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Preface

A system is said to have a delay when the rate of variation in the system
state depends on past states. Such a system is called a time-delay system.
Delays appear frequently in real-world engineering systems. They are often a
source of instability and poor performance, and greatly increase the difficulty
of stability analysis and control design. So, many researchers in the field of
control theory and engineering study the robust control of time-delay systems.
The study of such systems has been very active for the last 20 years; and new
developments, such as fixed model transformations based on the Newton-
Leibnitz formula and parameterized model transformations, are continually
appearing. Although these methods are a great improvement over previous
ones, they still have their limitations.

We recently devised a method called the free-weighting-matrix (FWM)
approach for the stability analysis and control synthesis of various classes
of time-delay systems; and we obtained a series of not so conservative delay-
dependent stability criteria and controller design methods. This book is based
primarily on our recent research. It focuses on the stability analysis and ro-
bust control of various time-delay systems, and includes such topics as sta-
bility analysis, stabilization, control design, and filtering. The main method
employed is the FWM approach. The effectiveness of this method and its
advantages over other existing ones are proven theoretically and illustrated
by means of various examples. The book will give readers an overview of the
latest advances in this active research area and equip them with a state-of-
the-art method for studying time-delay systems.

This book is a useful reference for control theorists and mathematicians
working with time-delay systems, engineering designing controllers for plants
or systems with delays, and for graduate students interested in robust control
theory and/or its application to time-delay systems.
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Prof. Li Yu of Zhejiang University of Technology, Prof. Xinping Guan of
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1. Introduction

In many physical and biological phenomena, the rate of variation in the sys-
tem state depends on past states. This characteristic is called a delay or a time
delay, and a system with a time delay is called a time-delay system. Time-
delay phenomena were first discovered in biological systems and were later
found in many engineering systems, such as mechanical transmissions, fluid
transmissions, metallurgical processes, and networked control systems. They
are often a source of instability and poor control performance. Time-delay
systems have attracted the attention of many researchers [1–3] because of
their importance and widespread occurrence. Basic theories describing such
systems were established in the 1950s and 1960s; they covered topics such
as the existence and uniqueness of solutions to dynamic equations, stability
theory for trivial solutions, etc. That work laid the foundation for the later
analysis and design of time-delay systems.

The robust control of time-delay systems has been a very active field for
the last 20 years and has spawned many branches, for example, stability
analysis, stabilization design, H∞ control, passive and dissipative control,
reliable control, guaranteed-cost control, H∞ filtering, Kalman filtering, and
stochastic control. Regardless of the branch, stability is the foundation. So,
important developments in the field of time-delay systems that explore new
directions have generally been launched from a consideration of stability as
the starting point. This chapter reviews methods of studying the stability
of time-delay systems and points out their limitations, and then goes on to
describe a new method called the free-weighting-matrix (FWM) approach.

1.1 Review of Stability Analysis for Time-Delay Systems

Stability is a very basic issue in control theory and has been extensively dis-
cussed in many monographs [4–6]. Research on the stability of time-delay
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systems began in the 1950s, first using frequency-domain methods and later
also using time-domain methods. Frequency-domain methods determine the
stability of a system from the distribution of the roots of its characteris-
tic equation [7] or from the solutions of a complex Lyapunov matrix func-
tion equation [8]. They are suitable only for systems with constant delays.
The main time-domain methods are the Lyapunov-Krasovskii functional and
Razumikhin function methods [1]. They are the most common approaches
to the stability analysis of time-delay systems. Since it was very difficult to
construct Lyapunov-Krasovskii functionals and Lyapunov functions until the
1990s, the stability criteria obtained were generally in the form of existence
conditions; and it was impossible to derive a general solution. Then, Riccati
equations, linear matrix inequalities (LMIs) [9], and Matlab toolboxes came
into use; and the solutions they provided were used to construct Lyapunov-
Krasovskii functionals and Lyapunov functions. These time-domain methods
are now very important in the stability analysis of linear systems. This section
reviews methods of examining stability and their limitations.

