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Not only is the universe stranger than we imagine, it is stranger than we 
can imagine...

Sir Arthur Eddington



This book is dedicated to the memory of Emmy Noether (1882−1935), who made many 

brilliant contributions to the world of Mathematics and whose eponymous theorem 

changed the world of Physics forever.

 

Amalie Emmy Noether, date unknown but prior to entering Göttingen University in 
1915. Renowned 20th century mathematician Norbert Wiener asserted: “Leaving all 
questions of sex aside, she is one of the ten or twelve leading mathematicians of the pres-
ent generation in the entire world.” (Image in public domain.)
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Foreword

On a sunny day, one million years ago, our world already looked much like it does 
now. There were mountains, forests, and deserts, and they were inhabited by plants 
and animals, much like it is today. But something very special was happening 
among some small groups of primates. They had grown to become more intelli-
gent than any other animal, and they noticed all sorts of remarkable features in the 
world they lived in. In the weather, in the fields, and in the sky, they saw patterns, 
varying during the days and nights, and during the seasons.

They learned how to communicate among one another, how to foresee what 
was going to happen, and how to use their insights to improve their safety and to 
ensure the availability of food and shelter. This is how science began, and the pri-
mates could no longer be regarded as animals; they started to talk; they were 
becoming human.

Then, a few thousand years ago, they began to write and read. They learned to 
use new concepts of thought, such as numbers. They started to use their fingers to 
sort out the different numbers that one might have and soon discovered that we 
don’t have enough fingers to account for all possible numbers. You can go all the 
way to 60, but then it gets harder. You have to combine numbers to describe larger 
numbers, and sometimes you need numbers that aren’t integers to indicate how 
much water you have or how tall something is. This was the beginning of calculus. 
You can also use numbers to register time, like the hour of the day or the day of 
the year, and to get this accurately required some real thinking.

It sometimes happened that they thought they understood everything that was 
to be known, but time and again this turned out to be wrong. The art of using num-
bers to indicate the size of things became known as mathematics, and the science 
of describing forces and other features of the things you see became known as 



 xiii

physics. Studying physics and mathematics became a specialty that only a few 
experts can understand. This led to the need for people who could bridge the gap 
between the experts and the rest of the population. It is not an easy job, but I think 
this book is a delightful endeavor in this regard.

Gerard 't Hooft (Nobel Prize in Physics, 1999).

Foreword 
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Prologue

 A BRIEF TALE

Early in the 20th century, a patent office clerk (class III) in Bern, Switzerland, was 
thinking about light. It was a topic he had been dwelling upon since he was 16. His 
patent office work was not very demanding, so he had time to think on his own. As 
a starting point, he stipulated two basic postulates: one about the constancy of the 
speed of light in empty space, the other about the invariance of the laws of Physics.

The clerk then considered the ramifications of these two principles. He toiled 
away, without doing any physical experiments of his own, but rather experiments 
inside his own head; that is, ‘thought experiments’. Simply from his deliberations, 
a number of equations flowed from his pen in due course.

One of the conclusions drawn from the mathematical squiggles that the clerk 
wrote down was that a clock aboard a moving spaceship would tick more slowly 
than one back on Earth, and thus time would actually slow down for the space trav-
elers. A year in space for them could even correspond to ten years back on Earth.

Yes, time, which had always been thought to be an immutable quantity, was no 
longer so. At least, that is what the equations said.

After the publication of the clerk’s ideas, he turned his thoughts to gravity, 
another notion we are all familiar with, and the clerk eventually became a univer-
sity professor. After some ten years of deliberation on gravity, his new squiggles 
showed that gravity could also slow down time, and could warp space that bent 
light beams which had no mass.

Many found this state of affairs very confusing and few could comprehend the 
meaning of the squiggles. This was time and space after all, things people were 
intimately familiar with from a lifetime of experience. The clerk’s revelations sim-
ply defied common sense.
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The above account has not been taken from some bizarre science fiction story. 
These considerations concerning light and gravity were spelled out in two land-
mark publications concerning the Theory of Relativity, in 1905 and 1916, respec-
tively. The author’s name was Albert Einstein. His squiggles on paper completely 
redefined the nature of time and space, and his theories have proven to be a pro-
found platform for understanding the workings of the Universe. All the theoretical 
results of his work have been scientifically verified, often to many decimal places.

