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Preface

Frank Stenger, through his papers published in the 1960s and 1970s, is considered
to be the founder of modern Sinc theory. He was born in Magyarpolany, Hungary
in July 1938. To celebrate the 80th anniversary of his birthday, an international
symposium in recognition of Stenger’s major contributions to mathematics took
place at Rhodes, Greece. The symposium was held from 13 to 18 September 2018
and was attended by participants from countries all over the world. It was organized
by Gerd Baumann of the Mathematics Department of German University in Cairo.
The symposium was devoted to Sinc theory and its new developments in numeric
computations. The impact and development of this theory, from the origin to the
present day, was the subject of a series of general presentations by leading experts
in the field. The colloquium concluded with a workshop covering recent research in
this highly active area.

Frank’s work with Sinc methods began when he substantially revised a paper
written by John McNamee and Ian Whitney on Whittaker’s Cardinal Function in
the 1960s. The work took off, as Sinc methods turned out to be an excellent tool for
making approximations. The beautiful coinage of the Sinc function in the original
paper (most likely due to McNamee) was “...a function of royal blood, whose
distinguished properties separate it from its bourgeois brethren.” Since then Sinc
methods developed in a way allowing to solve problems in a wide range of areas in
mathematics, physics, electrical, and fluid dynamic problems and is the primary tool
used in wavelet applications. For Frank, Sinc methods have always been the center
of his work and he coined it once as “...it’s been a very, very lucky area in which
to work ...” and he continues to work in this area up to this day.

The organizers of the symposium decided not to publish proceedings of the
meeting in the usual form. Instead, it was planned to prepare, in conjunction with the
symposium, a volume containing a complete bibliography of Stenger’s published
work, and to present the various aspects of Sinc theory at a rather general level
making it accessible to the nonspecialist.
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viii Preface

The present volume is a collection of 15 chapters relating to the symposium.
It contains, in somewhat extended form, the survey lectures on Sinc theory given
by the speakers. The contributions are divided into three parts incorporating
applications, new developments, and bibliographic work. To complement the range
of topics, the editor invited a few participants and coworkers of Frank Stenger to
provide a review or other contributions in an area related to their current work
covering some important aspects of current interest. Thus, the first part of the
volume contains contributions which are application oriented using Sinc methods.
The second part includes contributions which open the horizon to new fields and
new developments. The volume ends with a comprehensive bibliography of Frank
Stenger’s work. We hope that these articles, besides being a tribute to Frank Stenger,
will be a useful resource for researchers, graduate students, and others looking for
an overview and new developments in the field of Sinc methods.

The articles in this volume can be read essentially independently. The authors
have included cross-references to other sources. In order to respect the style of the
authors, the editor did not ask them to use a uniform standard for notations and
conventions of terminology.

As regards the present volume, we are grateful to our authors for all the efforts
they have put into the project, as well as to our referees for generously giving of
their time. We thank Nelson Beebe who undertook the immense task of preparing
the bibliography for Frank’s work. We are much indebted to Thomas Hempfling
from Springer Verlag for continuing support in a fruitful and rewarding partnership.

Ulm, Germany Gerd Baumann
November 2019
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Part I
Applications

The first part of the book contains eight contributions which are mainly applications
of Sinc methods. The different chapters demonstrate the variety of fields in which
Sinc methods can be applied to problems in mathematics, in physics, in engineering,
and in sociology. This part serves to demonstrate the strength of Sinc methods
utilizing the variety of the computations.



Chapter 1 ®
Sinc-Gaussian Approach for Solving the e
Inverse Heat Conduction Problem

M. H. Annaby and R. M. Asharabi

Abstract We introduce a new numerical method based on the sinc-Gaussian
operator for solving the inverse heat equation. We establish rigorous proofs of the
error estimates for both truncation and aliasing errors. The effect of the amplitude
error, which has not been considered before, is also investigated theoretically and
numerically for the first time in inverse heat problems. The domain of solvability of
the inverse heat problem is enlarged and numerical examples show the superiority of
the technique over the classical sinc-method. The power of the method is exhibited
through several examples.

