IEEE Press Series on Sensors

Vladimir Lumelsky, Series Editor



Whole-Angle MEMS Gyroscopes

Challenges and Opportunities

Doruk Senkal | Andrei M. Shkel

IEEE Press

445 Hoes Lane Piscataway, NJ 08854

IEEE Press Editorial Board

Ekram Hossain, Editor in Chief

Jón Atli BenediktssonDavid Alan GrierElya B. JoffeXiaoou LiPeter LianAndreas MolischSaeid NahavandiJeffrey ReedDiomidis SpinellisSarah SpurgeonAhmet Murat Tekalp

Whole-Angle MEMS Gyroscopes

Challenges and Opportunities

Doruk Senkal

Andrei M. Shkel

IEEE Press Series on Sensors

Vladimir Lumelsky, Series Editor

Copyright @ 2020 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is applied for

ISBN 9781119441885

Cover Design: Wiley

Cover Image: Courtesy of Doruk Senkal

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents

List of Abbreviations ixPreface xiAbout the Authors xiii

Part I Fundamentals of Whole-Angle Gyroscopes 1

1	Introduction 3
1.1	Types of Coriolis Vibratory Gyroscopes 3
1.1.1	Nondegenerate Mode Gyroscopes 4
1.1.2	Degenerate Mode Gyroscopes 5
1.2	Generalized CVG Errors 5
1.2.1	Scale Factor Errors 7
1.2.2	Bias Errors 7
1.2.3	Noise Processes 7
1.2.3.1	Allan Variance 7
1.3	Overview 9
2	Dynamics 11
2 2.1	Dynamics 11 Introduction to Whole-Angle Gyroscopes 11
_	•
2.1	Introduction to Whole-Angle Gyroscopes 11
2.1 2.2	Introduction to Whole-Angle Gyroscopes 11 Foucault Pendulum Analogy 11 Damping and Q-factor 12
2.1 2.2 2.2.1 2.2.1.1	Introduction to Whole-Angle Gyroscopes 11 Foucault Pendulum Analogy 11 Damping and Q-factor 12
2.1 2.2 2.2.1 2.2.1.1 2.2.1.2	Introduction to Whole-Angle Gyroscopes 11 Foucault Pendulum Analogy 11 Damping and Q-factor 12 Viscous Damping 13
2.1 2.2 2.2.1 2.2.1.1 2.2.1.2 2.2.1.3	Introduction to Whole-Angle Gyroscopes 11 Foucault Pendulum Analogy 11 Damping and Q-factor 12 Viscous Damping 13 Anchor Losses 14
2.1 2.2 2.2.1 2.2.1.1 2.2.1.2 2.2.1.3 2.2.1.4	Introduction to Whole-Angle Gyroscopes 11 Foucault Pendulum Analogy 11 Damping and Q-factor 12 Viscous Damping 13 Anchor Losses 14 Material Losses 15
2.1 2.2 2.2.1 2.2.1.1 2.2.1.2 2.2.1.3 2.2.1.4 2.2.1.5	Introduction to Whole-Angle Gyroscopes 11 Foucault Pendulum Analogy 11 Damping and Q-factor 12 Viscous Damping 13 Anchor Losses 14 Material Losses 15 Surface Losses 16

νi	Contents

2.3 2.4 2.5	Canonical Variables 18 Effect of Structural Imperfections 18 Challenges of Whole-Angle Gyroscopes 20
3.2.1.2 3.2.1.3 3.2.1.4 3.2.2 3.2.2.1	Control Strategies 23 Quadrature and Coriolis Duality 23 Rate Gyroscope Mechanization 24 Open-loop Mechanization 24 Drive Mode Oscillator 24 Amplitude Gain Control 26 Phase Locked Loop/Demodulation 26 Quadrature Cancellation 26 Force-to-rebalance Mechanization 27 Force-to-rebalance Loop 27
3.3 3.3.1 3.3.2 3.3.2.1 3.3.2.2 3.3.3 3.3.3.1	Quadrature Null Loop 29 Whole-Angle Mechanization 29 Control System Overview 30 Amplitude Gain Control 32 Vector Drive 32 Parametric Drive 33 Quadrature Null Loop 34 AC Quadrature Null 34 DC Quadrature Null 34 Force-to-rebalance and Virtual Carouseling 35 Conclusions 35
	Part II 2-D Micro-Machined Whole-Angle Gyroscope Architectures 37
4.1.2.2	Overview of 2-D Micro-Machined Whole-Angle Gyroscopes 39 2-D Micro-Machined Whole-Angle Gyroscope Architectures 39 Lumped Mass Systems 39 Ring/Disk Systems 40 Ring Gyroscopes 40 Concentric Ring Systems 41 Disk Gyroscopes 42 2-D Micro-Machining Processes 42 Traditional Silicon MEMS Process 43 Integrated MEMS/CMOS Fabrication Process 43 Epitaxial Silicon Encapsulation Process 44

