type theory is true.

Von Neumann suggested in the discussion to transform undecidability
“into a proposition about integers.” Gödel then found “the surprising result
giving undecidable propositions about polynomials.”

An edited account of the Königsberg discussion was published in the
journal Erkenntnis (vol. 2, 1931, pp. 135–151). It contained also a brief sum-
mary of the incompleteness result by Gödel with the title “Nachtrag” (ad-
dendum, pp. 149–151), written some time in 1930/31. A typewritten ver-
sion, not essentially different from the published one, is found in reel 24,
frames 240–242.

Gödel’s library loan cards show that he stayed in Berlin right after the
Königsberg meeting and that he requested again Skolem’s long paper of
1929, on 12 September from a library in Berlin. We are at the most cruci-
al turning point in Gödel’s work on incompleteness, the abandonment of
the proof idea by which all theorems of the Principia are true, proved by
methods of set theory. The first sign of this change is a set of 13 shorthand
pages, 360L to 366L, in particular page 364L in which it is stated that the
concept of “contentful correctness” can be restricted to instances of recursi-
ve predicates. These pages begin in exactly the same way as the final short-
hand version and come close to the formulations in the introductory parts
of the published article: “The development of mathematics in the direction
of greater exactness has, as is well known, led to wide areas of it being for-
malized.” Another sign of change from a set-theoretic approach that uses
the concept of truth to one that uses primitive recursive arithmetic is that
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Gödel writes ω-consistency instead of ℵ0-consistency, the latter still found
in the Anzeiger note handed by Gödel’s account in on 17 September.

Von Neumann lectured from late October 1930 on in Berlin on “Hilbert’s
proof theory.” Carl Hempel, later a very famous philosopher, recollected
the excitement created, even evidenced by contemporary letters for which
see Mancosu (1999). The account is (Hempel 2000, pp. 13–14):

I took a course there with von Neumann which dealt with Hil-
bert’s attempt to prove the consistency of classical mathema-
tics by finitary means. I recall that in the middle of the course
von Neumann came in one day and announced that he had just
received a paper from... Kurt Gödel who showed that the ob-
jectives which Hilbert had in mind and on which I had heard
Hilbert’s course in Göttingen could not be achieved at all. Von
Neumann, therefore, dropped the pursuit of this subject and de-
voted the rest of the course to the presentation of Gödel’s re-
sults. The finding evoked an enormous excitement.

These are later recollections; It is known that von Neumann got the proofs
of Gödel’s paper around the tenth of January 1931. As we shall soon see,
what von Neumann received during his lecture course are the October 1930
note with the first and second theorem stated, and the manuscript of section
4 of Gödel’s paper.

One of the few known participants in von Neumann’s lecture course
was Jacques Herbrand. He was born in 1908 and received his education at
the prestigious Ecole normale superieure of Paris. He finished his thesis Re-
cherches sur la théorie de la démonstration at the precocious age of 21 in the
spring of 1929. He went to stay for the academic year 1930–31 in Germany,
first Berlin from October 1930 on, then Hamburg and Göttingen from late
spring 1931 to July. These stays were in part prompted by his work on alge-
bra, where Emil Artin in Hamburg and Emmy Noether in Göttingen were
the leading figures. Herbrand’s life ended in a mountaineering accident in
July 1931.6

There is a letter of Herbrand’s of 28 November 1930 to the director of
the Ecole normale Ernest Vessiot in which he mentions von Neumann’s “ab-
solutely unexpected results,” then writes that for now he will write about

6 My Formal Machinery Works, section 8.3 on “two Berliners” contains a detailed account
of Herbrand’s stay in Germany and his relation to von Neumann.
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the

extremely curious results of a young Austrian mathematician
who succeeded in constructing arithmetic functions Pn with the
following properties: one calculates Pa for each number a and
finds Pa = 0, but it is impossible to prove that Pn is always
zero.

As noted above, the pre-Königsberg part of Gödel’s second notebook men-
tions that undecidable problems can have “the character of Goldbach or
Fermat.” There is a difference, though, for Goldbach’s conjecture, if false,
can be refuted by a counterexample. With Gödel’s undecidable propositi-
ons, it happens that each instance F(n) of a property of natural numbers
is provable, by which there is no counterexample. Still, ∀xF(x), classical-
ly equivalent to ¬∃x¬F(x), or the impossibility of a counterexample, need
not be provable within the system. Gödel hardly thought that Goldbach’s
conjecture would be a “Gödel sentence.”