Keywords Inverse heat equation - Sinc-Gaussian sampling - Gaussian

convergence factor - Gaussian convergence factor - Amplitude and truncation
eITOorS.

1.1 Introduction

The direct heat conduction problem consists in finding the temperature u(x,t)
which satisfies

Oru(x, 1) = Oyxu(x,t), xe 7,t>0,
ux,0) = fx), xe ¢, (1.1)
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where f is a given function. Here ¢ = (0, 00) or _# = R. The problem may be
analytically solved via (in the case _# = R)

1 00 _ 2
u(x,t) = \/ﬁ/ em(%) Sy, (1.2)

provided that f is well behaved. For instance (1.2) is well defined if f € L2(R), cf.
[11,22].

The inverse heat problem, which we are considering in this paper, is to determine
f from a known solution u(x, ). The authors of [8] proposed a sinc-interpolation
method to solve the inverse problem. Their procedure can be outlined as follows.
Ford > 0 and .; C C being the infinite strip .y := {z € C : |Jz| < d}, we define
P (Sy), 1 < p < 00, as the set of holomorphic functions on ., such that if
Dy (¢e) is defined for 0 < ¢ < 1 by

Dy(e) ={zeC:Nz| < 1/e,|3z] <d(1l —¢)},

then NP (f, %) < 00, 1 < p < oo, where

1/p
Nf’(f,fd):=nn5<f If(z)l”IdZI) . (13)
&> 9Dy (¢)

Gilliam et al. [8] proposed a solution to the inverse heat problem (1.1) under the
restriction f € S L(.#;). This restriction via relaxed below. The solution of [8] is
based on the expandability of f via the sinc-interpolation series

— — nh
OEDY f(nh)sinc(y h” ) (1.4)

n=—0oo
where h > 0 is a fixed step-size and the sinc function is defined by

sinmt 20
ot ’ (1.5)

1, t=0.

sinc(t) =

If we define the aliasing error &[ f](y) via

o]

—nh
I =rmN—- Y. f(nh)sinc<y - ) (1.6)

n=—oo
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then [18, Theorem 3.1.3] for f € 7' (%), & f1(y) is bounded via

N'(f.%) nd N
16171l < 50— 0 (exp (_7» Cwsho o0t (17)

where the infinity norm is defined by || fllcoc = sup,cg |f(x)|. Moreover if the
function f decays as

|f ()] = cexp(—alx]), xeR, (1.8)

for some positive constants ¢ and @, and one selects h =
aliasing and truncation error which is given by

—nh
VI =)~ Y. f(nh)sim:(y = ) (19)

[n|<N

for some N € N is estimated in [18, Theorem 3.1.7] to be

1N Tlloo < CV/N exp (—x/nadN), as N — oo, (1.10)

where the constant C depends only on f, a and d.

The technique of [8], see also [10, pp. 27-31], stands on approximating { f (nh)}
for —N < n < N through solving the following truncated linear system of
equations

N
Byt =2wu = Y fOh)Buy =2nukh,D, —N<k<N, (L1
n=—N

where By = (bjk)—Ngj,ng = (lBj—k)—Ngj,ng’

f = (f(=NR), (=N +Dh), ..., f©O), ..., fF(N = Dh), f(Nh)T, (1.12)
u = (=N, u(=N + DD, ..., u@©,D ..., u(N = DA, D, u(Nh, )", (1.13)

-7

T 2
B = / exp(ilT) exp (—3) dr, —2N <[ <2N, (1.14)
47

~ 2 .
andt ;= (%) . Hereafter, AT denotes the transpose of a matrix A.

While the paper [8] nicely connects the sinc-method to the inverse heat problem,
the authors did not investigate the amplitude error resulting from the effect of

approximating the samples {f (nh)},11V=7 N by { f (nh)}flv:_ - Moreover, in the
analysis of the stability of (1.11), it is proved that |§;] < %, [ > 1. Howeyver, this
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estimate does not imply the boundedness of the operator B = limy_, o By on £2.
Thus neither the existence of B~! nor the stability of the system is not theoretically
guaranteed. However, in [8] the authors introduced satisfactory computations of
numerical condition numbers. On the other hand, the connection between sinc-
interpolations and inverse problems is rarely investigated, cf. e.g. [16, 23]. As far
as we know, no studies have been performed about the connection between the sinc-
Gaussian method and the inverse heat conduction. Therefore one may ask about
the possibility of applying recent advances in the sinc-methods for the inverse heat
problem to improve error analysis as well as convergence rates.

