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1

Introduction

Metalloids encompass a group of chemical elements which are found widespread in 
nature (Bienert et  al. 2008). Most of their physical and chemical characteristics are 
intermediate between metals and nonmetals, hence it is hard to classify them as either 
metals or nonmetals (Bhattacharjee et al. 2008). Physically, they are glittery, fragile with 
intermediate electric conductivity similar to metals, and chemically they behave as non-
metals. Metalloids possess intermediate amphoteric, electronegative values and ioniza-
tion energies. They have an ability to form an alloy with metals. The number and 
identities of metalloids are determined based on the criteria used for their classification, 
which includes electronegativity, packing efficiency, the Goldhammer–Herzfeld ratio, 
atomic conductance, and bulk coordination number. Among them, electronegativity is 
the commonly used criterion to categorize metalloids. Most of the metalloids possess 
electronegative values ranging from 1.8 to 2.2, packing efficiencies between 34 and 41%, 
and the Goldhammer–Herzfeld ratio of 0.85–1.1 (Mann et al. 2000; Vernon 2013).

Arsenic (As), antimony (Sb), boron (B), germanium (Ge), silicon (Si), and tellurium 
(Te) are usually recognized as metalloids (Vernon 2013; Bienert et al. 2008; Bhattacharjee 
et  al. 2008). Primary sources of metalloids are the weathering of parent material, 
dissociation of minerals, mining, atmospheric deposition, burning of fossil fuels, use of 
fertilizer and pesticide, industrial emissions, anthropogenic sources, sewage, agro-
chemicals, and municipal and industrial wastes (Nagajyoti et al. 2010; Alloway 2013). 
They are important elements showing the effects ranging from the essential to highly 
toxic in nature. Metalloids play diverse roles ranging from nonessential elements like 
Ge and Te to essential elements like B, beneficial elements like Si, and highly toxic 
elements like As and Sb in the cellular processes (Bienert et al. 2008; Bhattacharjee et al. 
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2008; Deshmukh et al. 2017). Generally, metalloids are not toxic; they only exhibit toxic 
effects when their internal concentration in the biological system exceeds a certain 
threshold. Few metalloids are essential in very small quantities for proper metabolism, 
growth, and development. In contrast, few metalloids show a toxic effect even at very 
low concentrations. The toxic effects of metalloids also depend on the various factors, 
including the type of metalloid, its concentration, organisms, plant species, and stage of 
growth (Appenroth 2010). Their higher accumulation in soils, drinking water, and food 
chain affects plant, animal, and human health. Bioavailability of metalloids also depends 
on pH, soil organic matter, soil structure, and chemical composition. The amount of 
metalloids in the earth’s crust varies from Si being the second most common element to 
astatine (At) as the rarest element. The metalloid elements such as Ge, Te, Po and At are 
present in trace or ultra‐trace levels and they are not found to affect environmental 
health (Adrees et al. 2015). Here, we briefly discuss the role of metalloids in a biological 
system, their transport, and detoxification mechanism.

Metalloids in Human and Animal Health

Metalloids are known to play both useful and harmful roles in human life. Boron is an 
essential trace element having an important role in humans and animals. Boron and its 
compounds have a role in bone development, cell membrane maintenance, regulation 
of numerous enzyme activities, embryonic development, a steroid hormone, carbohy-
drate, and mineral metabolisms in humans and animals (Nielsen 1998; Uluisik et  al. 
2017). The supplementation of boron through diet to chicken, pigs, and rats showed 
enhanced bone strength (Armstrong et al. 2000). Boron plays an important role in bone 
metabolism by interacting and regulating key players such as magnesium, calcium, 
vitamin D, and hormones which are crucial for bone growth and formation. Boron defi-
ciency affects the reproduction and developmental processes in mice, frogs, rainbow 
trout, and zebrafish (Lanoue et al. 1998; Fort et al. 1998; Eckhert 1998). It has also been 
implicated in inflammatory response by repressing the 6‐phosphogluconate activities 
and reduces the risk of inflammatory diseases. Boron also activates the antioxidant 
mechanisms that can destroy reactive oxygen species (ROS). Few studies have shown 
that daily intake of boron‐containing diet reduces the risk of breast and lung cancers in 
women (Mahabir et al. 2008). Its deficiency causes abnormality in bone development, 
increased urinary calcium excretion, reduced blood steroid hormone levels, alteration 
in macromineral level, and impairment of growth in humans and animals (Murray 
1995). In addition, its deprivation leads to the decrease in the brain’s electrical activity, 
short‐term memory, and reduced skills during performing tasks. However, high doses 
of boron consumption cause reproductive and developmental abnormalities. Prolonged 
exposure to boron causes diarrhea, kidney damage, anorexia, neurological effects, tes-
ticular atrophy, and weight loss (Nielsen 1997). Higher concentrations of boron impede 
the development of some organs in rat and chicken. A rare form of corneal dystrophy, 
called congenital endothelial dystrophy type 2, is linked to mutations in boron trans-
porter, SLC4A11 which regulates the intracellular concentration of boron. The defect in 
SLC4A11 causes rare congenital endothelial dystrophy type 2 diseases (Kim et al. 2015).

