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Abstract

An accurate acquisition and processing of 3D point cloud data is an active research
area in computer vision encompassing various unsolved problems. The thesis at
hand addresses the jointly studied domains of dense non-rigid 3D reconstruction
from monocular image sequences and point set registration under rigid as well as
non-rigid transformations. Monocular non-rigid 3D reconstruction, which is in
the focus of this work — known as non-rigid structure from motion (NRSfM) —
relies on weak assumptions about the feasible deformation modes imposed on top
of the motion and deformation cues. NRSfM and non-rigid point set registration
are highly ill-posed problems in the sense of Hadamard.

The proposed dense NRSfM methods address the broad range of research ques-
tions including occlusion handling, scalability, interactive yet accurate processing
as well as dense structure compression. For the occlusion handling and dealing
with inaccurate point tracks, we propose a shape prior obtained on-the-fly and a
new spatial regulariser — the coherency term. We also introduce a new model for
NRSfM, which allows representing the recovered structure compactly.

The proposed point set registration methods aim at the enhanced registration
accuracy for noisy data and samples with clustered outliers. For that reason, we
embed prior correspondences into probabilistic point set registration and introduce
a previously unexplored class of methods relying on principles of particle dynamics
with simulated gravitational forces.

The thorough experimental evaluation confirms the efficiency and high accuracy
of the proposed methods as well as the validity of the new ideas. By using the
new principles, we advance the state of the art in dense monocular non-rigid 3D
reconstruction and alignment of noisy point sets. Applications of the proposed
NRSfM methods include (but are not limited to) 3D recovery and analysis of
human and animal faces, endoscopic scenes and various other deformable surfaces.

The proposed point set registration methods can be applied in robotics, automotive
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driving, face and shape recognition, and other areas. Apart from the abovementioned
applications, we show how both method classes can be used for human appearance
transfer, multiframe scene flow estimation from RGB-D as well as monocular
image sequences. The developed methods offer numerous avenues for further
investigation.



Zusammenfassung

Die genaue Eingabe und Verarbeitung von 3D Punktwolken ist ein aktives For-
schungsfeld im maschinellen Sehen, das viele ungeloste Probleme umfasst. Die
vorliegende Doktorarbeit befasst sich mit den in Zusammenwirkung erforschten
Bereichen der dichten nicht-starren 3D Rekonstruktion aus monokularen Bild-
sequenzen, mit sowohl starren als auch nicht-starren Punktwolkenregistrierung. Die
monokulare 3D Rekonstruktion, die im Fokus dieser Arbeit steht und die als nicht-
rigide Struktur aus Bewegung (NRSaB) bekannt ist, wertet, einerseits, Bewegungen
und Deformationen aus, und, andererseits, verkniipft diese mit den zusitzlichen
Annahmen und Vorwissen iiber die Szene und die Art der zuldssigen Zusténde.

Die eingefiihrten Verfahren zur dichten NRSaB gehen auf mehrere offene Fra-
gen ein, und zwar auf die Behandlung von Verdeckungen, die Skalierbarkeit und
die Anpassungsfihigkeit auf unterschiedliche Szenarien und Grofenordnungen
der Szenen, interaktive und prizise Verarbeitung, sowie die Komprimierung di-
chter 3D Geometrie. Zwecks der Behandlung von Verdeckungen und fehlerhafter
Punktkorrespondenzen werden Verfahren mit dem am Anfang einer Bildsequenz
gewonnenen Formvorwissen sowie einem neuen raumlichen Kohérenz Regularis-
ierer vorgestellt. Dariiber hinaus, leiten wir ein neues NRSaB Verfahren her, das
die gewonnene Geometrie in eine kompakte Reprisentation tiberfiihrt.

Die entwickelten Verfahren zur Punktwolkenregistrierung verfolgen das Ziel,
verrauschte und partielle Eingabedaten mit hoherer Prizision zu verarbeiten als die
Vorgdngermethoden. Dementsprechend schlagen wir vor, die im Vorfeld herges-
tellten Korrespondenzen ins probabilistische Framework fiir die Punktwolkenre-
gistrierung zu integrieren, und, zweitens, priasentieren wir eine neue und bisher
unerforschte Verfahrensklasse, welche die Teilchenbewegungen unter virtuellen
Schwerkriften simuliert.