We aim in this paper to use the sinc-Gaussian operator, defined by Wei et al.
[20, 21], and developed by Qian et al. [12—14], Schmeisser and Stenger [15], Tanaka
et al. [19], and the authors [2, 4, 5], to solve the inverse heat problem. As expected
this technique will have the following advantages:

* No need for infinite systems.
* Acceleration the rate of convergence to O (exp (— %) /N ) which is indepen-

dent of d or h as the bound (1.7) of sinc-interpolation.
e The localization property that allows to approximate f in appropriately desired
domains.

The other task of this paper is to investigate the effect of the amplitude error due to
use approximating samples on the solution of the inverse problem. We investigate
the amplitude error for the method of [8] and for the sinc-Gaussian interpolation
established here. Numerical examples and illustrations are introduced in the last
section.

1.2 Sinc-Type Errors

In this section we demonstrate the types of error associated with the use of the sinc-
method in the approximation of the inverse heat problem. Let

~ XL —nh
SN = - Y f(nh)sinC(y — ) (1.15)

n=—oo

where f (nh) are approximations of the samples f(nh), n € Z, such that there is a
sufficiently small ¢, which satisfies €, := | f(nh) — f(nh)| < ¢ for alln € Z and

en < |f(h)|, neZ. (1.16)

In the following we assume that the decay condition (1.16) is fulfilled and ¢, < &,
foralln € Z.
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Theorem 1.1 Let f € 7' (,) satisfy the decay condition

C
|f@®)] < |t|af+1’ a€]0, 1], |tf] > 1, 1.17)

where Cy is a positive constant. Then we have for 0 < & < min{h, h=1',1//e} and
yeR,

ELAO) — ELFIO)| < —F— (3@+D/2 4 4 € 2@HD/2,1/4) ¢ log(1 /).
1 f
(1.18)

where a €0, 1[ and the constant C ¢ depends only on f.

Proof Letp,q > 1, 1/p+1/q = 1.Fory € R, we apply Holder’s inequality, then
we use an inequality of SplettstoBer et al. [17],

< 00 . y—nh\ |9 1/q
Z smc( > < p, (1.19)
n=—o0 h
to obtain
- 00 l/p
Iéa[f](y)—éa[f](y)lfp( > |sn|”> : (1.20)

Using the conditions (1.16) and (1.17) for a sufficiently small ¢, the technique of
[6], see also [1, 3], we obtain the estimate

00 1/p 4
p< Z |8,,|p> < * (3(a+1)/2e+ Cy 2e+)/2, 1/4) elog(1/e).

Mt oa+1
(1.21)
Combining (1.21) and (1.20) immediately implies (1.18).
For convenience, we define A.[ f] to be
Adfli=— (3<“+1)/2 e+ Cp2@tD/2, 1/4) elog(1/e). (1.22)

After we derived an estimate for the amplitude error (1.18), we can now estimate the
error that arises from applying the sinc-method in the inverse problem. We consider
both aliasing and amplitude errors.
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Corollary 1.1 Let f € 7' (Fy). Then we have for 0 < ¢ < min{h, h~!, 1/./e}

~ NY(f, 2
181 oo < Sndsinedm) Aclf], (1.23)

where N' (f,.%) is defined in (1.3).

Proof The estimate (1.23) directly follows from combining the estimates (1.18) and
(1.7).

To apply the sinc-method in the inverse heat problem, we have only a finite number
of observations. Therefore a truncation error arises. In the following we estimate
En[f1(y) for a positive integer N, where

~ ~ —nh
VLAY = f) = Y. f(nh)sim(y - ) (124)

[n|<N

Corollary 1.2 Let f € H°1(Fy) obey the decay (1.8). Then for 0 < & <
min{k, !, 1//e} we have

1EvLf oo = CVN exp (—v7adN ) + Aclf1, (1.25)

where C is a positive constant that depends only on f, o and d.