Several boron‐incorporated compounds have been discovered which have medicinal 
applications, for example boron neutrons for brain tumor therapy, Anacor, and 
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bortezomib used to treat many skin disease and multiple myeloma disease (Řezanka 
and Sigler 2008). Numerous natural products containing boron have shown antibiotic 
activity which includes boromycin, borophycin, tartrolon E, and aplasmomycin B and C 
(Uluisik et al. 2017). Boron and boron‐containing molecules are also considered natural 
anticancer agents. Boron inhibits the enzyme activities by binding either to their cofac-
tors (i.e. NAD) or some other mechanism, which is not understood clearly. Boronated 
compounds show potential in treating arthritis, while boron‐10 has been used in boron 
neutron capture therapy (BNCT). Tavaborole‐containing boron is an inhibitor of 
aminoacyl tRNA synthetase which is used to treat toenail fungus (Travers et al. 1990).

Arsenite plays an essential role in gene silencing and methionine metabolism in ani-
mals (Hunter 2008). Use of As‐containing insecticides and herbicides in agricultural 
fields causes the contamination of soils and environment. This toxic metalloid enters 
through the plant roots and passes into the human and food‐chain causing a potential 
threat to human and animal health. It causes severe diseases like lung and bladder 
cancer, skin lesions, and several other diseases in humans (Pearce 2003). Several As 
compounds, such as roxarsone, nitarsone, and carbarsone, are used as a veterinary feed 
to stimulate growth, weight gain, increase feed efficiency and treat various diseases in 
chickens, pigs, sheep, and cows. An example is roxarsone, which is used as a broiler 
starter by nearly 70% broiler growers in the US (Calvert and Smith 1980). Many As 
compounds including arsphenamine and arsenic trioxide were used as medicines. 
Arsenic trioxide was commonly used for the treatment of promyelocytic leukemia, a 
cancer of the bone marrow and blood (Shen et al. 1997). The organoarsenic compound 
arsphenamine (Salvarsan), used to treat syphilis, trypanosomiasis, cholera, and cancer 
cells (Williams 2009).

Silicon is another metalloid needed for the growth and development of animals. It is 
involved in hair, nail, bone, and skin development in humans (Jugdaohsingh 2007). 
Silicon is also required for the synthesis of elastin and collagen. Silicic acid is essential 
for bone structure, and it is present in almost all connective tissues to provide stability 
and elasticity. Some researchers have demonstrated that premenopausal women with 
higher dietary silicon intake have higher bone density, and it also increases bone density 
in patients with osteoporosis (Jugdaohsingh 2007). Silicone gel is applied to acutely 
burned patients to reduce scarring. A highly toxic rodenticide, silatrane, also contains 
Si (Jugdaohsingh 2007). Inhalation of silica dust over a long period causes silicosis, 
which is a fatal disease of the lungs.

Selenium is another metalloid important for human health which provides protection 
against chronic neurological degenerative and neoplastic diseases. The methylated 
form of selenium is an effective anticarcinogenic agent against mammary gland cancer 
in rats. Selenium sulfide is found in shampoos used to treat skin infections such as tinea 
versicolor. The cyanobacterium Spirulina platensis had selenium‐containing pharma-
ceuticals and it is used as dietary supplement in humans (Mosulishvili et al. 2002).