Another fantastical prediction to come out of Einstein’s squiggles was the 
notion of black holes.

 

Albert Einstein, painted by American artist Paul Meltsner (1905−1966). This painting 
was responsible for the purchase of $US 1 million in war bonds in 1943. (Image courtesy 
of Rabbi Naomi Levy/Rob Eshman. Photo by Ted Levy.)

But do seemingly abstruse mathematical equations have anything to do with our 
everyday lives? The answer is yes. For without a complete understanding of how 
time can slow down and speed up aboard an orbiting satellite, there would be no 
Global Positioning System (GPS) and everyone would become hopelessly lost 
traveling from A to B. Well, at least some of us would and many of us did. Moreover, 
GPS is an integral part of aircraft navigation systems, as well as that of ships at sea.

Prologue 
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Other squiggles that appeared in Einstein’s first publication on Relativity said 
that mass and energy were equivalent, obeying the relation: E = mc2. Now these 
three letters, plus one number and an equal sign, arranged just so, have had a most 
dramatic effect on the course of human history. Moreover, it is also operating 
every second of every day in our Sun, converting mass to energy and bringing us 
light. The light with which to explore the nature of reality all the way back to the 
origins of our Universe.

 Prologue
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Preface

Nature imitates Mathematics...
Mathematician Gian-Carlo Rota

This is a book about the mathematical nature of the Universe we live in. Perhaps 
in some other universe, if such exists, the Mathematics would be different. The 
question of whether our Mathematics is discovered or invented has exercised 
many great minds since the time of Plato (who claimed it was discovered). We will 
touch upon this issue since the author has his own view of the matter, as most 
mathematicians do. Regardless, there are certain fundamental features of our 
Universe, and even predictions that are beautifully described by the little squig-
gles on paper that we call Mathematics.

What the author aims to do in the pages that follow is to explain some of the 
mathematical aspects of the Universe we live in by using no more than basic high 
school Mathematics. What is explored through these chapters are some selected 
topics that are easily accessible to anyone who has once brushed up against the 
Pythagorean theorem and the symbol π, with a light dusting of algebra. But do not 
worry if you have forgotten the details as these will be provided. As a bonus, noth-
ing involving even a smattering of Calculus is needed for any of our 
considerations.

We will make numerous stops along the way, visiting the sublime but bizarre 
world of subatomic particles, honey bees, the Theory of Relativity, galaxies, black 
holes, and of course infinity, as well as a universe of our own creation with its own 
set of rules called Cellular Automata. The point is, the whole Universe is linked by 
bits of Mathematics that most people already know, and what the reader does not 
already know, the author hopes that you will come to understand by the end of the 
book because you will find it compelling and accessible.



xviii 

So, this is a Science book for the layperson that has a few equations, unlike 
many other such Science books that are purely descriptive. But simply knowing 
the equation for a straight line (y = mx + b) enables us to determine the age of our 
Solar System, or to measure the size of a supermassive black hole that lies at the 
heart of most galaxies, or even allows us to describe the expansion of the Universe 
itself. Moreover, we will describe how time speeds up and slows down and you 
will become a believer. Now all that is pretty extraordinary, and just a sample of 
what we can do with the most basic of squiggles.

We will only be able to touch on the highlights of our Mathematical Universe, 
since Mathematics is at the very core of so much scientific endeavor and the rigor-
ous details of those endeavors require concepts that are beyond the scope of this 
book. Nevertheless, there is much we can explore with the simplest of mathemati-
cal tools.

The author cannot guarantee that you will have six-pack abs by the end of this 
book, but the mental exertion could possibly lead to a six-pack brain.

 Preface
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The Mystery of Mathematics

Pure Mathematics is religion...
Philosopher Friedrich von Hardenberg

It is impossible to be a mathematician without being a poet in soul…
Mathematician Sofia Kovalevskaya

Everyone who has gone to school has learned some Mathematics, with the experi-
ence for many being a painful one. Whenever someone on a plane or at a party 
asks the author what he does and he replies that he is a mathematician, the conver-
sation either halts immediately, as if he had said he was an undertaker or worked 
for the Internal Revenue Service, or they confess that they were never very good 
at math at school. So, he appreciates the phobia, dread, and forbidding nature 
regarding what he is about to say, but can assure you that it will be entirely 
painless.