5	Example 2-D Micro-Machined Whole-Angle Gyroscopes 47					
5.1	A Distributed Mass MEMS Gyroscope – Toroidal Ring Gyroscope 47					
5.1.1	Architecture 48					
5.1.1.1	Electrode Architecture 49					
5.1.2	Experimental Demonstration of the Concept 49					
5.1.2.1	Fabrication 49					
5.1.2.2	Experimental Setup 50					
5.1.2.3	Mechanical Characterization 51					
5.1.2.4	Rate Gyroscope Operation 52					
5.1.2.5	Comparison of Vector Drive and Parametric Drive 53					
5.2	A Lumped Mass MEMS Gyroscope – Dual Foucault Pendulum					
	Gyroscope 54					
5.2.1	Architecture 56					
5.2.1.1	Electrode Architecture 57					
5.2.2	Experimental Demonstration of the Concept 57					
	Fabrication 57					
5.2.2.2	Experimental Setup 58					
5.2.2.3	Mechanical Characterization 60					
5.2.2.4	Rate Gyroscope Operation 60					
	Parameter Identification 60					
	Part III 3-D Micro-Machined Whole-Angle Gyroscope					
	Architectures 65					
6	Overview of 3-D Shell Implementations 67					
6.1	Macro-scale Hemispherical Resonator Gyroscopes 67					
6.2	3-D Micro-Shell Fabrication Processes 69					
6.2.1	Bulk Micro-Machining Processes 69					
6.2.2	Surface-Micro-Machined Micro-Shell Resonators 74					
6.3	Transduction of 3-D Micro-Shell Resonators 79					
6.3.1	Electromagnetic Excitation 79					
6.3.2	Optomechanical Detection 80					
6.3.3	Electrostatic Transduction 81					
_						
7	Design and Fabrication of Micro-glassblown					
	Wineglass Resonators 87					
7.1	Design of Micro-Glassblown Wineglass Resonators 88					
7.1.1	Design of Micro-Wineglass Geometry 90					
7.1.1.1	Analytical Solution 90					
	Finite Element Analysis 92					

1						
	7.1.1.3	Effect of Stem Geometry on Anchor Loss 94				
	7.1.2	Design for High Frequency Symmetry 96				
	7.1.2.1	Frequency Symmetry Scaling Laws 97				
	7.1.2.2	Stability of Micro-Glassblown Structures 101				
	7.2	An Example Fabrication Process for Micro-glassblown				
		Wineglass Resonators 102				
	7.2.1	Substrate Preparation 103				
	7.2.2	Wafer Bonding 103				
	7.2.3	Micro-Glassblowing 104				
	7.2.4	Wineglass Release 105				
	7.3	Characterization of Micro-Glassblown Shells 106				
	7.3.1	Surface Roughness 107				
	7.3.2	Material Composition 108				
		-				
	8	Transduction of Micro-Glassblown Wineglass Resonators 111				
	8.1	Assembled Electrodes 111				
	8.1.1	Design 111				
	8.1.2	Fabrication 112				
	8.1.2.1	Experimental Characterization 113				
	8.2	In-plane Electrodes 115				
	8.3	Fabrication 115				
	8.4	Experimental Characterization 118				
	8.5	Out-of-plane Electrodes 123				
	8.6	Design 123				
	8.7	Fabrication 126				
	8.8	Experimental Characterization 129				
	9	Conclusions and Future Trends 133				
	9.1	Mechanical Trimming of Structural Imperfections 133				
	9.2	Self-calibration 134				
	9.3	Integration and Packaging 135				

References 137

Index 149

List of Abbreviations

Table 1 Control system abbreviations.

Symbol	Description
Quadrature	Unwanted component of oscillation that interferes with estimation of the pattern angle, manifests as a result of structural imperfections
AGC	Amplitude Gain Control, closed-loop control of drive amplitude
PLL	Phase Locked Loop, closed-loop control system that generates an AC signal with a predetermined phase offset from the resonator
FTR	Force-to-rebalance, closed-loop control system that actively drives the pattern angle to a setpoint
Quadrature null	Closed-loop control system that actively suppresses the effects of structural imperfections within the gyroscope

Table 2 Mechanical parameters of the resonator.