Durch griindliche und zahlreiche Experimente ist es uns gelungen, die Geltung
der neuen Ideen sowie die Préizision und Robustheit der entwickelten Verfahren
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zu bestétigen. Dank der neuen Prinzipien und Verfahren waren wir imstande, den
Stand der Technik in beiden Bereichen der monokularen nicht-rigiden 3D Rekon-
struktion sowie Punktwolkenregistrierung zu verbessern. Zu den Anwendungen
neuer NRSaB Verfahren zihlen die 3D Rekonstruktion von Menschen, Tieren und
endoskopischer Aufnahmen sowie die Erfassung diinner Strukturen unterschied-
licher Herkunft. Die entwickelten Verfahren zur Punktwolkenregistrierung kénnen
unter anderem in Robotik, selbstfahrender Fahrzeugtechnik sowie Gesichts- und
Formerkennung angewendet werden. Neben der erwdhnten Gebieten wird in dieser
Arbeit gezeigt, wie die beiden Verfahrensklassen zwecks der Ubertragung des
duBeren Erscheinungsbildes von Menschen sowie der Berechnung vom Szenen-
fluss aus Tiefenkamerabildern und monokularen Bildern angepasst werden kdnnen.
Ferner, bieten die entwickelten Verfahren verschiedene Wege und Moglichkeiten
zur Verbesserung und Weiterentwicklung, auf die am Schluss eingegangen wird.
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1 Introduction

world and robust processing of the acquired data. Along with the material

properties, knowledge of 3D geometry is a key component of complete
scene description. 3D machine perception is the foundation for multiple applications
which involve scene replication, scene understanding, localisation as well as a
realistic superimposition of virtual contents, among others.

There are multiple sensors which come into question while designing a vision-
based system including time-of-flight cameras, stereo cameras, lidars and sonars.
A lightweight alternative to those is a single monocular camera. The advantages
of a monocular camera are different designs and form-factors, affordability, relat-
ively low electric energy consumption but also pervasiveness in modern electronic
devices and wide acceptance in society. There are monocular cameras embedded in
augmented reality glasses, helmets, mobile phones and tablets. Monocular cam-
eras are central components in endoscopic surgery systems, surveillance systems,
person identification systems, unmanned aerial and underwater vehicles, mobile
robots, rovers for planetary explorations and autonomous cars. Thus, methods
using monocular cameras for 3D sensing are of high relevance in a broad variety
of systems and applications. Moreover, techniques for processing and analysis of
the recovered raw 3D representations — often point sets and point clouds — are
increasingly gaining relevance.

3D reconstruction is an extensively studied inverse problem in computer vision
consisting in the recovery of the depth dimension of a scene lost during the imaging
(together, the scene geometry), from single or multiple views. Point set registration
is a computer vision problem of recovery the transformations aligning one or
multiple point sets (raw 3D representations or 3D reconstructions) into a common
coordinate frame or deforming the point sets so that their appearances match.

Depending on the available input and in many practical situations, 3D recon-
struction can also be an ill-posed problem in the sense of Hadamard. Thus, 3D
reconstruction from a single image is ill-posed, as multiple 3D scenes can result in
the same 2D image. Additional prior knowledge is required to disambiguate the
reconstruction such as a known object class, symmetry prior or a geometric prior.
Starting from two views, additional constraints can be used ranging from epipolar
geometry prior and trilinear constraints to the consistency constraints over multiple

ON E of the objectives of computer vision is an accurate sensing of the real
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2 1 Introduction

views. Moreover, the rigidity assumption disambiguates the problem well, and
impressive results were achieved in 3D reconstruction under the rigidity assumption,
both from multiple views and the sequences of monocular views.

If several different views of the same scene at the same time frame are available,
the subclass of the techniques is referred to as multiple view geometry reconstruction.
In contrast, if multiple monocular views of the scene over several time frames are
available, the subclass of the techniques is called structure from motion (StM). In a
general context, the input data corresponds to an image sequence, and some methods
operate on a set of tracked points over the input views. The difference between
multiple view geometry and structure from motion under rigidity is often subtle. In
many cases, the techniques can be applied interchangeably, though the information
about whether the cameras are static or moving can be advantageous (e.g., motion
blur prone to a moving camera can be accounted for). Compared to multi-view
reconstruction, SfM often assumes smaller frame-to-frame displacements, as those
observed in a video sequence. Video sequences also allow for stronger priors such
as temporal smoothness.