In 1999, the author published a book with the title Normal Families. The title 
was somewhat misleading, and he suspects that some copies of the book were 
purchased thinking that it held some deep psychological insights into family life. 
However, it was entirely devoted to a very esoteric branch of Mathematics by the 
same name. Indeed, it included many beautiful theorems that had absolutely no 
bearing on the natural world. In fact, most of the material was as remote from real-
ity as it could be. Yet some of the results could even be considered majestic, in the 
same way that Mahler’s Fifth Symphony might be so considered. The structure of 
their proofs was just so elaborate, so rich and magnificent in their construction, 
and the final results so illuminating of other dark corners of the mathematical 
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realm, that the author was often in awe of the genius that went into their creation. 
These were the results of others and he could in no way take any of the credit for 
the results themselves. He was merely the messenger.

But that begs the question, ‘Messenger of what’? What really is Mathematics? 
Where does it reside? Is it the product merely of our imagination, or is it found in 
some netherworld outside of space and time. Is Mathematics a religion? Is it the 
language of God? Or even, is God Mathematics?

These are very deep questions in and of themselves and have been fretted over 
for millennia by mathematicians and philosophers alike. The author has pondered 
over them himself for the more than four decades that he has been a mathemati-
cian, since he has frequently wondered what in the world he has actually been 
doing all these years. It is hoped, however, that by the end of this book, the reader 
will have a better understanding of what Mathematics is, although there is no 
simple answer.

There is at least a 4,000-year glorious history of Mathematics and the sophisti-
cation of some of the earliest work is quite remarkable. For example, the 
Babylonians used a base 60 system of numbers. Indeed, we still do when measur-
ing seconds and minutes of time, or in arcseconds and arcminutes of angle. The 
diagonal of the square in Fig.  1.1 (with the horizontal row of numbers) 
represents:

1 24 60 51 60 10 60 1 41421296
2 3

+ + ( ) + ( ) =/ / / . ,

which gives the value of 2  accurate to 6 parts in 10 million 2 1 41421356= …( ). .
The square root of 2 was known mathematically as the ratio of the diagonal of 

a square to a side of length 1. In this particular ancient school exercise, the value 
1 is replaced by the value ‘30’ at the top left for the length of a side, so that the 
diagonal would have a length 30 times greater, namely: 
30 2 42 25 60 35 60

2
× = + + ( )/ / , represented by the bottom numbers. This is 

sophisticated mathematics beyond the capability of any measuring device at the 
time, and would (using base 60) be a challenging problem for a high school stu-
dent of today. Try it.

However, to do the historical side of Mathematics justice would require a com-
pletely separate volume to this one. Nevertheless, the names of many famous indi-
viduals who made important contributions to our understanding of the mathematical 
and physical worlds are sprinkled throughout this text.

In the remainder of the text, we shall explore the mysterious relation between 
Mathematics and the Universe, for without Mathematics we would have little left 
to explore. We could not even count sheep at night to go to sleep. But first we need 
to consider some of the basic elements of mathematical logic in order to make this 
exploration possible.
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 LET US BE REASONABLE

Logic: The art of thinking and reasoning in strict accordance with the 
limitations and incapacities of the human misunderstanding...

Ambrose Bierce, The Devil’s Dictionary

Mathematics at its heart relies on the power of reasoning in a rigorous fashion. 
Such systematic reasoning, known as symbolic logic, is a mode of thought that 
was initiated by Aristotle, developed by the Stoics, and further expounded 
upon in a more mathematical setting beginning in the 19th century by George 
Boole, Augustus De Morgan, and Charles Sanders Peirce, among others. It is 
an attempt to make reasoning − and in particular mathematical reasoning − 
highly rigorous.

Figure 1.1: They were not just counting goats and sheep in Babylonian times. This is 
the cuneiform Babylonian school tablet YBC 7289 from 1600−1800 B.C. See text for 
explanation. (Image courtesy of Bill Casselman (https://www.math.ubc.ca/~cass/Euclid/
ybc/ybc.html) and Yale Babylonian Collection.)
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We use basic forms of logical reasoning all the time in our daily lives without 
even realizing it:

If it is 2:30, it is time to go to the dentist1.
It is 2:30.
Therefore, it is time to go to the dentist.