Gödel states that he found the arithmetical form of incompleteness right
after the Königsberg meeting. Here are his own words about the change
(from Wang 1996, pp. 83–84):

To von Neumann’s question whether the proposition could be
expressed in number theory I replied: of course they can be
mapped into the integers but there would be new relations. He
believed that it could be transformed into a proposition about
integers. This suggested a simplification, but he contributed no-
thing to the proof, because the idea that it can be transformed
into integers is trivial. I should, however, have mentioned the
suggestion; otherwise too much credit would have gone to it.7

If today, I would have mentioned it. The result that the propo-
sition can be transformed into one about polynomials was very
unexpected and done entirely by myself.

Herbrand’s letter shows that von Neumann knew about the polynomial
formulation–the “arithmetic functions Pn” for which Pa = 0 is provable
for each number a–therefore the matter must have surfaced during their
discussions in Berlin.

7 The wording of Wang’s notes seems somewhat awkward here, as if Gödel needed to
protect himself against a priority claim by von Neumann, deceased two decades earlier.
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Looking at the notebooks, one realizes that Gödel’s “arithmetization of
metamathematics” was initially that natural numbers can be used as the
basic symbols of a formal system and that formulas then correspond to
series of numbers. This representation appears first on page 294R:

We replace the basic signs of the Principia (variables of diffe-
rent types and logical constants) in a one-to-one way by natural
numbers, and the formulas through finite sequences of natural
numbers (functions over segments of the number sequence of
natural numbers).8

The famous Gödel numbering through the uniqueness of prime decompo-
sition is seen first on page 293R, but just in the margin. There is no explana-
tion of these expressions, 2x3y5z7u11v, 2u3v, and pn, the last the n-th prime,
by which they must be later additions.

Incidentally, Gödel’s page 299L gives a clue to the origin of the idea
of coding formulas and proofs through the uniqueness of prime decom-
position: Gödel had used the numbers 0–7 as arithmetic representations of
his basic signs, then needed an unlimited supply of numbers to represent
variables of all finite types. He took numbers greater than 7 divisible by
exactly one prime as propositional variables, and those divisible by exactly
k + 2 primes as variables of type k.

The cancelled page 329L, written well before the Königsberg meeting,
develops the idea of Gödel numbering, with the comment that by the map-
ping of series of numbers to numbers through a product of powers of pri-
mes, “metamathematical concepts earlier defined that concern the system
S, go over into properties and relations between natural numbers.” This
mapping is put aside, however, and series of numbers continue to repre-
sent formulas and proofs until the final shorthand version that was written
after the Königsberg meeting. There, on pages 254L-R, Gödel writes that by
taking products of powers of primes, “a natural number is associated in a
one-to-one way, not just to each basic sign but also to each finite series of
basic signs” – an idea described as “trivial” in Gödel’s recollections about
his meeting with von Neumann.

8 The German is: Belegungen von Abschnitten der natürlichen Zahlenreihe mit
natürlichen Zahlen. The English wording is from the printed article in Van Heijenoort
(1967), as approved by Gödel.
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Eight days before Herbrand’s letter, von Neumann had written to Gödel
about his proof:

It can be expressed in a formal system that contains arithme-
tic, on the basis of your considerations, that the formula 1 = 2
cannot be the endformula in a proof that starts from the axioms
of this system—and in this formulation in fact a formula of the
formal system mentioned. Let it be called W.
. . .

I show now: W is always unprovable in systems free from con-
tradiction, i.e., a possible effective proof of W could certainly be
transformed into a contradiction.

Gödel must have explained how undecidable propositions are constructed
to von Neumann in Berlin, not just a blunt statement of incompleteness,
namely the way in which the provability of a formula in a system can be
expressed as a formula of that system, and likewise with unprovability. In
particular, the unprovability of a contradiction, say 1 = 2, becomes expres-
sed through an arithmetic formula.

Von Neumann writes next that if Gödel is interested, he would send the
details once they are ready for print. He asks further when Gödel’s treatise
will appear and when he can have the proofs, with the wish to relate his
work “in content and notation to yours, and even the wish for my part to
publish sooner rather than later.”