Apart from predominantly static environments and sceneries, our surroundings
are inhabited by living species including ourselves which move and deform. Be-
sides, there are rigidly moving manmade instruments and products violating the
assumption about the static and conserved ambience. Thus, capturing and pro-
cessing of dynamic scenes is a core capability of robust vision-based systems.

1.1 Monocular Non-Rigid Dynamic 3D
Reconstruction

The situation changes considerably, if the rigidity assumption does not hold any-
more, i.e., the scene undergoes non-rigid deformations. In the case of multiple
views, the observations are captured at the same moment of time, and the geometry
is still related by spatial rigidity between the views. If captured at different time
frames and with different camera poses, the scene is observed in different states
and the temporal rigidity does not hold anymore. The class of methods assuming
non-rigid scenes over a temporal sequence of views is specified as non-rigid struc-
ture from motion (NRSfM). In NRSfM, the camera is moving, whereas the scene
is moving and deforming. Similar to rigid SfM, the input of NRSfM is a set of
tracked points over the available views.

Though NRSfM is a highly ill-posed problem which is sometimes said to be
equivalent to the reconstruction from a single view, additional constraints can help
to disambiguate it. Real-world objects do not deform arbitrarily and rather follow a
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certain deformation pattern. The deformation pattern is also often associated with
periodicity, which implies that the scene states are repeated in a temporally-disjoint
manner. Moreover, an average or middle state can be distinguished among all
observed states. Additionally, it is more probable that the states in neighbouring
frames are more similar than states in frames that are temporally further apart.

There is a substantial difference between single view rigid reconstruction and
NRS{M which has crystallised out. In the single view rigid reconstruction, it is valid
and common to assume a specific object class, and supervised learning methods
are often applied. NRSfM, in contrast, assumes that no prior shape information
about the observed scene is available, and solely relies on motion and deformation
cues to obtain 3D surface reconstructions from monocular image sequences. This
makes NRSfM capable of handling equally well — depending on the accuracy of
correspondences — thin surfaces of different kinds (flags, sails, efc.), human and
animal faces, clothes and body tissues in medical contexts.

Several new method classes have emerged which constrain the context of NRSfM,
such as those assuming an accurate reconstruction of at least one of the frames in the
sequence (template-based methods) and those assuming a pre-defined deformation
model but different material properties.

1.2 Point Set Registration

When 3D surface recovery is complete, there are multiple ways how the dynamic
reconstruction can be processed and analysed. One of the essential pre-processing
steps is changing the reference frame or pose of the reconstruction for the further
comparison, deformation transfer or recognition. This operation can be performed
with rigid point set registration if the orientation of the reference frame or object
is known. The comparison and deformation transfer can be accomplished with
non-rigid point set registration.

The objective of point set registration is to align two or several point sets, i.e.,
to recover a transformation which registers a template point set to an unaltered
reference. A point set is an unordered set of coordinates (2D or 3D), with no further
information available. As a representation of a shape, it can contain noise and
clustered outliers, and some parts can be missing. Point set registration should
not be confused with mesh registration methods (meshes are more complete shape
representations consisting of points, triangles, normals efc.). 3D reconstructions
obtained with NRSfM often represent point sets.

In the rigid case, the transformation is parametrised by the variables of rigid body
motion with six degrees of freedom (three for rotation and three for translation).
During a rigid transformation, no deformation is happening, and all distances
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between the points are preserved. Transformation of every point is given by the
same rotation and translation. In the non-rigid case, due to deformations, distances
between the points are not preserved, and the transformation is described by a
general per-point displacement field. As monocular deformable reconstruction,
non-rigid point set registration relies on prior knowledge that real-world objects
and scenes do not deform arbitrarily but rather follow some deformation rules and
patterns. One of the most commonly used and reasonable constraints in non-rigid
point set registration is the topology the preserving constraint which states that point
topology must be preserved despite the distances between the points are changing.
It prevents intersections between the displacements, and, as a consequence, self-
intersections of the surfaces represented by the points sets (though, point sets can
also represent volumetric structures). Similarly to NRSfM, non-rigid point set
registration is an ill-posed problem in the sense of Hadamard.

