Organic Structures from Spectra

20 65 6.0 5.5

SIXTH EDITION

L. D. Field H. L. Li A. M. Magill

3.5 3.0 2.5

Organic Structures from Spectra

Sixth Edition

Organic Structures from Spectra

Sixth Edition

L. D. Field Professor of Chemistry School of Chemistry University of New South Wales, Australia

H. L. Li Senior Research Associate School of Chemistry University of New South Wales, Australia

A. M. Magill Honorary Research Associate School of Chemistry University of New South Wales, Australia

WILEY

This edition first published 2020 © 2020 John Wiley & Sons Ltd

Edition History John Wiley & Sons (4e, 2008) John Wiley & Sons (5e, 2013)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of L. D. Field, H. L. Li and A. M. Magill to be identified as the authors of this work has been asserted in accordance with law.

Registered Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data Names: Field, L. D., author.

Title: Organic structures from spectra / L.D. Field, Professor of Chemistry, School of Chemistry, University of New South Wales, H.L. Li, Senior Research Fellow, School of Chemistry, University of New South Wales, A.M. Magill, Honorary Research Fellow, School of Chemistry, University of New South Wales. Description: Sixth edition. | Hoboken, NJ : Wiley, 2020. | Includes bibliographical references and index. Identifiers: LCCN 2020004972 (print) | LCCN 2020004973 (ebook) | ISBN 9781119524809 (paperback) | ISBN 9781119524793 (adobe pdf) | ISBN 9781119524847 (epub) Subjects: LCSH: Spectrum analysis-Problems, exercises, etc. | Organic compounds-Structure-Problems, exercises, etc. Classification: LCC QD272.S6 S74 2020 (print) | LCC QD272.S6 (ebook) | DDC 543/.17-dc23 LC record available at https://lccn.loc.gov/2020004972 LC ebook record available at https://lccn.loc.gov/2020004973

Cover Design: Wiley

Cover Image: Courtesy of Professor L. D. Field, Dr. Hsiu Lin Li and Dr. Alison Magill; © Chernookaya/Shutterstock

Set in 12/16pt TimesNewRomanMTStd by SPi Global, Chennai, India

CONTENTS

	REFACE ST OF TA	BLES	ix xiii
LI	ST OF FIC	GURES	xv
1	INTROD	UCTION	1
	1.1	GENERAL PRINCIPLES OF ABSORPTION SPECTROSCOPY	1
	1.2	CHROMOPHORES	2
	1.3	DEGREE OF UNSATURATION	3
	1.4	CONNECTIVITY	4
	1.5	SENSITIVITY	4
	1.6	PRACTICAL CONSIDERATIONS	5
2	ULTRAV	IOLET (UV) SPECTROSCOPY	6
	2.1	THE NATURE OF ULTRAVIOLET SPECTROSCOPY	6
	2.2	BASIC INSTRUMENTATION	6
	2.3	QUANTITATIVE ASPECTS OF ULTRAVIOLET SPECTROSCOPY	8
	2.4		8
	2.5	SPECIAL TERMS IN ULTRAVIOLET SPECTROSCOPY	9
	2.6	IMPORTANT UV CHROMOPHORES	10
		2.6.1 DIENES AND POLYENES	10
		2.6.2 CARBONYL COMPOUNDS	11
		2.6.3 BENZENE DERIVATIVES	11
	2.7	THE EFFECT OF SOLVENTS	13
3	INFRARI	ED (IR) SPECTROSCOPY	14
	3.1	ABSORPTION RANGE AND THE NATURE OF IR ABSORPTION	14
	3.2	EXPERIMENTAL ASPECTS OF INFRARED SPECTROSCOPY	15
	3.3	GENERAL FEATURES OF INFRARED SPECTRA	16
	3.4	IMPORTANT IR CHROMOPHORES	18
		3.4.1 -O-H AND -N-H STRETCHING VIBRATIONS	18
		3.4.2 C-H STRETCHING VIBRATIONS	18
		3.4.3 -C=N AND -C=C- STRETCHING VIBRATIONS	19
		3.4.4 CARBONYL GROUPS	19
		3.4.5 OTHER POLAR FUNCTIONAL GROUPS	21
		3.4.6 THE FINGERPRINT REGION	21
4	MASS S	PECTROMETRY	23
	4.1	IONISATION PROCESSES	23
	4.2	INSTRUMENTATION	25
	4.3	MASS SPECTRAL DATA	26
		4.3.1 HIGH RESOLUTION MASS SPECTRA	26
		4.3.2 MOLECULAR FRAGMENTATION	28
		4.3.3 ISOTOPE RATIOS	29