This sort of reasoning, or inference rule, has a specific name: modus ponens. 
Another basic inference rule is known as modus tollens, as in:

If my grandmother had wheels she would be a trolley car2.
My grandmother does not have wheels.
Therefore, she is not a trolley car.

Both of these forms of logical inference have their origins in the mists of antiquity. 
In classical logical reasoning, any logical statement (proposition) P in the form: ‘It 
is time to go to the dentist’ (or ‘my grandmother is a trolley car’) is considered to 
be either true or false. The negation of P is the statement: ‘It is not time to go to 
the dentist’ (or ‘my grandmother is not a trolley car’) and is referred to as the state-
ment ‘not P’, as in: ‘it is not the case that P is true’.

Another form of logical reasoning going back to Aristotle is that:

Either a statement, P, is true, or its negation, not P, is true.

Thus, ‘it is 2:30’ or ‘it is not 2:30’; either ‘my grandmother is a trolley car’ or ‘my 
grandmother is not a trolley car’. There is no middle ground and that is why this 
mode of thinking is called the law of the excluded middle.

This is a cornerstone of mathematical reasoning, whereby any given mathemat-
ical statement is either true or false. Either 17 + 32 – 6 = 43, or it does not; either 
10,357 is a prime number or it is not3. If we have the statements (a) 10,357 is a 
prime number and (b) 10,357 is not a prime number, then one or the other must be 
true.

Just in case you were wondering, 10,357 is a prime number, so that it is only 
divisible by the number 1 and itself.

1 To make the time more explicit, it should have been given as 14:30, but there is an implied 
child’s joke here and dentists generally do not work at 2:30 am anyway.
2 Trolley car is the American term for tram car. The expression, which the author heard many 
times as a young child, is a response to someone who makes a wistful statement of pure specu-
lation, such as, “If only my parents had made me persist with my violin lessons, I could have 
become a great violinist.”
3 Recall that a prime number is a positive integer (counting number) greater than 1 that cannot 
be divided (with no remainder) by any other positive integer except for the number 1 and itself. 
Thus, the first prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23, …
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Based on the law of the excluded middle, here is an argument that many of us 
have no doubt encountered on the school playground. Suppose our proposition 
P is:

P: There is no largest number.

The negation of P is therefore simply the statement:

not P: There is a largest number.

If we assume for a moment that not P is the true statement, let us call the largest 
number N. But then N + 1 is still larger, so that the statement, not P, cannot be true. 
Since one of the statements P or not P must be true according to the law of the 
excluded middle, it follows that our proposition P: ‘there is no largest number’, is 
the true statement.

Indeed, with this playground example we have actually proved a genuine math-
ematical theorem, namely that there is no largest number. If the reader at some 
stage has enunciated some form of the above proof, it likely would have been done 
without ever realizing you were using sophisticated forms of logical reasoning 
and doing something mathematicians do every day, which is to prove theorems.

As seemingly obvious as the law of the excluded middle appears, it came under 
attack from a 20th century Dutch mathematician named L.E.J. (Luitzen Egbertus 
Jan) Brouwer (1881−1966), who rejected it on philosophical grounds when deal-
ing with infinite sets. For Brouwer, an infinite set is something that is incomplete, 
as for example, the natural numbers, 0, 1, 2, 3, … which cannot be thought of in 
their entirety no matter how smart you are. That is why we need the three dots 
(ellipsis), which means and so forth in the same vein. See Appendix I for further 
discussion on this matter, where we give a proof by contradiction, as well as a 
‘constructive’ proof of the proposition:

P: There is an infinite number of primes.

In 1946, the famous mathematician Hermann Weyl wrote, “Brouwer made it clear, 
as I think beyond any doubt, that there is no evidence supporting the belief in the 
existential character of the totality of all natural numbers... The sequence of num-
bers which grows beyond any stage already reached by passing to the next num-
ber, is a manifold of possibilities open towards infinity; it remains forever in the 
status of creation but is not a closed realm of things existing in themselves.”

Indeed, there is a world of difference between the realm of finite entities and 
infinite ones and just how we treat the infinite is the subject of Chapter 2.