Consider the following linear system with a delay:⎧⎪⎨⎪⎩
ẋ(t) = Ax(t) +Adx(t− h),

x(t) = ϕ(t), t ∈ [−h, 0],
(1.1)

where x(t) ∈ R
n is the state vector; h > 0 is a delay in the state of the system,

that is, it is a discrete delay; ϕ(t) is the initial condition; and A ∈ R
n×n and

Ad ∈ R
n×n are the system matrices. The future evolution of this system

depends not only on its present state, but also on its history. The main
methods of examining its stability can be classified into two types: frequency-
domain and time-domain.

Frequency-domain methods: Frequency-domain methods provide the
most sophisticated approach to analyzing the stability of a system with no
delay (h = 0). The necessary and sufficient condition for the stability of such
a system is λ(A+Ad) < 0. When h > 0, frequency-domain methods yield the
result that system (1.1) is stable if and only if all the roots of its characteristic
function,

f(λ) = det(λI −A−Ade−hλ) = 0, (1.2)

have negative real parts. However, this equation is transcendental, which
makes it difficult to solve. Moreover, if the system has uncertainties and a
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time-varying delay, the solution is even more complicated. So the use of a
frequency-domain method to study time-delay systems has serious limita-
tions.

Time-domain methods: Time-domain methods are based primarily on
two famous theorems: the Lyapunov-Krasovskii stability theorem and the
Razumikhin theorem. They were established in the 1950s by the Russian
mathematicians Krasovskii and Razumikhin, respectively. The main idea is
to obtain a sufficient condition for the stability of system (1.1) by constructing
an appropriate Lyapunov-Krasovskii functional or an appropriate Lyapunov
function. This idea is theoretically very important; but until the 1990s, there
was no good way to implement it. Then the Matlab toolboxes appeared and
made it easy to construct Lyapunov-Krasovskii functionals and Lyapunov
functions, thus greatly promoting the development and application of these
methods. Since then, significant results have continued to appear one after an-
other (see [10] and references therein). Among them, two classes of sufficient
conditions have received a great deal of attention. One class is independent
of the length of the delay, and its members are called delay-independent con-
ditions. The other class makes use of information on the length of the delay,
and its members are called delay-dependent conditions.

The Lyapunov-Krasovskii functional candidate is generally chosen to be

V1(xt) = xT(t)Px(t) +
∫ t

t−h

xT(s)Qx(s)ds, (1.3)

where P > 0 and Q > 0 are to be determined and are called Lyapunov
matrices; and xt denotes the translation operator acting on the trajectory:
xt(θ) = x(t+θ) for some (non-zero) interval [−h, 0] (θ ∈ [−h, 0]). Calculating
the derivative of V1(xt) along the solutions of system (1.1) and restricting it
to less than zero yield the delay-independent stability condition of the system:⎡⎢⎣PA+ATP +Q PAd

∗ −Q

⎤⎥⎦ < 0. (1.4)

Since this inequality is linear with respect to the matrix variables P and Q,
it is called an LMI. If the LMI toolbox of Matlab yields solutions to LMI
(1.4) for these variables, then according to the Lyapunov-Krasovskii stability
theorem, system (1.1) is asymptotically stable for all h � 0; and furthermore,
an appropriate Lyapunov-Krasovskii functional is obtained.
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Since delay-independent conditions contain no information on a delay,
they are overly conservative, especially when the delay is small. This con-
sideration has given rise to another important class of stability conditions,
namely, delay-dependent conditions, which do contain information on the
length of a delay. First of all, they assume that system (1.1) is stable when
h = 0. Since the solutions of the system are continuous functions of h, there
must exist an upper bound, h̄, on the delay such that system (1.1) is stable
for all h ∈ [0, h̄]. Thus, the maximum possible upper bound on the delay
is the main criterion for judging the conservativeness of a delay-dependent
condition.