5

SPECTROMETRY 4.3.5 METASTABLE PEAKS 31 4.4 REPRESENTATION OF FRAGMENTATION PROCESSES 32 4.5 FACTORS GOVERNING FRAGMENTATION PROCESSES 32 4.6 EXAMPLES OF COMMON TYPES OF FRAGMENTATION 32 4.6.1 CLEAVAGE at BRANCH POINTS 32 4.6.2 β-CLEAVAGE 33 4.6.3 CLEAVAGE at TO CARBONYL GROUPS 33 4.6.4 CLEAVAGE at TO CARBONYL GROUPS 33 4.6.5 RETRO DIELS-ALDER REACTION 34 4.6.6 THE MCLAFFERTY REARANGEMENT 34 4.6.6 THE MAGNETIC RESONANCE (NMR) SPECTROSCOPY 36 5.1 THE PHYSICS OF NUCLEAR SPINS AND NMR INSTRUMENTS 36 5.1.1 THE LARMOR EQUATION AND NUCLEAR MAGNETIC 36 5.2 BASIC NMR INSTRUMENTATION 39 5.2.1 CW AND PULSED NMR SPECTROSCOPY 43 5.2 DASIC NMR INSTRUMENTATION 42 5.2 NUCLEAR RELAXATION 42 5.2.1 CW AND PULSED NMR SPECTROSCOPY 43 5.2.2 NUCLEAR RELAXATION 42 5.3		4.3.4	CHROMATOGRAPHY COUPLED WITH MASS	31
 4.4 REPRESENTATION OF FRAGMENTATION PROCESSES 4.5 FACTORS GOVERNING FRAGMENTATION PROCESSES 4.6 EXAMPLES OF COMMON TYPES OF FRAGMENTATION 4.6.1 CLEAVAGE AT BRANCH POINTS 4.6.2 β-CLEAVAGE 4.6.3 CLEAVAGE aT O CARBONYL GROUPS 4.6.4 CLEAVAGE aT O CARBONYL GROUPS 4.6.5 RETRO DIELS-ALDER REACTION 4.6.6 THE MCLAFFERTY REARRANGEMENT 4.6.6 THE MCLAFFERTY REARRANGEMENT 4.6.6 THE MCLAFFERTY REARRANGEMENT 4.6.6 THE MCLAFFERTY REARRANGEMENT 5.1.1 THE PHYSICS OF NUCLEAR SPINS AND NMR INSTRUMENTS 5.1.1 THE LARMOR EQUATION AND NUCLEAR MAGNETIC 7.2 BASIC NMR INSTRUMENTATION 5.2.1 CW AND PULSED NMR SPECTROMETERS 5.2.2 MUCLEAR RELAXATION 5.2.3 MAGNETS FOR NMR SPECTROSCOPY 5.2.4 THE NMR SPECTROM 44 5.3 CHEMICAL SHIFT IN 'H NMR SPECTROSCOPY 5.4 SPIN-SPIN COUPLING IN 'H NMR SPECTROSCOPY 5.5 ANALYSIS OF 'H NMR SPECTROSCOPY 5.5 ANALYSIS OF 'H NMR SPECTROSCOPY 5.5 ANALYSIS OF 'H NMR SPECTROSCOPY 5.5 SIGGAL MULTIPLICITY - THE N+1 RULE 5.5 ANALYSIS OF 'H NMR SPECTROS SOPY 5.5.3 MAGNETIC EQUIVALENCE 5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 5.5.4 CONVENTIONS FOR NAMING SPIN SYSTEMS 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 5.5.7 SPIN DECOUPLING 5.5.7 SPIN DECOUPLING 6.6 CORRELATION OF 'H-'H COUPLING WITH STRUCTURE 5.6.1 NON-AROMATIC SPIN SYSTEMS 5.6.2 AROMATIC SPIN SYSTEMS			SPECTROMETRY	
 4.5 FACTORS GOVERNING FRAGMENTATION PROCESSES 4.6 EXAMPLES OF COMMON TYPES OF FRAGMENTATION 4.6.1 CLEAVAGE AT BRANCH POINTS 4.6.2 β-CLEAVAGE 3.3 4.6.3 CLEAVAGE a TO CARBONYL GROUPS 3.3 4.6.4 CLEAVAGE a TO CARBONYL GROUPS 3.3 4.6.5 RETRO DIELS-ALDER REACTION 4.6.6 THE MCLAFFERTY REARRANGEMENT 5.1.1 THE LARMOR EQUATION AND NUCLEAR MAGNETIC RESONANCE 5.2 BASIC NMR INSTRUMENTATION 5.2.1 CW AND PULSED NMR SPECTROMETERS 9 5.2.2 NUCLEAR RELAXATION 4.2.3 MAGNETS FOR NMR SPECTROSCOPY 4.3 CHEMICAL SHIFT IN 'H NMR SPECTROSCOPY 5.4 SPIN-SPIN COUPLING IN 'H NMR SPECTROSCOPY 5.4 SPIN-SPIN COUPLING IN 'H NMR SPECTROSCOPY 5.5 ANALYSIS OF 'H NMR SPECTRA 5.5 ANALYSIS OF 'H NMR SPECTRA 5.5.1 SPIN SYSTEMS 5.5.2 STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS 5.5.3 MAGNETIC EQUIVALENCE 5.5.4 CONVENTIONS FOR NAMING SPIN SYSTEMS 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 5.5.6 SPLITTING DIAGRAMS 5.5.7 SPIN DECOUPLING 5.5.6 SPLITTING DIAGRAMS 5.5.7 SPIN DECOUPLING 5.6.1 NON-AROMATIC SPIN SYSTEMS 5.6.2 AROMATIC SPIN SYSTEMS 5.6.1 NON-AROMATIC SPIN SYSTEMS 5.6.2 AROMATIC SPIN SYSTEMS 5.6.3 LABILE AND EXCHANGEABLE PROTONS 70 1³C NMR SPECTROSCOPY 6.1 COUPLING AND DECOUPLING IN ¹³C NMR SPECTRA 72 74.4 SHIELDING AND CHARACTERISTI				
4.6 EXAMPLES OF COMMON TYPES OF FRAGMENTATION 32 4.6.1 CLEAVAGE AT BRANCH POINTS 32 4.6.2 β -CLEAVAGE a TO CARBONYL GROUPS 33 4.6.4 CLEAVAGE a TO CARBONYL GROUPS 33 4.6.4 CLEAVAGE a TO HETEROATOMS 34 4.6.5 RETRO DIELS-ALDER REACTION 34 4.6.6 THE McLAFFERTY REARRANGEMENT 34 ************************************				