Proof From the triangle inequality, we obtain

1ENT oo < IENLF oo + I1E1F1 = ETf Tlco- (1.26)

Combining (1.18), (1.10) and (1.26) implies (1.25).

A more general case, where the decay condition (1.8) by the relaxed one (1.17) is
treated in the following theorem.

Theorem 1.2 Let f € (%) such that (1.17) is fulfilled. Then we have for
h=,%

N
=N 2
”g[\/[f]”OOENl(f’yd) e ”dN-FW. (1.27)
Proof From the definition of &y[ f], we obtain
-—nh
IEnLf oo < IET Moo + | Y f(nh)sinc< = ) . (1.28)

|n|>N 00
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The first term on the right-hand side of (1.28) has been estimated in (1.7). Letting
h = /% in (1.7) implies
1ET Moo < N'(f, Fa) e 7N, (1.29)

We now estimate the second term on the right-hand side of (1.28). Since f obeys
the decay condition (1.17), we obtain

_(y—nh * 1 2
Z f(nh)smc( A ) =< Z | f(nh)| 52/ tﬂt“dt:a(ndN)“/T

>N [n|>N Nh
(1.30)

where we have used in the last step that 7 = ’gv—d. Combining (1.30) and (1.29)
implies (1.27).

Considering the amplitude error leads to the following corollary.

Corollary 1.3 Ler f € (%) for which the decay condition (1.17) is satisfied.

d

Then we have for h = HW’
et 1 —+/dN A 1.31
”(g)N[f]”ooSN (f,yd)e +0{(7TdN)a/2+ S[f] ( 3 )

Proof Results directly from combining (1.27), (1.26) and (1.18).

The following theorem is estimating the amount of a function in the amplitude error,
which can be made as small as wished. It is derived under the assumption that By
is invertible.

Theorem 1.3 Let By be invertible and By be a perturbed matrix for which

1By — Byl < 8 < —, (1.32)
1By |l
where ||.|| is the Euclidean norm. Then EN is also invertible and if
Byf = 2mu, ENf: 2mu,
then
= _ 278]By lllu]
If—f) < ——2——, (1.33)
T

which goes to zero as § — O.
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Proof Results directly from [9, p. 71].

1.3 Sinc-Gaussian Heat Inversion on R

Let B () be the class of holomorphic functions on .#; which are bounded on R.
Let & be the class of all entire functions that belong to L2(R) when restricted to
the real axis. On the class B(.%;), Schmeisser and Stenger defined in [15] a sinc-
Gaussian sampling operator ¢, y : B(%y) — & by

2
Gh.N[f1(z) = Z f (nh) sinc (Z _hnh) exp (—% <Z —hnh) ) , z€C,

neZy (z)

(1.34)

where N is a positive integer, Zy (z) = {n €Z:|lh'"Nz+1/2] —nl < N},
|-] denotes the floor function and h = %. The authors of [15] have bounded the

truncation error | f@ —%.nNLf ](z)\ when f € B(Fy) and z € H4/4. Here we
state only the real version of this bound because our technique will be entirely on
R.If f € B(), then we have, cf.[15, Theorem 3.1],

e 1N
nV/N’

Since the samples { f (nh)}, <z, (;) cannot be measured explicitly for most applied

If = %nf1]y < 4V20 fllso (1.35)

problems, and alternative approximate ones { f (nh)}n T A€ measured, an
amplitude error appears. Let

2
G100 = Y Fh)sine (x _hnh> P <_% (x _hnh> ) . xeR

nezy (x)

(1.36)

The authors of [2] established a bound of the amplitude error as follows:

|11 =GNl <28 /3N (1 + ,/2N/n2) , (1.37)

where ¢ is sufficiently small that satisfies | f (nh) — f(nh)| < eforalln € Zy(2).
In the following, we introduce a new technique based on sin-Gaussian interpo-
lation to solve the inverse heat problem. Let the initial function f of (1.1) belongs
to B(Sy). Then f € C*(R) N L*°(R) when the domain of f is restricted on the
real line. Therefore the solution (1.2) is well defined and u € C®(R x (0, 00)),
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cf. [7, p. 47]. We assume that the solution of the inverse heat problem is based
on approximating f via the sinc-Gaussian interpolation (1.34). Therefore f(y) ~
%h.n[f1(y), and consequently as in [8, 10]