The hot topics in control theory are delay-dependent problems in stability
analysis, robust control,H∞ control, reliable control, guaranteed-cost control,
saturation input control, and chaotic-system control.

Since the 1990s, the main approach to the study of delay-dependent sta-
bility has involved the addition of a quadratic double-integral term to the
Lyapunov-Krasovskii functional (1.3):

V (xt) = V1(xt) + V2(xt), (1.5)

where

V2(xt) =
∫ 0

−h

∫ t

t+θ

xT(s)Zx(s)dsdθ.

The derivative of V2(xt) is

V̇2(xt) = hxT(t)Zx(t) −
∫ t

t−h

xT(s)Zx(s)ds. (1.6)

Delay-dependent conditions can be obtained from the Lyapunov-Krasovskii
stability theorem. However, how to deal with the integral term on the right
side of (1.6) is a problem. So far, three methods of studying delay-dependent
problems have been devised: the discretized Lyapunov-Krasovskii functional
method, fixed model transformations, and parameterized model transforma-
tions.

The main use of the discretized Lyapunov-Krasovskii functional method
is to study the stability of linear systems and neutral systems with a constant
delay. It discretizes the Lyapunov-Krasovskii functional, and the results can
be written in the form of LMIs [11–15]. The advantage of doing this is that
the estimate of the maximum allowable delay that guarantees the stability
of the system is very close to the actual value. The drawbacks are that it is
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computationally expensive and that it cannot easily handle systems with a
time-varying delay. Consequently, this method has not been widely studied
or used since it was first proposed by Gu in 1997 [11].

The primary way of dealing with the integral term on the right side of
equation (1.6) is by using a fixed model transformation. It transforms a sys-
tem with a discrete delay into a new system with a distributed delay (the
integral term in (1.10)). The following inequalities play an important role in
deriving the stability conditions:

Basic inequality: ∀a, b ∈ R
n and ∀R > 0,

−2aTb � aTRa+ bTR−1b. (1.7)

Park’s inequality [16]: ∀a, b ∈ R
n, ∀R > 0, and ∀M ∈ R

n×n,

−2aTb �

⎡⎣a
b

⎤⎦T ⎡⎣R RM

∗ (MTR+ I)R−1(RM + I)

⎤⎦⎡⎣a
b

⎤⎦ . (1.8)

Moon et al.’s inequality [17]: ∀a ∈ R
na , ∀b ∈ R

nb , ∀N ∈ R
na×nb , and

for X ∈ R
na×na , Y ∈ R

na×nb , and Z ∈ R
nb×nb , if

⎡⎣X Y

∗ Z

⎤⎦ � 0, then

−2aTNb �

⎡⎣a
b

⎤⎦T ⎡⎣X Y −N
∗ Z

⎤⎦⎡⎣a
b

⎤⎦ . (1.9)

The basic features of the typical model transformations discussed in [18]
are described below.

Model transformation I

ẋ(t) = (A+Ad)x(t)−Ad

∫ t

t−h

[Ax(s) +Adx(s− h)]ds. (1.10)

The following Lyapunov-Krasovskii functional is used to determine a
delay-dependent stability condition:

V (xt) = V1(xt) + V2(xt) + V3(xt), (1.11)

where

V3(xt) =
∫ −h

−2h

∫ t

t+θ

xT(s)Z1x(s)dsdθ.
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The derivative of V (xt) along the solutions of system (1.10) is

V̇ (xt) = Ψ + η1 + η2 −
∫ t

t−h

xT(s)Zx(s)ds −
∫ t−h

t−2h

xT(s)Z1x(s)ds,

(1.12)

where

Ψ = xT(t)[2P (A+Ad) +Q+ h(Z + Z1)]x(t) − xT(t− h)Qx(t− h),

η1 = −2
∫ t

t−h

xT(t)PAdAx(s)ds,

η2 = −2
∫ t−h

t−2h

xT(t)PAdAdx(s)ds.