4.6.1 CLEAVAGE AT BRANCH POINTS 32 4.6.2 β-CLEAVAGE 33 4.6.3 CLEAVAGE a TO CARBONYL GROUPS 33 4.6.4 CLEAVAGE a TO CARBONYL GROUPS 34 4.6.5 RETRO DIELS-ALDER REACTION 34 4.6.6 THE MCLAFFERTY REARANGEMENT 34 *1H NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY 36 5.1 THE PHYSICS OF NUCLEAR SPINS AND NMR INSTRUMENTS 36 5.1.1 THE LARMOR EQUATION AND NUCLEAR MAGNETIC 36 5.1.1 THE LARMOR EQUATION AND NUCLEAR MAGNETIC 36 5.1.1 THE LARMOR EQUATION AND NUCLEAR MAGNETIC 36 5.2.2 NUCLEAR RELAXATION 39 5.2.1 CW AND PULSED NMR SPECTROSCOPY 43 5.2.3 MAGNETS FOR NMR SPECTROSCOPY 43 5.2.4 THE NMR SPECTRUM 44 5.3 CHEMICAL SHIFT IN ¹ H NMR SPECTROSCOPY 45 5.4 SPIN-SPIN COUPLING IN ¹ H NMR SPECTROSCOPY 52 5.4.1 SIGNAL MULTIPLICITY - THE N+1 RULE 54 5.5 ANALYSIS OF ¹ H NMR SPECTROSCOPY 52 5.5.1 SPIN SYSTEMS<	4.5	FACT	ORS GOVERNING FRAGMENTATION PROCESSES	
$ \begin{array}{ccccc} 4.6.2 & \beta \text{-} \text{CLEAVAGE} & 33 \\ 4.6.3 & \text{CLEAVAGE} & \text{TO CARBONYL GROUPS} & 33 \\ 4.6.4 & \text{CLEAVAGE} & \text{TO HETEROATOMS} & 34 \\ 4.6.5 & \text{RETRO DIELS-ALDER REACTION} & 34 \\ 4.6.6 & \text{THE McLAFFERTY REARRANGEMENT} & 34 \\ \hline \\ ^1 \text{H NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY} & 36 \\ \hline 5.1 & \text{THE PHYSICS OF NUCLEAR SPINS AND NMR INSTRUMENTS} & 36 \\ \hline 5.1.1 & \text{THE LARMOR EQUATION AND NUCLEAR MAGNETIC} & 36 \\ \hline 5.1.1 & \text{THE LARMOR EQUATION AND NUCLEAR MAGNETIC} & 39 \\ \hline 5.2.1 & \text{CW AND PULSED NMR SPECTROMETERS} & 39 \\ \hline 5.2.2 & \text{NUCLEAR RELAXATION} & 39 \\ \hline 5.2.1 & \text{CW AND PULSED NMR SPECTROSCOPY} & 43 \\ \hline 5.2.2 & \text{MAGNETS FOR NMR SPECTROSCOPY} & 43 \\ \hline 5.2.3 & \text{MAGNETS FOR NMR SPECTROSCOPY} & 43 \\ \hline 5.2.4 & \text{THE NMR SPECTRUM} & 44 \\ \hline 5.3 & \text{CHEMICAL SHIFT IN 1H NMR SPECTROSCOPY} & 45 \\ \hline 5.4 & \text{SPIN-SPIN COUPLING IN 1H NMR SPECTROSCOPY} & 52 \\ \hline 5.4.1 & \text{SIGNAL MULTIPLICITY} - \text{THE N+1 RULE} & 54 \\ \hline 5.5 & \text{ANALYSIS OF 1H NMR SPECTRA} & 55 \\ \hline 5.5.2 & \text{STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS} & 56 \\ \hline 5.5.3 & \text{MAGNETIC EQUIVALENCE} & 58 \\ \hline 5.5.4 & \text{CONVENTIONS FOR NAMING SPIN SYSTEMS} & 56 \\ \hline 5.5.5 & \text{SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA} & 60 \\ \hline 5.5.6 & \text{SPLITTING DIAGRAMS} & 61 \\ \hline 5.5.7 & \text{SPIN DECOUPLING} & 64 \\ \hline 5.6 & \text{CORRELATION OF 1H-1H COUPLING WITH STRUCTURE} & 65 \\ \hline 5.6.1 & \text{NON-AROMATIC SPIN SYSTEMS} & 66 \\ \hline 5.7 & \text{THE NUCLEAR OVERHAUSER EFFECT (NOE)} & 69 \\ \hline 5.8 & \text{LABILE AND EXCHANGEABLE PROTONS} & 70 \\ \hline \begin{array}{c} 1^3 \text{C NMR SPECTROSCOPY} & 72 \\ \hline 6.1 & \text{COUPLING AND DECOUPLING IN 13C NMR SPECTRA & 72 \\ \hline 6.2 & \text{THE NUCLEAR OVERHAUSER EFFECT (NOE)} & 13^2 \text{C NMR} & 73 \\ & \text{SPECTROSCOPY} & 72 \\ \hline 6.1 & \text{COUPLING AND DECOUPLING IN 13C NMR SPECTRA & 72 \\ \hline 6.4 & \text{SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN & 76 \\ \hline \end{array}$	4.6	EXAM	PLES OF COMMON TYPES OF FRAGMENTATION	32
4.6.3 CLEAVAGE α TO CARBONYL GROUPS 33 4.6.4 CLEAVAGE α TO HETEROATOMS 34 4.6.5 RETRO DIELS-ALDER REACTION 34 4.6.6 THE MCLAFFERTY REARANGEMENT 34 ¹ H NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY 36 5.1 THE PHYSICS OF NUCLEAR SPINS AND NMR INSTRUMENTS 36 5.1.1 THE LARMOR EQUATION AND NUCLEAR MAGNETIC 36 5.2.1 CW AND PULSED NMR SPECTROMETERS 39 5.2.1 CW AND PULSED NMR SPECTROSCOPY 43 5.2.2 NUCLEAR RELAXATION 42 5.2.3 MAGNETS FOR NMR SPECTROSCOPY 43 5.2.4 THE NMR SPECTRUM 44 5.3 CHEMICAL SHIFT IN ¹ H NMR SPECTROSCOPY 45 5.4 SPIN-SPIN COUPLING IN ¹ H NMR SPECTROSCOPY 45 5.4 SPIN-SPIN COUPLING IN ¹ H NMR SPECTROSCOPY 52 5.4.1 SIGNAL MULTIPLICITY – THE N+1 RULE 54 5.5.1 SPIN SYSTEMS 56 5.5.2 STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS 59 5.5.5 SPECTRAL ANALYSIS OF FIN SYSTEMS 59 5.5.6 SPIN		4.6.1	CLEAVAGE AT BRANCH POINTS	32