The metalloid antimony and its compounds are used as antiparasitic, antischistoso-
mal drugs, and emetics in humans as well as animals. Lithium antimony thiomalate and 
anthiomaline have a conditioner effect on animal skin (Harder 2002). Germanium is 
another metalloid that has little or no impact on the environment and health. Some 
intermediate compounds of germanium are found to be reactive and poisonous. US 
Food and Drug Administration research has declared that inorganic germanium is a 
potential human health hazard. However, germanium compounds used to treat renal 
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dysfunction, hepatic steatosis, peripheral neuropathy, leukemia, and lung cancer (Tao 
and Bolger 1997). Tellurium is a rare trace element that does not have an important role 
in biological systems. However, tellurium and its compounds have demonstrated toxic 
effects on human and animal health. Organotellurium compounds oxidize sulfhydryl 
groups and deplete endogenous glutathione (GSH) cause cells damage. Tellurium diox-
ide is employed to treat seborrheic dermatitis, while other tellurium compounds were 
used as antimicrobial agents before the use of antibiotics. These compounds may 
substitute for antibiotics in the future, owing to their bacteria‐resistant properties 
(Řezanka and Sigler 2008).

Role of Metalloids in Plants

Metalloids are implicated in diverse physiological processes in plants. Among them, Te 
and Ge have not demonstrated any essential functions, while others such as Si, B, and 
As are required in small amounts for proper plant growth and development. However, 
higher than the required concentration of these elements causes extreme toxicity to 
plants, which negatively affects plant growth, biomass, photosynthesis, and yield 
(Bienert et al. 2008). It has been demonstrated that accumulation of metalloids in all 
living organisms, including plants, causes numerous biochemical, physiological, and 
molecular changes (Hodson 2013; Bienert et al. 2008; Bhattacharjee et al. 2008). Among 
the metalloids, Si is the second most abundant element on the earth’s crust. Although Si 
accounts for up to 10% of the shoot dry weight in higher plants, it is not considered an 
essential element for plants. Several researchers demonstrated that Si is beneficial for 
plant growth and development (Ouellette et al. 2017; Deshmukh and Bélanger 2016; 
Vivancos et al. 2015; Tripathi et al. 2017a,b). Tissue‐cultured carnation plants supple-
mented with silicon improve stomatal development and enhanced root hydraulic 
conductance by regulating major intrinsic proteins (MIPs) (Sivanesan and Park 2014). 
It improves strength and structural integrity of the cell wall in rice plants (Asada and 
Tazaki 2001). It alleviates diverse abiotic stresses like heat stress, low‐temperature 
stress, drought stress, and metal toxicity, and decreases lodging potential and salt stress 
(Řezanka and Sigler 2008; Tripathi et al. 2016). It decreases metal toxicity by reducing 
uptake and translocation of heavy metals in various plants species thereby enhancing 
plant growth and biomass. Hussain et al. (2015) show that Si reduces the uptake and 
translocation of cadmium (Cd) from shoot to grain in many plants. In cotton plants, it 
also enhances root length, plant height, leaf area, and a number of leaves per plant 
under Cd, zinc (Zn), and lead (Pb) stress (Anwaar et  al. 2015; Keller et  al. 2015). 
Application of Si significantly represses Zn deposition in many plant organs such as 
roots and leaves of cotton and maize. In addition, a negative correlation has been 
observed between external Si supply and uptake and concentration of As(III) in rice 
seedlings under hydroponic as well as soil culture conditions (Sanglard et  al. 2014). 
Positive effects have been reported for Si application on chlorophyll content and photo-
synthesis under the heavy metal toxicity. Silicon application enhances chlorophyll con-
tent under aluminum (Al), chromium (Cr), and As toxicity in barley, wheat, mung bean, 
and rice (Tripathi et al. 2015). Silicon plays a critical role in the nutrient absorption by 
the plants under heavy metal stress and it also reduces oxidative stress by inhibiting the 
production of ROS. It has been shown that Si reduces the contents of electrolytic 
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leakage (EL), hydrogen peroxide (H2O2), and malondialdehyde (MDA) in the roots and 
shoots of cotton plants under Zn, Cd, and Pb stress (Anwaar et al. 2015). Silicon supply 
also enhances the activity of enzymatic antioxidant (catalase, peroxidases, superoxide 
dismutase, ascorbate) and non‐enzymatic antioxidants (GSH, ascorbic acid, and non-
protein thiols) under heavy metal stress (Li et al. 2015; Wang et al. 2015). Further, Ma 
et al. (2006) report that expression of OsLsi1 was elevated in the presence of Si in the 
medium, while expression of OsNramp5 gene implicated in the transport of Cd was 
significantly repressed in rice. OsLsi1 mutant defective in Si uptake shows a reduction 
in grain yield and increased susceptibility to diseases and pests. Moreover, Si applica-
tion enhances the expression of genes involved in photosynthesis under Zn stress in rice 
(Song et al. 2014). The underlying molecular mechanisms of Si‐mediated alleviation of 
heavy metal toxicity is not understood completely (Deshmukh et al. 2017). It would be 
interesting to investigate relationships between Si and heavy metal stress and study the 
regulation of genes implicated in the uptake, deposition, and translocation of metals 
and metalloids in plant species. Silicon also plays a crucial role in controlling numerous 
plant pests and diseases caused by bacteria and fungi, including stem borer, planthop-
per, blast, and powdery mildew (Fauteux et al. 2005; Tripathi et al. 2014; Deshmukh 
et al. 2017; Ouellette et al. 2017). Si‐derived resistance of the plant to abiotic and biotic 
stresses is mainly attributed to the mechanical barrier made by the deposition of Si 
along the cell wall thus impeding their progress. For instance, silicon accumulation in 
the exodermis and endodermis in the roots of rice plants decreases the transport of 
sodium which is strongly correlated with salt tolerance (Gong et al. 2006). Silicon regu-
lates the genes involved in water transport and stress‐related pathways including the 
jasmonic acid pathway, ABA‐dependent or independent pathway, and phenylpropanoid 
pathway (Vivancos et al. 2015). Si also interferes with host‐pathogen recognition, prob-
ably by inhibiting effectors and signaling molecules from recognizing their specific 
targets. It also induces the plant’s defense by changing the composition of plant volatiles 
induced by herbivores (Vivancos et al. 2015).