Despite the progress in point set registration which enabled various practical
applications, one of the central research questions in point set registration remains
improvement of the robustness to noise and disturbing effects in the data (missing
parts and clustered outliers). Moreover, processing of large point sets is an ever-
relevant problem (in other words, point sets containing one-two orders of magnitude
more points than what is considered as a standard nowadays; the contemporary
standard in NRSfM is around 30k points). It is addressed with faster hardware,
parallelisation as well as data structures for acceleration. In contrast to methods
for processing of synthetic 3D data (computer graphics), methods for processing of
raw sensor inputs have to cope and consider noise and incompleteness of the data.

3D reconstruction and point set registration exhibit similarities. Thus, common
types of assumptions and constraints can be applied to disambiguate them (e.g.,
rigidity assumption and shape priors), and for handling non-rigid deformations,
regularisation of displacement fields is required. In this thesis, the study of 3D
reconstruction and point set registration is conducted jointly. As will be shown
throughout the thesis, both related research fields facilitate and enrich each other
with ideas. Point set registration provides tools for 3D reconstruction (algorithmic
and evaluation tools), 3D reconstruction provides data for optimal evaluation of
point set registration, and multiple concepts can be borrowed from one field to
another one (regularisation of the displacement fields).

1.3 Scope of the Thesis

This thesis focuses on robust methods for dense monocular non-rigid 3D recon-
struction from uncalibrated views and alignment of point cloud data.
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The methods for dense monocular non-rigid 3D reconstruction should not assume
that the calibration is known, though if it is known, the algorithms could optionally
use the calibration parameters. Moreover, the new approaches should reconstruct
the scene per-point densely, and, optionally, allow sparse reconstruction. The
requirements to the new methods include robustness to self- and external occlusions,
scalability, higher accuracy and lower runtime compared to the existing methods.
Some of the requirements are not necessary facilitating towards the other ones,
i.e., it is more challenging to develop a scalable, accurate and fast method at the
same time. Efficient NRSfM methods in conjunction with robust methods for dense
correspondences would enable new applications based on commodity hardware.

Thanks to the point set registration, the reconstructed scenes can be compared to
some reference data or the recovered appearance can be transferred to some other
representations usable in different application scenarios. Thus, both method classes
can be used in a single 3D reconstruction and processing pipeline.

There is also another reason to study the fields of monocular 3D reconstruction
and point cloud alignment jointly. Even though the underlying methods pursue
different goals and assume different input data, both fields are still related to each
other, so that cross-fertilisation and exploitation of synergies is possible. Thus,
non-rigid registration can help in the joint evaluation of NRSfM and correspondence
establishment approaches, as will be shown in §5. Moreover, due to the handling
of deformable structures in both algorithm classes, we proposed a new spatial
regulariser (coherency constraint, §6) for NRSfM which was previously used
exclusively in non-rigid point set registration.

The work at hand was also inspired by the maturing research area of augmented
reality. Augmented reality is an interdisciplinary research field on the intersection of
computer vision, computer graphics and hardware systems (which include material
science, physics, mechatronics and electronics). The goal of augmented reality is
to extend and enhance the perceived reality through useful virtual contents. Virtual
contents should be realistic and indistinguishable from the real ones. Along with
the realistic rendering, accurate placement of virtual contents is one of the quality
factors. The acquisition of geometry of deformable objects with efficient methods
for processing of the reconstructions is highly relevant for augmented reality as well.
Both method classes addressed in this thesis — NRSfM and point set registration —
can be used in augmented reality systems in a pipeline for 3D reconstruction and
data processing with a single monocular moving camera.
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1.4 Overview of the Contributions

The primary subject of the dissertation is dynamic 3D reconstruction of non-rigidly
deforming scenes from monocular image sequences as well as processing of point
sets. The main considered algorithm classes are non-rigid structure from motion
(NRSfM) and point set registration (PSR). NRSfM is a highly ill-posed inverse
problem. The input of NRSfM is a set of point tracks over several unsynchronised
and uncalibrated views, and the objective is the recovery of the observed non-
rigid 3D geometry. Thus, NRSfM uses motion and deformation cues as well as
additional weak prior assumptions about the type of valid deformations for 3D
recovery. In PSR, the inputs are two point sets with a different number of points,
and the objective is the alignment of those into a common reference frame (in the
rigid case) or the recovery of the displacements and correspondences non-rigidly
aligning the inputs (in the non-rigid case). The two fields were studied jointly and
complemented each other.