4.6.4 CLEAVAGE α TO HETEROATOMS 34 4.6.5 RETRO DIELS-ALDER REACTION 34 4.6.6 THE McLAFFERTY REARRANGEMENT 34 ¹ H NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY 36 5.1 THE PHYSICS OF NUCLEAR SPINS AND NMR INSTRUMENTS 36 5.1.1 THE LARMOR EQUATION AND NUCLEAR MAGNETIC 36 5.1.1 THE LARMOR EQUATION AND NUCLEAR MAGNETIC 36 5.2.1 CW AND PULSED NMR SPECTROMETERS 39 5.2.1 CW AND PULSED NMR SPECTROMETERS 39 5.2.2 NUCLEAR RELAXATION 44 5.3 CHEMICAL SHIFT IN ¹ H NMR SPECTROSCOPY 43 5.2.4 THE NMR SPECTRUM 44 5.3 CHEMICAL SHIFT IN ¹ H NMR SPECTROSCOPY 45 5.4 SPIN-SPIN COUPLING IN ¹ H NMR SPECTROSCOPY 52 5.4.1 SIGNAL MULTIPLICITY - THE N+1 RULE 54 5.5 ANALYSIS OF ¹ H NMR SPECTRA 55 5.5.1 SPIN SYSTEMS 56 5.5.2 STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS 56 5.5.4 CONVENTIONS FOR NAMING SPIN SYSTEMS 58 5.5.5			•	33
4.6.5RETRO DIELS-ALDER REACTION344.6.6THE MCLAFFERTY REARRANGEMENT341H NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY365.1THE PHYSICS OF NUCLEAR SPINS AND NMR INSTRUMENTS365.1.1THE LARMOR EQUATION AND NUCLEAR MAGNETIC365.1.1THE LARMOR EQUATION AND NUCLEAR MAGNETIC365.2BASIC NMR INSTRUMENTATION395.2.1CW AND PULSED NMR SPECTROMETERS395.2.2NUCLEAR RELAXATION425.2.3MAGNETS FOR NMR SPECTROSCOPY435.2.4THE NMR SPECTRUM445.3CHEMICAL SHIFT IN ¹ H NMR SPECTROSCOPY455.4SPIN-SPIN COUPLING IN ¹ H NMR SPECTROSCOPY525.4.1SIGNAL MULTIPLICITY – THE N+1 RULE545.5SIGNAL MULTIPLICITY – THE N+1 RULE545.5.1SPIN SYSTEMS565.5.2STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS565.5.4CONVENTIONS FOR NAMING SPIN SYSTEMS565.5.5SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA605.5.6SPLITTING DIAGRAMS615.5.7SPIN DECOUPLING645.6CORRELATION OF ¹ H- ¹ H COUPLING WITH STRUCTURE655.6.1NON-AROMATIC SPIN SYSTEMS665.7THE NUCLEAR OVERHAUSER EFFECT (NOE)695.8LABILE AND EXCHANGEABLE PROTONS7013C NMR SPECTROSCOPY726.1COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA726.1COUPLING AND DECOUPLING IN ¹³ C NMR S		4.6.3	CLEAVAGE α TO CARBONYL GROUPS	33
4.6.6 THE MCLAFFERTY REARRANGEMENT 34 ¹ H NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY 36 5.1 THE PHYSICS OF NUCLEAR SPINS AND NMR INSTRUMENTS 36 5.1.1 THE LARMOR EQUATION AND NUCLEAR MAGNETIC RESONANCE 39 5.2 BASIC NMR INSTRUMENTATION 39 5.2.1 CW AND PULSED NMR SPECTROMETERS 39 5.2.2 NUCLEAR RELAXATION 42 5.2.3 MAGNETS FOR NMR SPECTROSCOPY 43 5.2.4 THE NMR SPECTRUM 44 5.3 CHEMICAL SHIFT IN ¹ H NMR SPECTROSCOPY 43 5.4 SPIN-SPIN COUPLING IN ¹ H NMR SPECTROSCOPY 52 5.4.1 SIGNAL MULTIPLICITY - THE N+1 RULE 54 5.5 ANALYSIS OF ¹ H NMR SPECTRA 55 5.5.1 SPIN SYSTEMS 56 5.5.2 STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS 56 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 50 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 60 5.5.6 SPLITING DIAGRAMS 61 5.5.7 5.6.1 NON-AROMATIC SPIN SYSTEMS 56 <td< td=""><td></td><td>4.6.4</td><td>CLEAVAGE α TO HETEROATOMS</td><td>34</td></td<>		4.6.4	CLEAVAGE α TO HETEROATOMS	34
 ¹H NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY ³I. THE PHYSICS OF NUCLEAR SPINS AND NMR INSTRUMENTS ³S.1. THE LARMOR EQUATION AND NUCLEAR MAGNETIC RESONANCE ³BASIC NMR INSTRUMENTATION ³S.2.1 CW AND PULSED NMR SPECTROMETERS ³S.2.2 NUCLEAR RELAXATION ⁴S.2.3 MAGNETS FOR NMR SPECTROSCOPY ⁴S.3 CHEMICAL SHIFT IN ¹H NMR SPECTROSCOPY ⁵S.4 SPIN-SPIN COUPLING IN ¹H NMR SPECTROSCOPY ⁵S.4 SPIN-SPIN COUPLING IN ¹H NMR SPECTROSCOPY ⁵S.5 ANALYSIS OF ¹H NMR SPECTRA ⁵S.5 ANALYSIS OF ¹H NMR SPECTRA ⁵S.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA ⁵S.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA ⁵S.6 SPLITTING DIAGRAMS ⁵S.6 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA ⁵S.6 SPLITTING DIAGRAMS ⁵S.7 SPIN DECOUPLING ⁶S.6 CORRELATION OF ¹H-¹H COUPLING WITH STRUCTURE ⁵S.6 SACTROSCOPY ⁶S.7 THE NUCLEAR OVERHAUSER EFFECT (NOE) ⁶S.8 LABILE AND EXCHANGEABLE PROTONS ⁷C NMR SPECTROSCOPY ⁷C THE NUCLEAR OVERHAUSER EFFECT (NOE) ⁶S.8 LABILE AND EXCHANGEABLE PROTONS ⁷C MAR SPECTROSCOPY ⁶A SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN ⁶A SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN 		4.6.5	RETRO DIELS-ALDER REACTION	34