η1 and η2 are called cross terms.
Using the basic inequality (1.7) yields

η1 � hxT(t)PAdAZ
−1ATAT

d Px(t) +
∫ t

t−h

xT(s)Zx(s)ds,

η2 � hxT(t)PAdAdZ
−1
1 AT

dA
T
d Px(t) +

∫ t−h

t−2h

xT(s)Z1x(s)ds.

Applying these two inequalities to (1.12) eliminates the quadratic integral
terms, and a delay-dependent condition is established.

This process has two key points:

(1) The purpose of a model transformation is to bring the integral term into
the system equation so as to produce both cross terms and quadratic
integral terms in the derivative of a Lyapunov-Krasovskii functional along
the solutions of the system.

(2) The bounding of the cross terms, η1 and η2, eliminates the quadratic
integral terms in the derivative of the Lyapunov-Krasovskii functional,
thereby yielding a delay-dependent condition.

Model transformation II

d
dt

[
x(t) +Ad

∫ t

t−h

x(s)ds
]

= (A+Ad)x(t). (1.13)

In 2000 and 2001, Prof. Gu [19, 20] pointed out that, since model transfor-
mations I and II introduce additional dynamics into the transformed system,
the transformed system is not equivalent to the original one. Thus, these
transformations were soon replaced by others.
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Model transformation III

ẋ(t) = (A+Ad)x(t)−Ad

∫ t

t−h

ẋ(s)ds. (1.14)

In this case, the Lyapunov-Krasovskii functional is

V (xt) = V1(xt) + V4(xt), (1.15)

where

V4(xt) =
∫ 0

−h

∫ t

t+θ

ẋT(s)Zẋ(s)dsdθ.

The derivative of V (xt) is

V̇ (xt) = Φ+ η3 −
∫ t

t−h

ẋT(s)Zẋ(s)ds, (1.16)

where

Φ = xT(t)[2P (A+Ad) +Q]x(t)− xT(t− h)Qx(t− h) + hẋT(t)Zẋ(t),

η3 = −2
∫ t

t−h

xT(t)PAdẋ(s)ds.

Just as for model transformation I, the bounding of the cross term, η3, elim-
inates the quadratic integral terms in the derivative of Lyapunov-Krasovskii
functional (1.16), thereby producing a delay-dependent condition.

Model transformation III was presented in [16]. The basic idea is the same
as that of model transformation I, with the difference being that, after model
transformation III, the transformed system is equivalent to the original one.
In addition, after the transformation of system (1.1) into (1.14), when dealing
with the term hẋT(t)Rẋ(t) in the derivative of V (xt), system (1.1) is used
as a substitute for system (1.14). That is, to obtain system (1.14), the state-
delay term x(t− h) in system (1.1) is replaced by using the Newton-Leibnitz
formula; but x(t − h) is not replaced in the derivative of V (xt). This incon-
sistency in the elimination of the integral terms leads to conservativeness.

In 2001, Fridman devised the following descriptor model transformation
[21], which attracted a great deal of attention in subsequent years.

Model transformation IV⎧⎪⎨⎪⎩
ẋ(t) = y(t),

y(t) = (A+Ad)x(t)−Ad

∫ t

t−h

y(s)ds.
(1.17)
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Fridman employed the following generalized Lyapunov-Krasovskii functional:

V (xt) = ξT(t)EPξ(t) +
∫ t

t−h

xT(s)Qx(s)ds +
∫ 0

−h

∫ t

t+θ

yT(s)Zy(s)dsdθ,

(1.18)

where

ξ(t) =

⎡⎣x(t)
y(t)

⎤⎦ , E =

⎡⎣I 0

0 0

⎤⎦ , P =

⎡⎣P1 0

P2 P3

⎤⎦ .
The derivative of V (xt) along the solutions of system (1.17) is

V̇ (xt) = Σ + η4 −
∫ t

t−h

yT(s)Zy(s)ds, (1.19)

where

Σ = ξT(t)

⎧⎨⎩2PT

⎡⎣ 0 I

A+Ad −I

⎤⎦ +

⎡⎣Q 0

0 hZ

⎤⎦
⎫⎬⎭ ξ(t)− xT(t− h)Qx(t− h),

η4 = −2
∫ t

t−h

ξT(t)PT

⎡⎣ 0

Ad

⎤⎦ y(s)ds.
As before, the bounding of the cross term, η4, eliminates the quadratic inte-
gral terms in the derivative of Lyapunov-Krasovskii functional (1.19), thereby
producing a delay-dependent condition.