—v)2 7
u(x,r) x~ \/tne%(y) f(nh)/ exp ((y)) sinc (% - n) Ul 1y_")zafy.
(1.38)

Letting x = kh, s = y7—hkh and/ = n — k in (1.38) yields

u(kh,t) ~ —— Z f(nh)/ = sinc(s —[)e” 21—V[)2ds. (1.39)

”EZN )

The Sinc function is merely the Fourier coefficient

1 T
sinc (s — ) = 2—/ e BTl g, (1.40)
L

Combining (1.40) and (1.39) implies

2
h le+ 4, +”(§7V1) )
— nh dsdrt,
v L s [ [

neZn(y)

u(kh, t) ~

(1.41)

where I = n — k. Calculating the infinite integral in (1.41) and letting #( := (ﬁ)z,
we obtain the system of equations

1
ulkh, 1) = ————==>_ fO)By . ke€Lyn(y). (1.42)
2
2{/m*+m/2N neZm ()
where

222 [T . 2imlt + Lt?
%Zezn’w/ M exp [~ TN 4o (1.43)

_r 22N + 1)

The system (1.42) can be written in a more compact form as

Byf = ayu, (1.44)
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where ay := 24/72 4+ /2N and By is the 2N 4 1) x (2N + 1) symmetric Toeplitz
matrix

By B B PN
P %0 B QZNH
By = By B By ...%N-2 |. (1.45)

PBon Bon-1 Bon—2 ... HBo

The symmetry of the Toeplitz matrix comes from the property Z_; = 4, for all
0 <! <2N.With Ny := lh='y +1/2], (2N + 1)-vectors f and u are given by

f=(f(=N+Nph), ..., fF(N+Nph) ", (1.46)

u=(u((—=N + Nyh, 10, ..., u((N + Nyh, 19)) " . (1.47)

Assume that u is known and that we determine f from (1.44). We compute the
integrals %;, —2N < [ < 2N, which are the elements of the matrix By,
numerically because they can not be computed exactly. Again the amplitude error
appears. In this setting, we do not need to consider the case of infinite series (1.4).
However, as in the previous section, we assume the invertibility of By. We then
have the following theorem.

Theorem 1.4 Let f € B(S), let B N be a perturbed matrix from By such that

~ 1
By =Byl <6 € ———, (1.48)
By |l
where || - || is the matrix norm. Then
—_IN —1
~ e 2 ay By Hall - __en /
Nf = NI 54@“ I + 26 e/ <1—|— 2N 7T2>.
S h,N Slloo f ooﬂ\/ﬁ 1 _ ||BX/1||5 /
(1.49)

Proof Since By is invertible and the condition (1.48) is satisfied,

Say By Il

If =il < -
1—[By'|18

(1.50)

Hence, applying the triangle inequality, we obtain

I = %N fllloo < I1f —%n[lloo + 1% 11— %N F1lloo- (1.51)
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Bounds on the first and second terms of (1.51) are given in (1.35) and (1.37),
—1
respectively. Combining (1.35), (1.37) and (1.51) with & := % leads to
—IPN
(1.49).

1.4 Sinc-Gaussian Heat Inversion on Rt

In this section we treat the problem (1.1) with ¢ = (0, 00). The solution of (1.1)
is given by, cf. e.g. [8],

1 [e'e) (v — )2 _ 2
s g (o 252) (252 o
(1.52)

Let F be the odd extension of f on R

VAGOR ify =0,

—f(=y), ify <0. (1.53)

F(y)={

For a continuous initial data f, it is necessary that f(0) = 0. The solution (1.52)
becomes

1 o0 _ w2
u(x,t):\/m/ exp<¥> F(y)dy. (1.54)

If F belongs to the class C*°(R) N L*°(R), then the solution in (1.54) is well defined
and F(y) ~ %, n[F1(y), ie.