 5.1 THE PHYSICS OF NUCLEAR SPINS AND NMR INSTRUMENTS 36 5.1.1 THE LARMOR EQUATION AND NUCLEAR MAGNETIC 36 RESONANCE 5.2 BASIC NMR INSTRUMENTATION 39 5.2.1 CW AND PULSED NMR SPECTROMETERS 39 5.2.2 NUCLEAR RELAXATION 42 5.2.3 MAGNETS FOR NMR SPECTROSCOPY 43 5.2.4 THE NMR SPECTRUM 44 5.3 CHEMICAL SHIFT IN ¹H NMR SPECTROSCOPY 45 5.4 SPIN-SPIN COUPLING IN ¹H NMR SPECTROSCOPY 52 5.4.1 SIGNAL MULTIPLICITY - THE N+1 RULE 54 5.5 ANALYSIS OF ¹H NMR SPECTRA 55 5.5.2 STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS 56 5.5.3 MAGNETIC EQUIVALENCE 58 5.5.4 CONVENTIONS FOR NAMING SPIN SYSTEMS 59 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 60 5.5.6 SPLITTING DIAGRAMS 61 5.5.7 SPIN DECOUPLING 5.6 CORRELATION OF ¹H-¹H COUPLING WITH STRUCTURE 65 5.6.1 NON-AROMATIC SPIN SYSTEMS 66 5.7 THE NUCLEAR OVERHAUSER EFFECT (NOE) 69 5.8 LABILE AND EXCHANGEABLE PROTONS 70 1³C NMR SPECTROSCOPY 72 6.1 COUPLING ¹³C SIGNAL MULTIPLICITY USING DEPT 73 6.4 SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN 76 		4.6.6	THE McLAFFERTY REARRANGEMENT	34
5.1.1 THE LARMOR EQUATION AND NUCLEAR MAGNETIC 36 RESONANCE 39 5.2 BASIC NMR INSTRUMENTATION 39 5.2.1 CW AND PULSED NMR SPECTROMETERS 39 5.2.2 NUCLEAR RELAXATION 42 5.2.3 MAGNETS FOR NMR SPECTROSCOPY 43 5.2.4 THE NMR SPECTRUM 44 5.3 CHEMICAL SHIFT IN ¹ H NMR SPECTROSCOPY 45 5.4 SPIN-SPIN COUPLING IN ¹ H NMR SPECTROSCOPY 52 5.4.1 SIGNAL MULTIPLICITY - THE N+1 RULE 54 5.5 ANALYSIS OF ¹ H NMR SPECTRA 55 5.5.1 SPIN SYSTEMS 56 5.5.2 STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS 56 5.5.3 MAGNETIC EQUIVALENCE 58 5.5.4 CONVENTIONS FOR NAMING SPIN SYSTEMS 59 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 60 5.5.6 SPLITTING DIAGRAMS 61 5.5.7 SPIN DECOUPLING WITH STRUCTURE 65 5.6.1 NON-AROMATIC SPIN SYSTEMS 65 5.6.2 AROMATIC SPIN SYSTEMS 65 5.6.1	¹ H NUCL		AGNETIC RESONANCE (NMR) SPECTROSCOPY	36
RESONANCE 5.2 BASIC NMR INSTRUMENTATION 39 5.2.1 CW AND PULSED NMR SPECTROMETERS 39 5.2.2 NUCLEAR RELAXATION 42 5.2.3 MAGNETS FOR NMR SPECTROSCOPY 43 5.2.4 THE NMR SPECTRUM 44 5.3 CHEMICAL SHIFT IN ¹ H NMR SPECTROSCOPY 45 5.4 SPIN-SPIN COUPLING IN ¹ H NMR SPECTROSCOPY 52 5.4.1 SIGNAL MULTIPLICITY - THE N+1 RULE 54 5.5 ANALYSIS OF ¹ H NMR SPECTRA 55 5.5.1 SPIN SYSTEMS 56 5.5.2 STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS 56 5.5.3 MAGNETIC EQUIVALENCE 58 5.5.4 CONVENTIONS FOR NAMING SPIN SYSTEMS 59 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 60 5.5.6 SPLITTING DIAGRAMS 61 5.5.7 SPIN DECOUPLING WITH STRUCTURE 65 5.6.1 NON-AROMATIC SPIN SYSTEMS 65 5.6.2 AROMATIC SPIN SYSTEMS 65 5.7 THE NUCLEAR OVERHAUSER EFFECT (NOE) 69 58 66 5.7	5.1	THE P	HYSICS OF NUCLEAR SPINS AND NMR INSTRUMENTS	36
RESONANCE5.2BASIC NMR INSTRUMENTATION395.2.1CW AND PULSED NMR SPECTROMETERS395.2.2NUCLEAR RELAXATION425.2.3MAGNETS FOR NMR SPECTROSCOPY435.2.4THE NMR SPECTRUM445.3CHEMICAL SHIFT IN 'H NMR SPECTROSCOPY455.4SPIN-SPIN COUPLING IN 'H NMR SPECTROSCOPY525.4.1SIGNAL MULTIPLICITY - THE N+1 RULE545.5ANALYSIS OF 'H NMR SPECTRA555.5.1SPIN SYSTEMS565.5.2STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS565.5.3MAGNETIC EQUIVALENCE585.5.4CONVENTIONS FOR NAMING SPIN SYSTEMS595.5.5SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA605.5.6SPLITTING DIAGRAMS615.5.7SPIN DECOUPLING645.6CORRELATION OF 'H-'H COUPLING WITH STRUCTURE655.6.1NON-AROMATIC SPIN SYSTEMS655.7.7THE NUCLEAR OVERHAUSER EFFECT (NOE)695.8LABILE AND EXCHANGEABLE PROTONS7013C NMR SPECTROSCOPY6.1COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA726.2THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR 'S726.3DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT736.4SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN76		5.1.1	THE LARMOR EOUATION AND NUCLEAR MAGNETIC	36