On the other hand, the law of the excluded middle leads to a method of proof 
known as ‘proof by contradiction’, which sounds more impressive in Latin: reduc-
tio ad absurdum. This is just the line of reasoning we employed to prove our little 
theorem that there is no largest number. We assumed the negation of the theorem 
to be true, i.e. that there is a largest number, N, and derived a contradiction since 
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the number N + 1 is obviously larger. Therefore, the negation of the theorem can-
not be true and it follows that our theorem must be true after all: There is no largest 
number. This is actually a very powerful technique when it is not possible to find 
a direct proof of a theorem. In Appendix III, there appears a famous proof by 
contradiction.

The subject of logical reasoning is a fascinating one but takes us too far afield, 
so the interested reader is directed to the excellent book by R.L. Epstein in the 
Bibliography.

Interestingly, some of the very basics of symbolic logic find their way into the 
design of electrical switches, known as logic gates, that are at the heart of elec-
tronic computers. See Appendix XIII, where the three most fundamental logic 
gates are discussed in relation to symbolic logic.

It should also be mentioned that Brouwer is perhaps more famous for his ‘fixed- 
point theorem.’ A simple example would be to take a circular disk and rotate the 
disk 30° about the center. At the end of the rotation, which is a smooth continuous 
action, all the points in the disk will have moved, except for one point, the center, 
which remains fixed. Brouwer’s theorem says that any continuous action that 
transforms a suitably closed region to itself will always leave at least one point in 
its fixed position. Ironically, Brouwer’s proof of his fixed-point theorem is not 
constructive; it merely ‘proves’ that there exists a fixed point without actually 
providing a means to determine (construct) it explicitly4.

There are now numerous fixed-point theorems and, while they may seem only 
of mathematical interest, they have important applications in many branches of 
Science, such as in Economics. Indeed, a fixed-point theorem was at the heart of 
the game theoretic work of American mathematician John Nash, which earned 
him the 1994 Nobel Prize in Economics. The ‘Nash equilibrium’ point is a fixed 
point of a particular continuous function5, and to prove it, one can use the Brouwer 
fixed-point theorem, although Nash originally used an alternative fixed-point the-
orem attributed to Shizuo Kakutani.

A fine biographical film about John Nash, A Beautiful Mind, starring Russell 
Crowe and Jennifer Connelly and directed by Ron Howard, came out in 2001. 
Like John Nash himself, the film won numerous awards.

4 Thanks to Douglas Bridges for pointing out the irony of Brouwer’s non-constructive proof.
5 A function in Mathematics is a relationship between the elements of two sets (discussed in the 
subsequent section of the text) that assigns to each element of the first set (the domain) a unique 
element of the second set (the range). An example of a function would be that given by the 
expression: y = x2, which assigns, to each element x in the domain of real numbers, the unique 
real number y, determined by the relationship: y = x2, where y is again a real number. The 
domain often depends on context but is generally taken to be as large as possible.
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 ALL SET

Another issue that arose in the early 20th century was the discovery of some cracks 
in the very structure of the mathematical edifice of its day. This had to do with the 
subject of sets, which are simply collections of distinct objects, with the objects 
themselves being the elements (members) of the set. For example, the set of letters 
of the English alphabet can be written as:

a b c d e f g h i j k l m n o p q r s t, , , , , , , , , , , , , , , , , , , ,, , , , , , u v w x y z{ },

and consists of 26 elements. Note also the conventional curly bracket notation, 
{∙}, for denoting a set. For convenient further reference, we can give the set a 
name, usually by a capital letter. So, one can write,

A a b c d e f g h i j k l m n o p q r s= , , , , , , , , , , , , , , , , , , ,  , , , , , , t u v w x y z{ },

but the specific letter designation is somewhat arbitrary.
Furthermore, it would seem that we can create sets of almost anything we can 

think of, such as specific sets of whole numbers like {1, 2, 3}, the set of all 
U.S. States, the set of birthdays of the author (a large set indeed), or even a set 
which has no elements at all, known as the empty set6.

The theory of sets is an important branch of Mathematics and much of its devel-
opment stems from the seminal work of the German mathematician Georg Cantor 
(1845−1918). The above examples of sets are all finite sets; that is, one can count 
up the finite number of elements in any of the sets. Working with finite sets is 
somewhat mundane and they can even be taught in Primary School.