There are four important points regarding the development of model
transformations.

(1) When double-integral terms are introduced into the Lyapunov-Krasovskii
functional to produce a delay-dependent stability condition, it results in
quadratic integral terms appearing in the derivative of that functional.

(2) Model transformations emerged as a way of dealing with those quadratic
integral terms.

(3) More specifically, the purpose of a model transformation is to bring the
integral terms into the system equation so as to produce cross terms and
quadratic integral terms in the derivative of the Lyapunov-Krasovskii
functional.

(4) Then, the bounding of the cross terms eliminates the quadratic integral
terms.
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The basic feature of all model transformations is that they produce cross
terms in the derivative of the Lyapunov-Krasovskii functional. However, since
no suitable bounding methods have yet been discovered, the bounding of cross
terms results in conservativeness; and attempts to reduce the conservativeness
have naturally focused on this point. For example, in 1999, Park extended
the basic inequality (1.7) to produce Park’s inequality [16]. In 2001, Moon et
al. explored ideas in the proof of Park’s inequality to extend it, resulting in
Moon et al.’s inequality [17], which has greater generality.

The use of Park’s or Moon et al.’s inequality in combination with model
transformation III or IV brought forth a series of delay-dependent conditions
with less conservativeness that are very useful in stability analysis and control
synthesis.

However, model transformations III and IV still have limitations: In a sta-
bility or performance analysis, they basically use the Newton-Leibnitz for-
mula to replace delay terms in the derivative of the Lyapunov-Krasovskii
functional; but not all the delay terms are necessarily replaced. For example,
in [17], the derivative of the Lyapunov-Krasovskii functional is

V̇ (xt) = 2xT(t)P ẋ(t) + · · ·+ hẋT(t)Zẋ(t) + · · · , (1.20)

where P > 0 and Z > 0 are matrices to be determined in the Lyapunov-
Krasovskii functional. When dealing with the term x(t − h) (which appears
when ẋ(t) is replaced with the system equation) in V̇ (xt), the x(t − h) in
2xT(t)P ẋ(t) is replaced, but the x(t−h) in hẋT(t)Zẋ(t) is not. This treatment
is equivalent to adding the following zero-equivalent term to the derivative
of the Lyapunov-Krasovskii functional:

2xT(t)PAd

[
x(t) − x(t− h)−

∫ t

t−h

ẋ(s)ds
]
. (1.21)

Fixed weighting matrices are used to express the relationships among the
terms of the Newton-Leibnitz formula in (1.21). That is, the weighting matrix
of x(t) is PAd and that of x(t − h) is zero. Similarly, in [18, 22–24], which
employ the descriptor model transformation, the delay term x(t− h) in

2
[
xT(t), ẋT(t)

] ⎡⎣P1 0

P2 P3

⎤⎦T ⎡⎣ 0

Adx(t − h)

⎤⎦
in the derivative of the Lyapunov-Krasovskii functional is replaced with
x(t)− ∫ t

t−h ẋ(s)ds. This treatment is equivalent to adding the following zero-
equivalent term to the derivative of the Lyapunov-Krasovskii functional:
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2
[
xT(t)PT

2 Ad + ẋT(t)PT
3 Ad

] [
x(t) −

∫ t

t−h

ẋ(s)ds− x(t− h)
]
. (1.22)

Here, fixed weighting matrices are also used to express the relationships
among the terms of Newton-Leibnitz formula. (The weighting matrix of x(t)
is PT

2 Ad, that of ẋ(t) is PT
3 Ad, and that of x(t − h) is zero). This substitu-

tion method is currently used in model transformations III and IV to obtain
a delay-dependent condition. Note that, when weighting matrices are used
for the above purpose, optimal weights do exist and the values should not be
chosen simply for convenience. However, no effective way of determining the
weights has yet been devised.