5.2.1 CW AND PULSED NMR SPECTROMETERS 39 5.2.2 NUCLEAR RELAXATION 42 5.2.3 MAGNETS FOR NMR SPECTROSCOPY 43 5.2.4 THE NMR SPECTRUM 44 5.3 CHEMICAL SHIFT IN ¹ H NMR SPECTROSCOPY 45 5.4 SPIN-SPIN COUPLING IN ¹ H NMR SPECTROSCOPY 52 5.4.1 SIGNAL MULTIPLICITY - THE N+1 RULE 54 5.5 ANALYSIS OF ¹ H NMR SPECTRA 55 5.5.1 SPIN SYSTEMS 56 5.5.2 STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS 56 5.5.3 MAGNETIC EQUIVALENCE 58 5.5.4 CONVENTIONS FOR NAMING SPIN SYSTEMS 59 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 60 5.5.6 SPLITTING DIAGRAMS 61 5.5.7 SPIN DECOUPLING 64 5.6 CORRELATION OF ¹ H- ¹ H COUPLING WITH STRUCTURE 65 5.6.1 NON-AROMATIC SPIN SYSTEMS 66 5.7 THE NUCLEAR OVERHAUSER EFFECT (NOE) 69 5.8 LABILE AND EXCHANGEABLE PROTONS 70 72 6.			-	
5.2.1 CW AND PULSED NMR SPECTROMETERS 39 5.2.2 NUCLEAR RELAXATION 42 5.2.3 MAGNETS FOR NMR SPECTROSCOPY 43 5.2.4 THE NMR SPECTRUM 44 5.3 CHEMICAL SHIFT IN ¹ H NMR SPECTROSCOPY 45 5.4 SPIN-SPIN COUPLING IN ¹ H NMR SPECTROSCOPY 52 5.4.1 SIGNAL MULTIPLICITY - THE N+1 RULE 54 5.5 ANALYSIS OF ¹ H NMR SPECTRA 55 5.5.1 SPIN SYSTEMS 56 5.5.2 STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS 56 5.5.3 MAGNETIC EQUIVALENCE 58 5.5.4 CONVENTIONS FOR NAMING SPIN SYSTEMS 59 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 60 5.5.6 SPLITTING DIAGRAMS 61 5.5.7 SPIN DECOUPLING 64 5.6 CORRELATION OF ¹ H- ¹ H COUPLING WITH STRUCTURE 65 5.6.1 NON-AROMATIC SPIN SYSTEMS 66 5.7 THE NUCLEAR OVERHAUSER EFFECT (NOE) 69 5.8 LABILE AND EXCHANGEABLE PROTONS 70 72 6.	5.2	BASIC		39
5.2.2NUCLEAR RELAXATION425.2.3MAGNETS FOR NMR SPECTROSCOPY435.2.4THE NMR SPECTRUM445.3CHEMICAL SHIFT IN ¹ H NMR SPECTROSCOPY455.4SPIN-SPIN COUPLING IN ¹ H NMR SPECTROSCOPY525.4.1SIGNAL MULTIPLICITY - THE N+1 RULE545.5ANALYSIS OF ¹ H NMR SPECTRA555.5.1SPIN SYSTEMS565.5.2STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS565.5.3MAGNETIC EQUIVALENCE585.5.4CONVENTIONS FOR NAMING SPIN SYSTEMS595.5.5SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA615.5.6SPLITTING DIAGRAMS615.5.7SPIN DECOUPLING645.6CORRELATION OF ¹ H- ¹ H COUPLING WITH STRUCTURE655.6.1NON-AROMATIC SPIN SYSTEMS665.7THE NUCLEAR OVERHAUSER EFFECT (NOE)695.8LABILE AND EXCHANGEABLE PROTONS701 ³ C NMR SPECTROSCOPY6.1COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA726.2THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR73SPECTROSCOPY726.1COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA736.3DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT736.4SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN76				39
5.2.4 THE NMR SPECTRUM 44 5.3 CHEMICAL SHIFT IN ¹ H NMR SPECTROSCOPY 45 5.4 SPIN-SPIN COUPLING IN ¹ H NMR SPECTROSCOPY 52 5.4.1 SIGNAL MULTIPLICITY - THE N+1 RULE 54 5.5 ANALYSIS OF ¹ H NMR SPECTRA 55 5.5.1 SPIN SYSTEMS 56 5.5.2 STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS 56 5.5.3 MAGNETIC EQUIVALENCE 58 5.5.4 CONVENTIONS FOR NAMING SPIN SYSTEMS 59 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 60 5.5.6 SPLITTING DIAGRAMS 61 5.5.7 SPIN DECOUPLING 64 5.6 CORRELATION OF ¹ H- ³ H COUPLING WITH STRUCTURE 65 5.6.1 NON-AROMATIC SPIN SYSTEMS 65 5.6.2 AROMATIC SPIN SYSTEMS 65 5.7 THE NUCLEAR OVERHAUSER EFFECT (NOE) 69 5.8 LABILE AND EXCHANGEABLE PROTONS 70 1 ³ C NMR SPECTROSCOPY 6.1 COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA 72 6.1 COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA 7		5.2.2	NUCLEAR RELAXATION	
5.2.4THE NMR SPECTRUM445.3CHEMICAL SHIFT IN ¹ H NMR SPECTROSCOPY455.4SPIN-SPIN COUPLING IN ¹ H NMR SPECTROSCOPY525.4.1SIGNAL MULTIPLICITY - THE N+1 RULE545.5ANALYSIS OF ¹ H NMR SPECTRA555.5.1SPIN SYSTEMS565.5.2STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS565.5.3MAGNETIC EQUIVALENCE585.5.4CONVENTIONS FOR NAMING SPIN SYSTEMS595.5.5SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA605.5.6SPLITTING DIAGRAMS615.5.7SPIN DECOUPLING645.6CORRELATION OF ¹ H- ¹ H COUPLING WITH STRUCTURE655.6.1NON-AROMATIC SPIN SYSTEMS655.6.2AROMATIC SPIN SYSTEMS665.7THE NUCLEAR OVERHAUSER EFFECT (NOE)695.8LABILE AND EXCHANGEABLE PROTONS701 ¹³ C NMR SPECTROSCOPY6.1COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA726.1COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA726.3DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT736.4SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN76		5.2.3	MAGNETS FOR NMR SPECTROSCOPY	43