Boron is another metalloid regularly used in agriculture, owing to its role in plant 
growth and development. Boron plays a critical role in plant cell wall synthesis, strength-
ening cell wall structure and membrane integrity. It cross‐links complex polysaccha-
rides in plant cell wall, which is critical for cell wall strength, stability, membrane 
integrity and expanding organs (O’Neill et al. 2004). Boron deprivation leads to altered 
cytoskeletal polymerization. Impaired cell wall formation affects the plasma membrane 
permeability and induces oxidative damage, causing cell death. In addition, root elonga-
tion, leaf expansion, and flower and fruit development are also impeded (Dell and 
Huang 1997). Boron deficiency also affects numerous cellular processes including 
carbohydrate, protein, and nucleic acid metabolism (Miwa et al. 2007). Higher concen-
trations of boron lead to marginal and tip necrosis in leaves, disturbances to metabolic 
reactions, poor growth of roots and shoots, and reduced chlorophyll and lignin content 
in plants. Boron has been also used as an insecticide, antifungal, and antimicrobial 
agent (Nable et al. 1997).

Increased concentration of arsenite in soil and water affects plant growth and yield 
and poses threats to global food security and human health. The excess presence of As 
in soil and water affects plant growth, inhibits photosynthesis and respiration, and 
increases the secondary metabolism resulting in yield losses (Cozzolino et  al. 2010). 
Arsenite is toxic to bacteria, fungi, and insects and hence it is used as a wood 
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preservative as well as an insecticide in agriculture to control many pests. For example, 
lead hydrogen arsenate is a common insecticide on fruit trees. Arsenite(III) interferes 
with redox signaling, induces oxidative stress and affects the general function of proteins 
(Islam et al. 2015).

The Metalloid Requirement in Microorganisms

Metalloids have beneficial as well as toxic effects on soil microflora. Most of the agricul-
tural soils are rich in beneficial metalloids like silicon and boron. However, significant 
acreage has been contaminated with toxic metalloids like As, mainly because of anthro-
pological activities (Singh et al. 2015). Many microorganisms can grow in soils contami-
nated with toxic metalloid and heavy metals. Microbes can reduce the variety of such 
toxic metalloids to insoluble forms like methylates along with the generation of volatile 
derivatives. For instance, the fungus Acremonium falciforme reduces tellurite through 
volatilization (Chasteen and Bentley 2003; Kumar et al. 2015).