Ny+N

Foy= Y F(nh)sinc(y

n=Ny—N

- ”h) () (1.55)

Substituting from (1.55) into (1.54) and using technique as in the former, we obtain
the following system of equations

Ny+N
Y F@h)%, ik =ayu(kh,n), Ny—N<k<N,+N, (1.56)
n=Ny—N

where t] := (ﬁ)2 , an :=2m? + /2N and % is defined in (1.43). In the case
Ny > N, the 2N+1)x (2N +1) system of equations (1.56) becomes (1.44) because
F(y) = f(y) on [0, co). Therefore, we solve this system in the same way as in the
former to find the vector f. If Ny = N, the system (1.56) reduces to 2N x 2N of
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equations because f(0) = 0 and (0, #;) = 0 which comes from the odd extension
of f. When 0 < Ny < N, the order of a matrix in the system (1.56) reduces to
N + Ny. Recall that Z_; = %, forall -N <[ < N, F(—nh) = —f(nh) and
u(—nh,t1) = —u(nh,ty) forall =(N — Ny) < n < N — N,. Hence the system
(1.56) has the block form

A] A2 A3 —f] —Uuq
A) Al Ay h |=av| w |, (1.57)
A] A] As f3 u3
where the matrices Aj, j =1,..., 5 are defined by
Bo ... BN-N,—1 BN-Ny+1 - - BoruN-Ny)

Al = s Ay = s
BN-Ny—1 - Bo B oo BN-Ny+1
BAUN-N)+1 -+ PN BN-N, - BN+N,—1)

Az = : : o Ag= : : :

BN-Ny+2 -+ BN+N,+1 By ... P,
B e %2Ny—1
Asi=1 :
Bony-1 - Bo

The matrices A;, j = 1,2 are of order N — Ny while A;, j = 3,4 are of order
(N — Ny) x 2Ny and Ajs has order 2N,. The vectors f; and u;, j = 1,2,3 are
defined by

fi=(f(N=Nph),..., f()",
= (f(h), ..., f (N =Nph)',
f5 = (f (N =Ny +Dh),..., f (N+Nph) ",
and
wi = (u(N=Nphto),...,uth )",
w = (u(h, 19), ..., u (N — Nyh, 1)) ",

us = (u (N = Ny + Dh, 10) , ..., u (N + Nyh, 9)) " .
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The vectors f;, u;, j = 1,2 are of dimension N — N, while f3 and u3 are of
dimension 2N,. Thus the matrices A;, j = 3,4,5 and the vectors f3 and u3
disappear from the system (1.57) when N, = 0. Likewise, A;, j =1, 2, f; and uy
disappear from the system when Ny, = N. Now, it is easy to see that

w=Jyyw, b=Jvyf, IvnA) =Anon,,  In-nALIyoN, = Al

(1.58)
where Jy_n, is the (N — Ny) x (N — N,) matrix defined as
00...01
00...10
IN-Ny = e
01...00
10...00
Using the relations (1.58), the system (1.57) reduces to
2 (A1 = Axdy-n,) i = (A3 = In-w, AT ) f5 = 2anuy,
- (A3T - AIJN,N},) f| + Asfs = ayus, (1.59)

which is of order (N + Ny) x (N + Ny). In the special case Ny = 0, the system
(1.59) will be (A1 — A2JN) f] =anuj.

1.5 Numerical Examples

We work out four numerical examples in this section. Examples 1.1-1.3 are
considered in [8, 10]. The fourth example is devoted to an inverse heat problem
on (0, 00). In all examples, we compare between the results of both sinc and sinc-
Gaussian methods. Let §N (x) to be

Sv() = Y Flnhysinc (y _h”h>

In|<N

and x; := d(k — 1/2)/N. The bound of the classical technique is calculated using

(1.7) with h = \/% . In all examples, with both techniques we choose d = 1. The
condition numbers of the matrix By are given below in Table 1.1. They are very
close to those computed for By in [8]. This indicates that both systems, (1.44) and
(1.11) have similar stability properties.