The chief feature of a parameterized model transformation [25–28] is the
division of the delay term of system (1.1) into two parts: a delay-independent
one and one to which a fixed model transformation is applied. That trans-
forms system (1.1) into

ẋ(t) = Ax(t) + (Ad − C)x(t − h) + Cx(t − h), (1.23)

where C is a matrix parameter to be determined. In this way, a parameterized
model transformation is combined with a fixed model transformation; so the
limitations of the latter remain. On the other hand, although an effective
approach to matrix decomposition was presented by Han in [28] (Remark 7
on page 378), three undetermined matrices have to be equal, which leads to
unavoidable conservativeness.

The stabilization problem is closely related to stability. Stabilization in-
volves finding a feedback controller that stabilizes the closed-loop system,
with the main feedback schemes being state and output feedback. Methods
of stability analysis include both frequency- and time-domain approaches,
but the latter are more commonly used for stabilization problems because
the former do not lend themselves readily to solving such problems. For syn-
thesis problems (such as delay-dependent stabilization and control), there is
no effective controller synthesis algorithm, even for simple state feedback;
solutions are even more difficult for output feedback.

The main problem is that, even if model transformation I or II is used
to derive an LMI-based controller synthesis algorithm, they both introduce
additional eigenvalues into the original system, as mentioned above; so the
transformed system is not equivalent to the original one. Moreover, they em-
ploy conservative vector inequalities. So, they have been replaced by model
transformations III and IV. However, when using either of them to solve a
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synthesis problem, the design of the controller depends on one or more non-
linear matrix inequalities (NLMIs). There are two main methods of solving
this type of inequality: One is the iterative algorithm of Moon et al. [17],
who used it on a robust stabilization problem. [23,24] also used it on an H∞
control problem. This method yields a small controller gain, which is easy
to implement; but the solutions are suboptimal [17]. The other is the widely
used parameter-tuning method of Fridman et al. [18,22,29–34]. It transforms
the NLMI(s) into an LMI(s) by using scalar parameters to set one or more un-
determined matrices in the NLMI(s) to specific forms; and then the tuning of
those parameters produces a controller. This method also yields a suboptimal
solution, and experience is required to properly tune the parameters.

1.2 Introduction to FWMs

In Section 1.1, we saw that the method of Moon et al. [17] adds the equation
(1.21) to V̇ (xt); and the descriptor model transformation [18, 22–24, 28–35]
adds the term (1.22) to it. The difference is that the weighting matrices
of terms such as x(t) and ẋ(t) are different, but they are all constant. For
example, in Moon et al. [17], the weighting matrix of x(t) is PAd, where
Ad is a coefficient matrix and P is a Lyapunov matrix. P is closely related
to other matrices and cannot be freely chosen. For other terms, also, the
weighting matrix is constant (for example, for x(t− h) it is zero). Moreover,
in the descriptor model transformation, they are also constant. This is where
FWMs come in. In equations (1.21) and (1.22), the weighting matrices of
x(t), ẋ(t), and x(t− h) are replaced by unknown FWMs. From the Newton-
Leibnitz formula, the following equation is true for any matrices N1 and N2

with appropriate dimensions:

2
[
xT(t)N1 + xT(t− h)N2

] [
x(t)−

∫ t

t−h

ẋ(s)ds− x(t− h)
]

= 0. (1.24)

Now, we add the left side of this equation to the derivative of the Lyapunov-
Krasovskii functional. The fact that N1 and N2 are free and that their opti-
mal values can be obtained by solving LMIs overcomes the conservativeness
arising from the use of fixed weighting matrices [36–43].