Boron plays a crucial role in physiological and metabolic activities of microorgan-
isms. It is essential for the growth and biological nitrogen fixation in bacteria, cyano-
bacteria, and actinomycetes (Mateo et  al. 1986). It is found in autoinducer‐2 (AI‐2), 
produced by marine bacteria which is involved in quorum sensing (Wolkenstein et al. 
2010). Other than bacteria, boron is also required for lower eukaryotes such as brown 
algae, algal flagellates, and diatoms. Bennett et al. (1999) report that yeast cells grow and 
divide when supplemented with boron. However, increased supplementation shows 
inhibition of yeast growth. Boron is also required for interacting and stabilizing the 
glycolipids of the heterocysts (Hunt 2003). Boric acid has antiseptic, antifungal, and 
antiviral properties, and several antibiotics are known to contain boron, including 
boromycin (Streptomyces antibioticus), tartrolons (Sorangium cellulosum), borophisin, 
and aplasmomycin (Streptomyces griseus) (Kohno et al. 1996). Boromycin hampers the 
growth of gram‐positive bacteria and the replication of HIV‐1; however, no effect has 
been found on the growth of some gram‐negative bacteria and fungi.

Some species of microorganisms also partially metabolize tellurium to form dimethyl 
telluride. Tellurium compounds are also used as pigments for ceramics. Tellurite agar is 
used to identify members of the corynebacterium genus such as Corynebacterium 
diphtheria which causes diphtheria. Tellurium incorporated into amino acids in place 
of sulfur and selenium such as tellurocysteine and telluromethionine in fungi (Kwantes 
1984; Ramadan et al. 1989). Microorganisms have shown a highly variable tolerance to 
tellurium compounds, for example Pseudomonas aeruginosa takes up tellurite and 
reduces it to elemental tellurium, which deposits and results in a dramatic darkening of 
cells (Chua et al. 2015). The biogenic silica is used as structural material for skeletons in 
siliceous, Radiolaria, and diatoms.

Interestingly, As compounds, particularly organic ones, play an important role in 
many organisms, for instance arsenic‐containing natural products are found in various 
terrestrial as well as aquatic species (Řezanka and Sigler 2008). Arsenobetaine is pre-
dominately found in the arsenic accumulating mushrooms Agaricus placomyces, 
Agaricus haemorrhoidaius, and Sarcosphaera coronaria. A major arsenic compound, 
dimethylarsinic acid, is found in another mushroom, Laccaria amethystina (Byrne et al. 
1991). In the bacteria from hot spring biofilms, As(III) is used as an electron donor for 
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anoxygenic photosynthesis (Kulp et  al. 2008). Similarly, selenium‐accumulating 
microorganisms including cyanobacterium spirulina have shown promise as food 
supplements and as a source of nutrition, especially in developing countries.

Metalloid Uptake and Transport Mechanism

All living organisms exhibit substantial variations in metalloids, which are essential for 
active metabolism. To maintain the metalloid homeostasis nodulin 26‐like intrinsic 
proteins (NIPs) a particular class of aquaporins (AQPs) play a vital role (Deshmukh and 
Bélanger 2016; Mitani‐Ueno et al. 2011). The AQPs transport water and many other 
small uncharged molecules across membranes at the cellular level in bacteria, yeast, 
amphibians, plants, and mammals (Figure 1.1a). AQPs are found in almost all living 
organisms. Several AQP encoding genes including NIPs and glycerol uptake facilitator 
(GlpF) implicated in metalloids transport have been identified and characterized. 
Sanders et al. (1997) identified a mutant of GlpF in Escherichia coli, which is resistant to 
antimonite, Sb(III). GlpF mutant also exhibits a 90% decrease in arsenite uptake in 
E. coli (Figure 1.2a). Fps1p is the homolog of GlpF also involved in osmoregulation in 
yeast (Lin et al. 2006). Fps1p mutant is resistant to As(OH)3 and Sb(OH)3, while the cells 
overexpressing Fps1p are hypersensitive to As(OH)3 and Sb(OH)3 compared to 
wild‐type cells (Wysocki et al. 2001).