Cantor, on the other hand, was particularly interested in the exotic realm of 
infinite sets, and in dealing with them we are forced to leave everyday common 
sense behind. It took a genius like Cantor to figure how to proceed in this infinite 
realm, as will be seen Chapter 2, although he suffered for his efforts.

Now let us consider one of the bumps in the road of the Mathematical Universe 
involving sets, namely the Russell Paradox (1901) formulated by the English phi-
losopher Bertrand Russell. He questioned the status of the set,

S = {all sets that are not members of themselves}.

This sounds like a reasonable set to consider. Or is it?
Let us now consider the following two statements:

 (i) S is a member of itself.
 (ii) S is not a member of itself.

6 The set of observed aliens from outer space would be an example of an empty set, although 
some who claim to have been abducted by aliens might argue otherwise.
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Suppose that S is a member of itself, which is statement (i). Then according to 
the definition of S, it is one of those sets that is not a member of itself, which is 
statement (ii). Okay, then suppose that S is not a member of itself (statement (ii)). 
By the very definition of the set S, it is a member of itself (statement (i)). Therefore, 
assuming the truth of either (i) or its negation (ii) we arrive at a contradiction. 
Maybe Brouwer had a point after all.

The preceding dilemma arises from allowing the existence of sets such as S in 
the first place. This has to be more carefully managed, and has been in the current 
axioms of Set Theory developed by Ernst Zermelo and Abraham Fraenkel in the 
early 20th century. This will be discussed in Chapter 2, since the most interesting 
sets are infinite.

Other variations on the Russell Paradox abound:

The barber of Seville shaves all and only those men who do not shave 
themselves.

If the barber does not shave himself, then according to the statement, he does shave 
himself. But if the barber does shave himself, then the statement says that he does 
not shave himself. A way out of this dilemma is to say that no such barber exists.

All this serves to remind us that when we wish to make meaningful statements 
about the world, we need to proceed with caution. Even the ideal world of 
Mathematics has some pitfalls to be wary of.

Figure 1.2: The central figures of the famous painting, Socrates in Athens speaking 
with Plato, painted by Raphael. It resides in the Vatican. (Image in public domain.)
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 WHERE IS MATHEMATICS?

God gave us the integers, all else is the work of man...
German mathematician Leopold Kronecker (1823−1891)

We have had an inkling of mathematical reasoning, but what of Mathematics 
itself? What exactly is it? Some investigators, like neuropsychologist Brian 
Butterworth, have argued on evolutionary grounds that the human brain is hard-
wired for numeracy (see the Bibliography for his very interesting account).

The author would argue that the human genome – the full set of genes that 
make us what we are – contains instructions for building specialized circuits of the 
brain, which he calls the Number Module. The job of the Number Module is to 
categorize the world in terms of numerosities  – the number of things in a 
collection…

Our Mathematical Brain, then, contains these two elements: a Number Module 
and our ability to use the mathematical tools supplied by our culture.

Those tools would include counting on one’s fingers for starters, as well as an 
abacus, hand calculator, and all the other calculating devices that history has pro-
vided us with. Of course, trade and commerce made numeracy an essential ingre-
dient and hastened the development of arithmetic.

For many people, Mathematics is just some form of glorified arithmetic. Or if 
they studied some algebra or geometry in high school, people often confess that 
they were never very good at it. Humorist Fran Lebowitz nicely sums up a prevail-
ing view when she states that, “In real life, I assure you, there is no such thing as 
algebra7.” This is not only a good joke, but it contains an element of truth in it, in 
so far as it makes the point that algebra is actually a mathematical abstraction. You 
will not see it anywhere on the streets of New York, Fran.

On the other hand, the concept of number is also an abstraction, so we are 
forced to conclude that we are going to have to deal with abstractions if we are to 
talk about Mathematics at all.

Indeed, besides the abstract notion of number, Mathematics inhabits a world of 
perfect circles, straight lines, triangles with exactly 180 degrees and so forth. Yet 
this is only an idealization and the world we live in can never contain a perfect 
circle or perfectly straight line. All lines will have some variations from absolute 
perfection, although these may be exceedingly small. They will also have some 

7 Because many people who have encountered algebra in school have found it so arcane, it has 
attracted a considerable body of humor:

“When you are dissatisfied and would like to go back to youth, think of algebra” … Will Rogers
“What is algebra exactly; is it those three-cornered things?” James M. Barrie
“As long as algebra is taught in school, there will be prayer in school” … Cokie Roberts
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width, whereas a line in Mathematics has none. Numbers also go on forever, yet 
nothing in our experience seems to go on forever, except perhaps boring lectures 
about Mathematics. Even the Universe itself is expected to come to an end – more 
on the end of the world later.