 5.4 SPIN-SPIN COUPLING IN ¹H NMR SPECTROSCOPY 5.4.1 SIGNAL MULTIPLICITY - THE N+1 RULE 5.4 SIGNAL MULTIPLICITY - THE N+1 RULE 5.5 ANALYSIS OF ¹H NMR SPECTRA 5.5.1 SPIN SYSTEMS 5.5.2 STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS 5.5.3 MAGNETIC EQUIVALENCE 5.5.4 CONVENTIONS FOR NAMING SPIN SYSTEMS 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 60 5.5.6 SPLITTING DIAGRAMS 5.5.7 SPIN DECOUPLING 5.6 CORRELATION OF ¹H-¹H COUPLING WITH STRUCTURE 5.6.1 NON-AROMATIC SPIN SYSTEMS 5.6.2 AROMATIC SPIN SYSTEMS 5.6.2 AROMATIC SPIN SYSTEMS 5.6.2 AROMATIC SPIN SYSTEMS 5.6.3 LABILE AND EXCHANGEABLE PROTONS 70 1³C NMR SPECTROSCOPY 6.1 COUPLING AND DECOUPLING IN ¹³C NMR SPECTRA 72 6.1 COUPLING AND DECOUPLING IN ¹³C NMR SPECTRA 72 6.3 DETERMINING ¹³C SIGNAL MULTIPLICITY USING DEPT 73 6.4 SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN 		5.2.4	THE NMR SPECTRUM	
 5.4 SPIN-SPIN COUPLING IN ¹H NMR SPECTROSCOPY 5.4.1 SIGNAL MULTIPLICITY - THE N+1 RULE 5.4 SIGNAL MULTIPLICITY - THE N+1 RULE 5.5 ANALYSIS OF ¹H NMR SPECTRA 5.5.1 SPIN SYSTEMS 5.5.2 STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS 5.5.3 MAGNETIC EQUIVALENCE 5.5.4 CONVENTIONS FOR NAMING SPIN SYSTEMS 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 60 5.5.6 SPLITTING DIAGRAMS 5.5.7 SPIN DECOUPLING 5.6 CORRELATION OF ¹H-¹H COUPLING WITH STRUCTURE 5.6.1 NON-AROMATIC SPIN SYSTEMS 5.6.2 AROMATIC SPIN SYSTEMS 5.6.2 AROMATIC SPIN SYSTEMS 5.6.2 AROMATIC SPIN SYSTEMS 5.6.3 LABILE AND EXCHANGEABLE PROTONS 70 1³C NMR SPECTROSCOPY 6.1 COUPLING AND DECOUPLING IN ¹³C NMR SPECTRA 72 6.1 COUPLING AND DECOUPLING IN ¹³C NMR SPECTRA 72 6.3 DETERMINING ¹³C SIGNAL MULTIPLICITY USING DEPT 73 6.4 SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN 	5.3	CHEM	ICAL SHIFT IN ¹ H NMR SPECTROSCOPY	45
5.4.1 SIGNAL MULTIPLICITY - THE N+1 RULE 54 5.5 ANALYSIS OF ¹ H NMR SPECTRA 55 5.5.1 SPIN SYSTEMS 56 5.5.2 STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS 56 5.5.3 MAGNETIC EQUIVALENCE 58 5.5.4 CONVENTIONS FOR NAMING SPIN SYSTEMS 59 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 60 5.5.6 SPLITTING DIAGRAMS 61 5.5.7 SPIN DECOUPLING 64 5.6 CORRELATION OF ¹ H- ¹ H COUPLING WITH STRUCTURE 65 5.6.1 NON-AROMATIC SPIN SYSTEMS 66 5.7 THE NUCLEAR OVERHAUSER EFFECT (NOE) 69 5.8 LABILE AND EXCHANGEABLE PROTONS 70 ¹³ C NMR SPECTROSCOPY 6.1 COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA 72 6.1 COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA 72 6.2 THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR 73 SPECTROSCOPY 72 6.3 DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT 73 6.4 SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN 76	5.4			
5.5 ANALYSIS OF ¹ H NMR SPECTRA 55 5.5.1 SPIN SYSTEMS 56 5.5.2 STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS 56 5.5.3 MAGNETIC EQUIVALENCE 58 5.5.4 CONVENTIONS FOR NAMING SPIN SYSTEMS 59 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 60 5.5.6 SPLITTING DIAGRAMS 61 5.5.7 SPIN DECOUPLING 64 5.6 CORRELATION OF ¹ H- ¹ H COUPLING WITH STRUCTURE 65 5.6.1 NON-AROMATIC SPIN SYSTEMS 65 5.6.2 AROMATIC SPIN SYSTEMS 66 5.7 THE NUCLEAR OVERHAUSER EFFECT (NOE) 69 5.8 LABILE AND EXCHANGEABLE PROTONS 70 13C NMR SPECTROSCOPY 72 6.1 COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA 72 6.2 THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR 73 SPECTROSCOPY 73 6.3 DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT 73 6.4 SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN 76 <td>011</td> <td></td> <td></td> <td></td>	011			