Five genes (arsRDABC) have been implicated in As detoxification in E. coli and three 
genes in Sinorhizobium meliloti (Figure 1.2a). Arsenite, As(V), induces the arsR expres-
sion which then activates the expression of arsC, which encodes arsenate reductase. 
The arsD encodes arsenate As(III)‐binding metallochaperone which facilitates As(III) 
to the As(III) extrusion pump, encoded by arsA and arsB. Collectively these genes 
exhibited increased resistance to As(V) and Sb(V) in E. coli (Figure 1.2a) (Carlin et al. 
1995). Similar to the Ars cluster in E. coli, the yeast harbors three genes implicated in 
As(V) detoxification. ACR1 codes for an As‐responsive transcription factor, which acti-
vates the expression of the ACR2 and ACR3 genes. ACR2 codes for cytosolic arsenate 
reductase (Acr2p) and produce As(III), while ACR3 codes for an H± antiporter (Acr3p) 
that facilitates the extrusion of As(III) (Figure 1.2a) (Wysocki et al. 2001).

In plants, As(III) is transported by phosphate transporters, which quickly reduce it to 
As(V). As(III) is also transported through OsNIP2;1/Lsi1 in rice roots which is a mem-
ber of the NIP subfamily of AQPs (Figure 1.2b) (Mitani‐Ueno et al. 2011). The size and 
structure of As(V) is similar to silicic acid. Hence the transport of As in the root to 
shoot of rice is mediated mainly by the silicon transporter (Ma et al. 2007). OsNIP2 
mutants exhibited germanium resistance which suggests that OsNIP2 also transports 
germanium. Several researchers have demonstrated that NIPs subfamily facilitates 
transport of As(OH)3, Sb(OH)3, boron, silicon, antimonite, tellurium and germanium 
(Figure 1.1a,b; Figure 1.2b). OsNIP2;1 and OsNIP2;2 permeable to both silicic acid and 
As(V), while OsNIP1;1 and OsNIP3;1 transport As(V) but not to silicic acid. Hence, 
MIPs show selectivity among various metalloids (Figure  1.2b) (Bhattacharjee et  al. 
2008). The mammalian aquaporins AQP3, AQP7, and AQP9 have also been known to 
conduct As(OH)3 (Figure 1.2a) (Liu et al. 2002).

Plants absorb the boron from the soil in the form of boric acid. AtBOR1 is an efflux 
transporter of boron responsible for boron transport and loading into xylem of 
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Arabidopsis roots for transport into shoots. A. thaliana bor1‐1 mutant is not able to 
transport boron from roots to shoots. The growth of shoots is also inhibited in the 
bor1‐1 mutant (Figure 1.2b; (Takano et al. 2006; Miwa et al. 2007). A. thaliana genome 
contains six homologs of AtBOR1. AtBOR1 homologs also found in organisms such as 
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Figure 1.1  Metalloids transported with different transporters. (a) The MIPs facilitate the 
transportation of Arsenite, Antimonite, Boric acid, and Silicic acid (metalloids) across the cell membrane in 
bacteria, yeast, and plants. Abbreviations: At, A. thaliana; Lj, L. japonica; Os, O. sativa; Sc, S. cerevisiae; Zm, 
Z. mays; Fps, fdp1 suppressor; NIP, nodulin26‐like intrinsic protein; PIP, plasma membrane intrinsic protein. 
(b) The structure of oxyanions of metalloids which are transported by phosphate and bicarbonate 
transporter homologs. Arsenite, As(OH)3, and antimonite, Sb(OH)3, can be oxidized to oxyanions arsenate, 
H2AsO4, and antimonate, H2SbO4. (c) Boric acid, B(OH)3, a carbonate analogue, is a weak acidic form at low 
pH but converted into borate, B(OH)4, at increasing pH, which is transported by bicarbonate transporter 
homologs, like BOR1. The figure was based on the information provided by Bienert et al. (2008).
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mammals (NaBC1), yeast (YNL275w), lotus (LjNIP5;1, LjNIP6;1), maize (ZmPIP1, 
ZmNIP2;1), and rice (OsBOR1, bicarbonate transporters) (Figure  1.1a–c, and 
Figure 1.2b) (Park et al. 2004; Nakagawa et al. 2007; Takano et al. 2007). Boron trans-
porters also identified and characterized from Vitis vinifera and Citrus macrophylla 
(Pérez‐Castro et  al. 2012; Cañon et  al. 2013). In addition to ScBOR1, ScDUR3, and 
ScFPS1 are implicated in boron transport and tolerance in yeast. HsNaBC1, which is 
the homolog of BOR1, improves cell proliferation in mammals when boron concentra-
tions are low. HsNaBC1 catalyzes the uptake of borate across the plasma membrane 
into the cell (Figure 1.2a) (Park et al. 2004; Henderson et al. 2009). Several AQPs are 
involved in boron transport in plants. AtNIP5;1 belongs to the aquaporin family, which 
facilitates boric acid transport in Arabidopsis. Under boron‐deficient conditions, 
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Figure 1.2  Metalloid uptake and transport system. (a) MIPs implicated in uptake, transportation, 
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(b) The uptake and transportation of essential (boron) and beneficial (silicon) metalloids in A. thaliana 
(At) and O. sativa (Os) from the soil to epidermis, then epidermis to xylem and finaly through xylem 
transport to the shoot. The figure was based on the information provided by Bienert et al. (2008).
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AtNIP5;1 shows an increased expression in Arabidopsis roots. The lack of AtNIP5;1 
causes boron deficiency, resulting in reduced growth and small rosette leaves (Takano 
et al. 2002; Takano et al. 2006). Another aquaporin, AtTIP5;1, has also been reported in 
the vacuolar compartmentation of boron in A. thaliana and Citrus macrophylla 
(Figure 1.2b) (Martínez‐Ballesta and Carvajal 2016).