On the other hand, since the two sides of the system equation are equal,
FWMs thus express the relationships among the terms of that equation. That
is, from system equation (1.1), the following equation is true for any matrices
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T1 and T2 with appropriate dimensions:

2
[
xT(t)T1 + ẋT(t)T2

]
[ẋ(t)−Ax(t) −Adx(t− h)] = 0. (1.25)

And from the Newton-Leibnitz formula, the following equation is true for any
matrices Ni, i = 1, 2, 3 with appropriate dimensions:

2
[
xT(t)N1 + ẋT(t)N2 + xT(t− h)N3

] [
x(t)−

∫ t

t−h

ẋ(s)ds− x(t− h)
]

= 0.

(1.26)

Reserving the term ẋ(t) in the derivative of the Lyapunov-Krasovskii func-
tional and adding the left sides of these two equations to the derivative pro-
duce another type of result; Chapter 3 theoretically proves the equivalence
of these two methods. This shows that the descriptor model transformation
of Fridman et al. is a special case of the FWM approach. Furthermore, this
treatment in combination with a parameter-dependent Lyapunov-Krasovskii
functional is easily extended to deal with the delay-dependent stability of
systems with polytopic-type uncertainties [44–47].

1.3 Outline of This Book

This book is organized as follows:
Chapter 1 reviews research on the stability of time-delay systems and

describes the free-weighting-matrix approach.
Chapter 2 provides the basic knowledge and concepts on the stability of

time-delay systems that are needed in later chapters.
Chapter 3 deals with linear systems with a time-varying delay. FWMs are

used to express the relationships among the terms in the Newton-Leibnitz for-
mula, and delay-dependent stability conditions are derived. The criteria are
then extended to delay-dependent and rate-independent stability conditions
without any limitations on the derivative of the delay. Two classes of crite-
ria are obtained for two different treatments of the term ẋ(t) (retaining it
or replacing it with the system equation) in the derivative of the Lyapunov-
Krasovskii functional; and their equivalence is proved. On this basis, the
criteria are extended to systems with time-varying structured uncertainties.
Furthermore, since retaining the term ẋ(t) allows the Lyapunov matrices and
system matrices to readily be separated, this treatment in combination with
a parameter-dependent Lyapunov-Krasovskii functional is easily extended to
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deal with the delay-dependent stability of systems with polytopic-type uncer-
tainties. Finally, systems with a time-varying delay are investigated based on
an improved FWM (IFWM) approach that yields less conservative results.

Chapter 4 focuses on systems with multiple constant delays. For a system
with two delays, delay-dependent criteria are derived by using the FWM
approach to take the relationship between the delays into account. When
the delays are equal, the criteria are equivalent to those for a system with
a single delay. This idea is extended to the derivation of delay-dependent
stability criteria for a system with multiple delays.

Chapter 5 investigates neutral systems. The FWM approach is used to an-
alyze the discrete-delay-dependent and neutral-delay-independent stability of
a neutral system with a time-varying discrete delay. Delay-dependent stability
criteria for neutral systems are derived for identical discrete and neutral de-
lays using the FWM approach and using that approach in combination with a
parameterized model transformation and an augmented Lyapunov-Krasovskii
functional, respectively. Again based on the FWM approach, discrete-delay-
and neutral-delay-dependent stability criteria are obtained for a neutral sys-
tem with different discrete and neutral delays. It is shown that these criteria
include those for identical discrete and neutral delays as a special case.

Chapter 6 deals with the stabilization of linear systems with a time-
varying delay. Based on the delay-dependent stability criteria obtained in
Chapter 3, a static-state-feedback controller that stabilizes the system is
designed by an iterative method that uses the cone complementarity lin-
earization (CCL) algorithm or the improved CCL (ICCL) algorithm that we
devised by using a new stop condition, along with a method of adjusting
the parameters. In addition, an LMI-based method of controller design is
developed from a delay-dependent and rate-independent stability condition.