Herbrand had explained the post-Königsberg statement of incomplete-
ness in terms of polynomials to Vessiot, and five days later he writes ano-
ther letter, to his friend Claude Chevalley, in the worst handwriting imagi-
nable, but full of sparkling ideas that seem to spring from nothing. In the
letter, Herbrand explains von Neumann’s presentation of the incompleten-
ess theorem as follows:

Let T be a theory that contains arithmetic. Let us enumerate all
the demonstrations in T; let us enumerate all the propositions
Q x; and let us construct a function P x y z that is zero if and only
if demonstration number x demonstrates Q y, Q being proposi-
tion number z.

We find that P x y z is an effective function that one can construct
with arithmetic functions that are easily definable.
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Let β be the number of the proposition (x) ∼ P x y y (∼ means:
not); let A x be the proposition ∼P x β β

A the proposition (x).A x (A x is always true)
A x, equivalent to: demonstration x does not demonstrate the
proposition β; so

A x. ≡ . demonstration x does not demonstrate A

Let us enunciate:

A x. ≡ . ∼D(x, A)

1) A x is true (for each cipher x); without it D(x, A) would be
true; therefore A; therefore A x; therefore ∼ D(x, A).

2) A cannot be demonstrated
for if one demonstrates A, A x would be false; contradiction.

Therefore: A 0, A 1, A 2 . . . are true

(x)A x cannot be demonstrated in T

Next in Herbrand’s letter comes the striking second incompleteness theo-
rem. With D(x, A) standing as above for “proof number x demonstrates
proposition A,” Herbrand writes in the letter the key formulas:

3) ∼A → D(x, A) et D(z,∼A)

therefore: ∼ (D(x, A) et D(z,∼A)) → A

The conclusion, for the unprovable proposition A, is that “if one proves
consistency, one proves A”: Consistency requires that for any proposition
A, there do not exist proofs of A and∼A. This inexistence can be expressed
as the formula ∼∃x∃z(D(x, A) et D(z,∼A)), or in a free-variable formula-
tion, as ∼ (D(x, A) et D(z,∼A)) for each x and z.

The contrapositive of Herbrand’s formula 3) states that consistency im-
plies A, a formulation taken over from Gödel as we shall see.

Let us now turn to Gödel’s final shorthand version of the incompleten-
ess paper. It occupies the first 39 pages of a notebook (document 040014),
with a beginning that is very similar to the typewritten version. The impres-
sive list of 45 recursive relations in the published paper matches a similar
list of 43 items, some ten pages, followed by the upshot of the laborious
work in the form of a theorem:
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VI. Each recursive relation is arithmetic.

After the text proper of the manuscript for the article ends, there are two
attempts at a formulation of a title, like this:

On the existence of undecidable mathematical propositions in
the system of Principia Mathematica

On unsolvable mathematical problems in the system of Principia
Mathematica

There follow five pages with formulas, recursive definitions of functions,
elementary computations, and a stylish layout for a lecture on the comple-
teness of predicate logic given in Vienna on 28 November. Next the title
“Lieber Herr von Neumann” hits the eye, with an unfinished letter draft
that contains:

Dear Mr von Neumann

Many thanks for your letter of [20 November]. Unfortunately I
have to inform you that I have been in possession of the result
you communicated since about three months. It is also found
in the attached offprint of a communication to the Academy of
Sciences. I had already finished the manuscript for this com-
munication before my departure for Königsberg and had pre-
sented it to Carnap. I gave it over to Hahn for publication in
the Anzeiger of the Academy on 17 September. [Cancelled: The
reason why I didn’t inform you in any way [written heavily
over: didn’t tell anything] of my second result in Königsberg
is that the precise proof is not suited to oral communications
and that an approximate indication could easily arouse doubts
about [heavily cancelled: correctness] executability (as with the
first) that would not appear convincing.] Concerning the publi-
cation of this matter, there will be given only a shorter sketch of
the proof of impossibility of a proof of freedom from contradic-
tion in the Monatsheft that will appear in January9 (the main part
of this treatise will be filled with the proof of existence of unde-
cidable sentences). The detailed carrying through of the proof

9 [Despite its name, the Monatshefte (monthly notices) appeared in four yearly issues.
January has been changed into “early 1931.”]
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