The molecular mechanism of metalloid transport is poorly understood. These trans-
porters play an essential role in metalloid homeostasis in plants; however, it is unclear 
whether other MIPs also participate in metalloid transport in animals and plants. The 
above‐mentioned studies demonstrate that metalloid transport proteins are conserved 
in all kingdoms of life. Mutants had defective AQP proteins, which is exhibited by an 
impaired uptake or extrusion of metalloids. Overlapping substrate specificities of AQP 
proteins to many metalloids might provide the key to the identification of potential 
molecular networks involved in metalloids homeostasis. The elucidations of physiologi-
cal roles of other AQP proteins advance our understanding of metalloid homeostasis in 
bacteria, yeast, animals, and plants.

Metalloid Toxicity and Tolerance Mechanisms

Plants acquire several protective mechanisms pertaining to physical, biochemical, and 
molecular adaptations in order to sustain themselves while under diverse biotic and 
abiotic stresses. The perception of external and internal stimuli and the transfer of 
information through signaling networks is the key step that turns on the appropriate 
response. This activates the expression of specific genes, resulting in changes concern-
ing physiological and cellular processes surviving harsh environments (Sarwat et  al. 
2013). The signaling pathway such as mitogen‐activated protein kinase (MAPK), ROS, 
phosphorylation cascade, calcium ions, nitric oxide and hormones signaling play an 
important role during heavy metal and metalloids stress. Tyrosine kinase‐like (TKL), 
CT10 regulator of the kinase (CRK), wall‐associated kinases (WAK), and receptor‐like 
cytoplasmic kinases (RLCKs) are the main kinases which are up‐regulated in As stress. 
These signaling pathways change the metabolic pathways leading to changes in cell 
response to survive metalloids toxicity. In general, metalloid toxicity affects various 
physiological processes in biological systems (Islam et al. 2015). Metalloid toxicity leads 
to DNA damage, impairment of DNA repair mechanisms, increases in the oxidative 
system, and inhibition of protein folding and function. Adaptive responses include sig-
nificant changes in the expression of membrane transporters involved in the uptake, 
translocation, and sequestration of metalloids (Bhattacharjee et al. 2008; Bienert et al. 
2008). Other typical adaptive responses include altered export of the metalloid out of 
the cell, storage of the metalloids in intracellular organelles, and reduced import of 
metalloid‐binding proteins and peptides. Similarly, increased expression of genes 
related to superoxides, peroxides, dismutases, and heat‐shock proteins have also been 
observed to be associated with metalloid stress tolerance. Transcriptomic studies dem-
onstrated that genes involved in the oxidative stress, protein chaperones (heat shock 
protein and small heat shock protein), sulfur, and GSH metabolism highly induced in 
the metalloid toxicity which oxidizes proteins alter the cell wall composition and lignin. 
Also, several metal‐binding proteins include metalloenzymes, metallothioneins (MTs), 
metal‐activated enzymes, and many metal transporters, and storage; proteins are also 
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elevated in metalloid toxicity (Chen et al. 2003). MTs are a class of small cysteine‐rich 
metal‐binding proteins which primarily exist in the cytosolic compartment. They exist 
in all living organisms, ranging from prokaryotes to eukaryotes. MTs have been impli-
cated in the development, senescence, and abiotic stress particular to the detoxification 
of heavy metals and metalloids (Islam et al. 2015). MTs are primarily associated with 
metal and metalloid homeostasis. A clear role of MTs has been demonstrated in ani-
mals; however, their exact roles in plants are poorly understood. The characterization 
of MTs in model organisms will advance our understanding of the biological response 
of metalloids and also biomonitoring of metalloid contamination in the environment 
(Morris et al. 1999).