Chapter 7 employs the IFWM approach to investigate the output-feedback
control of a linear discrete-time system with a time-varying interval delay.
The delay-dependent stability is first analyzed by a new method of estimat-
ing the upper bound on the difference of a Lyapunov function that does not
ignore any terms; and based on the stability criterion, a design criterion for a
static-output-feedback (SOF) controller is derived. Since the conditions thus
obtained for the existence of admissible controllers are not expressed strictly
in terms of LMIs, the ICCL algorithm is employed to solve the nonconvex
feasibility SOF control problem. Furthermore, the problem of designing a
dynamic-output-feedback (DOF) controller is formulated as one of designing
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an SOF controller, and a DOF controller is obtained by transforming the
design problem into one for an SOF controller.

Chapter 8 concerns the design of anH∞ controller for systems with a time-
varying interval delay. The IFWM approach is used to devise an improved
delay-dependent bounded real lemma (BRL). A method of designing an H∞
controller is given that employs the ICCL algorithm.

Chapter 9 focuses on the design of an H∞ filter for both continuous-time
and discrete-time systems with a time-varying delay. The IFWM approach
is used to carry out a delay-dependent H∞ performance analysis for error
systems. The resulting criteria are extended to systems with polytopic-type
uncertainties. Based on the results of the analysis, H∞ filters are designed in
terms of LMIs.

Chapter 10 discusses stability problems for neural networks with time-
varying delays. First, the stability of neural networks with multiple time-
varying delays is considered; and the FWM approach is used to derive a
delay-dependent stability criterion, from which both a delay-independent
and rate-dependent criterion, and a delay-dependent and rate-independent
criterion are obtained as special cases. Next, the IFWM approach is used
to establish stability criteria for neural networks with a time-varying interval
delay. Moreover, the FWM and IFWM approaches are used to investigate the
exponential stability of neural networks with a time-varying delay. Finally,
the IFWM approach is used to deal with the exponential stability of a class
of discrete-time recurrent neural networks with a time-varying delay.

Chapter 11 shows how the IFWM approach can be used to study the
asymptotic stability of a Takagi-Sugeno (T-S) fuzzy system with a time-
varying delay. By considering the relationships among the time-varying delay,
its upper bound, and their difference, and without ignoring any useful terms
in the derivative of the Lyapunov-Krasovskii functional, an improved LMI-
based asymptotic-stability criterion is obtained for a T-S fuzzy system with
a time-varying delay. Then the criterion is extended to a T-S fuzzy system
with time-varying structured uncertainties.

Chapter 12 investigates the problem of designing a controller for a net-
worked control system (NCS). The IFWM approach is used to derive an
improved stability criterion for a networked closed-loop system. This leads to
the establishment of a method of designing a state-feedback controller based
on the ICCL algorithm.
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Chapter 13 concerns the delay-dependent stability of a stochastic system
with a delay. The robust stability of an uncertain stochastic system with a
time-varying delay is discussed; and the exponential stability of a stochastic
Markovian jump system with nonlinearity and a time-varying delay is inves-
tigated. Less conservative results are established using the IFWM approach.

Chapter 14 investigates the stability of nonlinear systems with delays.
First, for Lur’e control systems with multiple nonlinearities and a constant
delay, LMI-based necessary and sufficient conditions for the existence of a
Lyapunov-Krasovskii functional in the extended Lur’e form that ensures the
absolute stability of the system are obtained and extended to systems with
time-varying structured uncertainties. Then, the FWM approach is used to
derive delay-dependent criteria for the absolute stability of a Lur’e control
system with a time-varying delay. Finally, the IFWM approach is used to
discuss the stability of a system with nonlinear perturbations and a time-
varying interval delay. Less conservative delay-dependent stability criteria
are established because the range of the delay is taken into account and an
augmented Lyapunov-Krasovskii functional is used.
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