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List of Abbreviations

Table 1 Control system abbreviations.

Symbol Description

Quadrature Unwanted component of oscillation that interferes with estimation
of the pattern angle, manifests as a result of structural
imperfections

AGC Amplitude Gain Control, closed-loop control of drive amplitude
PLL Phase Locked Loop, closed-loop control system that generates an

AC signal with a predetermined phase offset from the resonator
FTR Force-to-rebalance, closed-loop control system that actively drives

the pattern angle to a setpoint
Quadrature null Closed-loop control system that actively suppresses the effects of

structural imperfections within the gyroscope



x List of Abbreviations

Table 2 Mechanical parameters of the resonator.

Symbol Description

f Mean frequency of the two primary modes of the resonator
𝜏 Mean energy decay time constant of the resonator
Q-factor Ratio of stored energy to energy loss per vibration cycle (Q = 𝜏𝜋f )
Δf Frequency split between primary modes in Hz (Δf = f x − f y)
Δ𝜔 Frequency split between primary modes in rad/s (Δ𝜔 = 𝜔x − 𝜔y)
Δ𝜏−1 Measure of anisodamping within the gyroscope

(Δ𝜏−1 =∣ 𝜏−1
x − 𝜏

−1
y ∣)

𝜃
𝜔

Angle defining the orientation of actual versus intended axes of
elasticity

𝜃
𝜏

Angle defining the orientation of actual versus intended axes of
damping

(x, y, z) Coordinate frame oriented along intended axes of symmetry
x and y

n = 2 mode A 4-node degenerate mode pair of a wineglass or ring/disk system
n = 3 mode A 6-node degenerate mode pair of a wineglass or ring/disk system
Precession pattern Vibration pattern formed by superposition of x and y vibratory

modes, which is capable of changing its orientation (precesses)
when subjected to Coriolis forces or an external forcing function

Pattern angle (𝜃) Orientation of the precession pattern in degrees, which is a
measure of angular rotation in a Rate Integrating Gyroscope
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Preface

Coriolis Vibratory Gyroscopes (CVGs) can be divided into two broad categories
based on the gyroscope’s mechanical element: degenerate mode gyroscopes
(type 1), which have x–y symmetry, and nondegenerate mode gyroscopes (type 2),
which are designed intentionally to be asymmetric in x and y modes.

Currently, nondegenerate mode gyroscopes fulfill the needs of a variety of
commercial applications, such as tilt detection, activity tracking, and gaming.
However, when it comes to inertial navigation, where sensitivity and stability
of the sensors are very important, commercially available MEMS sensors fall
short by three orders of magnitude. Degenerate mode gyroscopes, on the other
hand, offer a number of unique advantages compared to nondegenerate vibratory
rate gyroscopes, including higher rate sensitivity, ability to implement whole-angle
mechanization with mechanically unlimited dynamic range, exceptional scale
factor stability, and a potential for self-calibration. For this reason, as the MEMS
gyroscope development is reaching maturity, the Research and Development
focus is shifting from high-volume production of low-cost nondegenerate mode
gyroscopes to high performance degenerate mode gyroscopes. This paradigm
shift in MEMS gyroscope research and development creates a need for a reference
book to serve both as a guide and an entry point to the field of degenerate mode
gyroscopes.

Despite the growing interest in this field, the available information is scattered
across a disparate group of conference proceedings and journal papers. For the
aspiring scientist/engineer, the scarcity of information forms a large barrier to
entry into the field of degenerate mode gyroscopes. This book aims to lower the
barrier to entry by providing the reader with a solid understanding of the fun-
damentals of degenerate mode gyroscopes and its control strategies, as well as
providing the necessary know-how and technical jargon needed to interpret future
publications in the field.

The book is intended to be a reference material for researchers, scientists,
engineers, and college/graduate students who are interested in inertial sensors.
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The book may also be of interest to control systems engineers, electrical and
electronics engineers, as well as semiconductor engineers who work with
inertial sensors. Finally, materials scientists and MEMS production engineers
may find the section regarding various fabrication technologies and fabrication
defects/energy loss mechanisms interesting.

Doruk Senkal
Andrei M. Shkel
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