Phytochelatins (PCs) are the small family of peptides that consists of a repeat of γ‐Glu‐
Cys dipeptide and a terminal Gly (γ‐Glu‐Cys)n‐Gly ([PC]n), where “n” represents the 
range of two to five. Several other structural variants of PCs have been identified in 
plants, including (γ‐Glu‐Cys)n‐Ser, (γ‐Glu‐Cys)n‐Glu, and (γ‐Glu‐Cys)n‐β‐Ala (Wysocki 
et al. 2001). PCs are induced in response to many heavy metals and metalloids and syn-
thesized from GSH by phytochelatin synthase (PC synthase). GSH is a precursor of phy-
tochelatin synthesis, which is involved in metal detoxification, and also helps to cope 
with other abiotic and biotic stresses. The primary metalloid detoxification mechanisms 
in plants are subcellular compartmentalization, chelation, or extrusion from the plant 
body (Verbruggen et al. 2009; Adrees et al. 2015). Arsenic taken up as As(V) or As(III) 
leads to oxidative stress and also depletion of GSH, an essential antioxidant through the 
formation of As(III)–GSH complexes or As(III)–GS3 and As(III)‐induced PC synthesis. 
A significant strategy adopted to detoxify excess metalloids involves the synthesis of spe-
cific chelators to avoid binding to physiologically active proteins and to facilitate their 
transport into the vacuoles. GSH has the ability to bind with several metals and metal-
loids. GSH is synthesized by glutathione synthetase (GS) and gamma‐glutamylcysteine 
synthetase (g‐ECS). Excess GSH production is considered to enhance metalloid‐binding 
capacity and enhance cellular defense against oxidative stress. Since GSH is the precur-
sor molecule of PC, constitutive expression of GS and g‐ECS leads to increased accumu-
lation of PC under metal and metalloid stresses (Li et al. 2005). The methylation of As is 
another detoxification mechanism in plants because methylated As is less toxic com-
pared to inorganic ones. Exposure to an As species, As(V), has shown upregulation of 
several methyltransferases. As is less methylated in plants compared to the animals indi-
cating that methylation may not be the main mechanism for As detoxification in plants 
(Norton et al. 2008). Transcriptome analysis of arsenic stressed plants revealed up‐regu-
lation of abscisic acid, ET, and jasmonic acid signaling genes, which suggests a significant 
role of hormones under metalloid toxicity. Moreover, hormonal signaling also partici-
pates in GSH biosynthesis (Hirschi et al. 2000). There is a strong need to identify key 
target genes to completely understand these signaling pathways to produce plants which 
can perform well in metalloid‐contaminated soil and water.

Conclusion

In recent years tremendous progress has been made to understand the molecular 
mechanisms of the uptake, transport, distribution, and detoxification of metal and met-
alloids. Furthermore, the identification and characterization of responsible genes will 
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be necessary for future work in medical, agriculture, and industrial fields. This knowledge 
can be exploited to develop better medicine, insecticide, antibiotics, and plant varieties 
which are resistant to metalloids. These can also reduce the uptake of metalloids and 
minimize the risk of toxicity through the food chain and enhance crop production in 
metalloid‐contaminated soils and water. Recently, NIP subfamily proteins have been 
shown to facilitate the transportation of metalloids such as silicon, boron, arsenic, and 
antimony and play a crucial role in metalloid homeostasis. Thus, engineering of NIP 
encoding genes to reduce metalloids permeability is a convenient approach for prevent-
ing entry of metalloids into the food chain. A detailed understanding of the underlying 
molecular mechanisms of metalloid action may further improve tolerance against biotic 
and abiotic stresses and crop yield.
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