NRSfM and Monocular Surface Recovery

In the field of NRSfM, the thesis features the following contributions:

* First, a new dense variational NRSfM technique for handling large occlusions
and inaccuracies in the data was proposed — Shape Prior Variational Approach
(SPVA). SPVA estimates a shape prior from several first unoccluded frames of
the sequence on-the-fly and guides the reconstruction by the occlusion tensor.
The occlusion tensor is computed from the initial dense flow fields and indicates
occlusion probabilities for every frame. The method allows for the reconstruction
of scenes where large occlusions are expected (e.g., in medical contexts). The
method is parallelisable and is implemented on a GPU. The experimental results
show the state-of-the-art accuracy on challenging sequences for which a shape
prior can be obtained.

* Second, a new method with an intrinsic dynamic shape prior for 3D reconstruc-
tion and compression of sequences with temporally-disjoint rigidity is introduced.
Temporally-disjoint rigidity occurs in most real video sequences, i.e., the phe-
nomenon of state reoccurrence. The repeating states can be separated by an
arbitrary number of other states and can reappear in different poses. Our Dynamic
Shape Prior Reconstruction (DSPR) approach takes advantage of temporally-
disjoint rigidity and allows for dense reconstructions with low latencies. Experi-
ments demonstrate that DSPR can operate on inaccurate correspondences.
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» Third, a new spatial regulariser — the coherency term — for dense NRSfM is
proposed which has allowed handling of large occlusions without a shape prior.
The coherency term was adopted from the motion coherence theory. Before, the
coherency term was used in non-rigid point set registration. We have shown how
to minimise energy with the coherency term in the context of NRSfM.

* Fourth, we have addressed the problem of structure compressibility in the sense
of data compression theory in the context of NRSfM and proposed a new High-
Dimensional Space Model (HDSM) for NRSfM. In HDSM, non-rigid geometry in
3D is encoded as multiple projections of a single high dimensional structure onto
different 3D subspaces. The proposed representation in combination with the
factorisation-based (decoupled) formulation for camera pose and shape recovery
allows compressing the structure in the high dimensional space. The resulting
method encompassing handling of inaccurate point tracks with the coherency term
and structure compression is known as Lifted Coherent Depth Fields (L-CDF).

* Fifth, we propose a new fast technique for dense NRSfM — Accelerated Metric
Projections (AMP) — which allows to factorise dense batches of point tracks in
seconds on a CPU. At the moment of publication, AMP was the fastest dense
NRSfM method delivering high reconstruction accuracy. We have shown in AMP
how to minimise a quadratic function on a set of orthonormal matrices using
an efficient semidefinite programming solver. The method allows an arbitrary
reshuffling of the per-frame measurements which can be advantageous in the
cases when temporal information cannot be maintained.

 Sixth, we have addressed the question of scalability in the context of NRSfM.
The core characteristic of the resulting robust NRSfM technique — Scalable
Monocular Surface Reconstruction (SMSR) — is the steady high accuracy across
a large variety of dense and sparse datasets with reasonable runtime and linear
scalability w.r.t. the number of points. In SMSR, the camera pose is updated
with singular value thresholding and proximal gradient techniques, whereas the
surface is estimated by alternating direction method of multipliers.

* Seventh, we found a new way to regress non-rigid geometry with a trained
encoder-decoder deep neural network. In the Hybrid Deformation Model Network
(HDM-Net), the deformation model is learned from synthetic data in a supervised
manner. Among contributions of HDM-Net is a new way to perform a convolution
on a point set instead of a volumetric representation, an isometric loss and a
contour loss. Moreover, the inference of a surface with over 5k points takes
around 5 ms. Results on real images demonstrated the potential of the proposed
architecture for augmented reality applications.