Symbol	Description
f	Mean frequency of the two primary modes of the resonator
τ	Mean energy decay time constant of the resonator
Q-factor	Ratio of stored energy to energy loss per vibration cycle $(Q = \tau \pi f)$
Δf	Frequency split between primary modes in Hz ($\Delta f = f_x - f_y$)
$\Delta \omega$	Frequency split between primary modes in rad/s ($\Delta \omega = \omega_x - \omega_y$)
Δau^{-1}	Measure of anisodamping within the gyroscope $(\Delta \tau^{-1} = \mid \tau_x^{-1} - \tau_y^{-1} \mid)$
$ heta_{\omega}$	Angle defining the orientation of actual versus intended axes of elasticity
$\theta_{ au}$	Angle defining the orientation of actual versus intended axes of damping
(x, y, z)	Coordinate frame oriented along intended axes of symmetry x and y
n = 2 mode	A 4-node degenerate mode pair of a wineglass or ring/disk system
n = 3 mode	A 6-node degenerate mode pair of a wineglass or ring/disk system
Precession pattern	Vibration pattern formed by superposition of <i>x</i> and <i>y</i> vibratory modes, which is capable of changing its orientation (precesses) when subjected to Coriolis forces or an external forcing function
Pattern angle (θ)	Orientation of the precession pattern in degrees, which is a measure of angular rotation in a Rate Integrating Gyroscope

Preface

Coriolis Vibratory Gyroscopes (CVGs) can be divided into two broad categories based on the gyroscope's mechanical element: degenerate mode gyroscopes (type 1), which have *x*–*y* symmetry, and nondegenerate mode gyroscopes (type 2), which are designed intentionally to be asymmetric in *x* and *y* modes.

Currently, nondegenerate mode gyroscopes fulfill the needs of a variety of commercial applications, such as tilt detection, activity tracking, and gaming. However, when it comes to inertial navigation, where sensitivity and stability of the sensors are very important, commercially available MEMS sensors fall short by three orders of magnitude. Degenerate mode gyroscopes, on the other hand, offer a number of unique advantages compared to nondegenerate vibratory rate gyroscopes, including higher rate sensitivity, ability to implement whole-angle mechanization with mechanically unlimited dynamic range, exceptional scale factor stability, and a potential for self-calibration. For this reason, as the MEMS gyroscope development is reaching maturity, the Research and Development focus is shifting from high-volume production of low-cost nondegenerate mode gyroscopes to high performance degenerate mode gyroscopes. This paradigm shift in MEMS gyroscope research and development creates a need for a reference book to serve both as a guide and an entry point to the field of degenerate mode gyroscopes.

Despite the growing interest in this field, the available information is scattered across a disparate group of conference proceedings and journal papers. For the aspiring scientist/engineer, the scarcity of information forms a large barrier to entry into the field of degenerate mode gyroscopes. This book aims to lower the barrier to entry by providing the reader with a solid understanding of the fundamentals of degenerate mode gyroscopes and its control strategies, as well as providing the necessary know-how and technical jargon needed to interpret future publications in the field.

The book is intended to be a reference material for researchers, scientists, engineers, and college/graduate students who are interested in inertial sensors.

xii Preface

The book may also be of interest to control systems engineers, electrical and electronics engineers, as well as semiconductor engineers who work with inertial sensors. Finally, materials scientists and MEMS production engineers may find the section regarding various fabrication technologies and fabrication defects/energy loss mechanisms interesting.

Doruk Senkal Andrei M. Shkel

About the Authors

Doruk Senkal

Dr. Senkal has been working on the development of Inertial Navigation Technologies for Augmented and Virtual Reality applications at Facebook since 2018. Before joining Facebook, he was working as a MEMS designer at TDK Invensense, developing MEMS Inertial Sensors for mobile devices.

He received his PhD degree (2015) in Mechanical and Aerospace Engineering from the University of California, Irvine, with a focus on MEMS Coriolis Vibratory Gyroscopes, received his MSc degree (2009) in Mechanical Engineering from Washington State University with a focus on robotics, and received his BSc degree (2007) in Mechanical Engineering from Middle East Technical University.

His research interests, represented in over 20 international conference papers, 9 peer-reviewed journal papers, and 16 patent applications, encompass all aspects of MEMS inertial sensor development, including sensor design, device fabrication, algorithms, and control.

Andrei M Shkel

Prof. Shkel has been on faculty at the University of California, Irvine, since 2000. From 2009 to 2013, he was on leave from academia serving as a Program Manager in the Microsystems Technology Office of DARPA, where he initiated and managed over \$200M investment portfolio in technology development. His research interests are reflected in over 250 publications, 40 patents, and 3 books. Dr. Shkel has been on a number of editorial boards, most recently as Editor of IEEE JMEMS and the founding chair of the IEEE Inertial Sensors (INERTIAL). He has been awarded in 2013 the Office of the Secretary of Defense Medal for Exceptional Public Service,

2020 Innovator of the Year Award, 2009 IEEE Sensors Council Technical Achievement Award, 2008 Researcher of the Year Award, and the 2005 NSF CAREER award. He received his Diploma with excellence (1991) in Mechanics and Mathematics from Moscow State University, PhD degree (1997) in Mechanical Engineering from the University of Wisconsin at Madison, and completed his postdoc (1999) at UC Berkeley. Dr. Shkel is the 2020-2022 President of the IEEE Sensors Council and the IEEE Fellow.

Part I

Fundamentals of Whole-Angle Gyroscopes