Yet Mathematics is the most powerful tool we have that allows us to describe 
the world. Why should this even be so? In a certain sense, subscribed to by the 
author, Mathematics lies outside this world, in an ‘ideal world’ postulated by Plato 
(Fig. 1.2). Thus, mathematical concepts seem to occupy some transcendent realm 
(a view called Platonism) existing outside time and space.

How this transcendent ideal world interacts with the real world is the subject of 
this book and when we get to Quantum Mechanics, the real world will also take 
on the appearance of something quite other worldly as well.

Let us take one historical example that most people are familiar with: the 
2,500-year-old great theorem of Pythagoras, which tells us that in any right trian-
gle, the square of the length of the hypotenuse is equal to the sum of the squares 
of the lengths of the other two sides (Fig. 1.3).

But again, this is only an idealization that is valid in the Mathematical Universe, 
and any actual right triangle that we can produce will have some minor discrep-
ancy from what the theorem states. But the more accurately we draw a right tri-
angle, the more precise the result will become.

On the other hand, this ancient result named after Pythagoras, perhaps initially 
drawn in the sand, has had countless applications to our understanding of the real 
world. It even makes a crucial appearance in Einstein’s Theory of Relativity 

Figure 1.3: The famous theorem is attributed to Pythagoras (ca. 570−495 B.C.) 
although the evidence for a proof by him is sketchy and the result had been known since 
earlier times. (Illustration courtesy of Katy Metcalf.)
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regarding how time in motion slows down, which is at the heart of the Global 
Positioning System (GPS)8.

There is also a converse of the theorem; that is, for any triangle having sides of 
length a, b, c, that satisfy the relationship

c a b2 2 2= + ,

then the angle formed by the sides of lengths a and b is a right angle ( = 90°). 
Proofs of both theorems appear in Euclid’s Elements, discussed later in this 
chapter.

Mathematical theorems, like that of Pythagoras, are seemingly ‘discovered’. A 
sprawling labyrinth of mathematical discovery arose from the concept of the 
‘imaginary number’ which represents the square root of −1, and which is the sub-
ject of Chapter 3. It is a beautiful body of work, known as complex analysis, that 
is the basis for a lot of ‘real’ Science from Quantum Mechanics, to electrical cir-
cuitry, the Theory of Relativity, or the design of airplane wings... Yet the mathe-
matics of complex analysis is not something concrete. It exists outside our physical 
world, dare we say in a universe of its own.

Roger Penrose, certainly one of the greatest living scientific minds on the 
planet, says, “I have been arguing that such ‘God-given’ mathematical ideas 
should have some kind of timeless existence, independent of our earthly selves.” 
The author will not venture a guess as to whether this is a theistic statement or not.

The eccentric, itinerant (and atheist) Hungarian mathematical genius, Paul 
Erdös, often mentioned a book in which God had recorded all the most elegant and 
beautiful mathematical proofs. This sentiment reflects the notion, felt by many 
mathematicians, that Mathematics is fundamental to the very nature of the 
Universe.

Similarly, Godfrey Harold (G.H.) Hardy, one of the 20th century’s finest math-
ematicians, held a similar view: “I believe that mathematical reality lies outside 
us, that our function is to discover or observe it, and that the theorems which we 
prove, and which we describe grandiloquently as our ‘creations’, are simply our 
notes of our observations. This view has been held, in one form or another, by 
many philosophers of high reputation from Plato onwards…9”

On the other hand, many have argued against the Platonist perspective and take 
the view that Mathematics is a game played by mathematicians based on a set of 
logical rules and a set of axioms. No set of axioms is to be preferred over any 
other. This is a view more readily maintained by a non-mathematician and is held 
by a number of philosophers.

8 See the section Time in Motion of Chapter 7, as well as Appendix XV where it is explicitly 
utilized.
9 A Mathematician’s Apology, G.H. Hardy, 1940, p. 123.
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