5.5.1SPIN SYSTEMS565.5.2STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS565.5.3MAGNETIC EQUIVALENCE585.5.4CONVENTIONS FOR NAMING SPIN SYSTEMS595.5.5SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA605.5.6SPLITTING DIAGRAMS615.5.7SPIN DECOUPLING645.6CORRELATION OF ¹ H- ¹ H COUPLING WITH STRUCTURE655.6.1NON-AROMATIC SPIN SYSTEMS665.7THE NUCLEAR OVERHAUSER EFFECT (NOE)695.8LABILE AND EXCHANGEABLE PROTONS7013C NMR SPECTROSCOPY6.1COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA726.2THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR73SPECTROSCOPY6.3DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT736.4SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN76	5.5	ANAL		
5.5.2STRONGLY AND WEAKLY COUPLED SPIN SYSTEMS565.5.3MAGNETIC EQUIVALENCE585.5.4CONVENTIONS FOR NAMING SPIN SYSTEMS595.5.5SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA605.5.6SPLITTING DIAGRAMS615.5.7SPIN DECOUPLING645.6CORRELATION OF ¹ H- ¹ H COUPLING WITH STRUCTURE655.6.1NON-AROMATIC SPIN SYSTEMS655.6.2AROMATIC SPIN SYSTEMS665.7THE NUCLEAR OVERHAUSER EFFECT (NOE)695.8LABILE AND EXCHANGEABLE PROTONS7013C NMR SPECTROSCOPY6.1COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA726.2THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR73SPECTROSCOPY6.3DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT736.4SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN76				
 5.5.3 MAGNETIC EQUIVALENCE 58 5.5.4 CONVENTIONS FOR NAMING SPIN SYSTEMS 59 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 60 5.5.6 SPLITTING DIAGRAMS 61 5.5.7 SPIN DECOUPLING 64 5.6 CORRELATION OF ¹H-¹H COUPLING WITH STRUCTURE 65 5.6.1 NON-AROMATIC SPIN SYSTEMS 65 5.6.2 AROMATIC SPIN SYSTEMS 66 5.7 THE NUCLEAR OVERHAUSER EFFECT (NOE) 69 5.8 LABILE AND EXCHANGEABLE PROTONS 70 13C NMR SPECTROSCOPY 72 6.1 COUPLING AND DECOUPLING IN ¹³C NMR SPECTRA 72 6.2 THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³C NMR 73 SPECTROSCOPY 6.3 DETERMINING ¹³C SIGNAL MULTIPLICITY USING DEPT 73 6.4 SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN 76 				
5.5.4 CONVENTIONS FOR NAMING SPIN SYSTEMS 59 5.5.5 SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA 60 5.5.6 SPLITTING DIAGRAMS 61 5.5.7 SPIN DECOUPLING 64 5.6 CORRELATION OF ¹ H- ¹ H COUPLING WITH STRUCTURE 65 5.6.1 NON-AROMATIC SPIN SYSTEMS 65 5.6.2 AROMATIC SPIN SYSTEMS 66 5.7 THE NUCLEAR OVERHAUSER EFFECT (NOE) 69 5.8 LABILE AND EXCHANGEABLE PROTONS 70 ¹³ C NMR SPECTROSCOPY 6.1 COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA 72 6.1 COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA 72 6.1 COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA 73 SPECTROSCOPY 73 73 6.3 DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT 73 6.4 SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN 76				
5.5.5SPECTRAL ANALYSIS OF FIRST-ORDER NMR SPECTRA605.5.6SPLITTING DIAGRAMS615.5.7SPIN DECOUPLING645.6CORRELATION OF ¹ H- ¹ H COUPLING WITH STRUCTURE655.6.1NON-AROMATIC SPIN SYSTEMS655.6.2AROMATIC SPIN SYSTEMS665.7THE NUCLEAR OVERHAUSER EFFECT (NOE)695.8LABILE AND EXCHANGEABLE PROTONS7013C NMR SPECTROSCOPY726.1COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA726.2THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR73SPECTROSCOPY6.3DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT736.4SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN76			-	
5.5.6SPLITTING DIAGRAMS615.5.7SPIN DECOUPLING645.6CORRELATION OF ¹ H- ¹ H COUPLING WITH STRUCTURE655.6.1NON-AROMATIC SPIN SYSTEMS655.6.2AROMATIC SPIN SYSTEMS665.7THE NUCLEAR OVERHAUSER EFFECT (NOE)695.8LABILE AND EXCHANGEABLE PROTONS7013C NMR SPECTROSCOPY726.1COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA726.2THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR73SPECTROSCOPY6.3DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT736.4SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN76				
5.5.7SPIN DECOUPLING645.6CORRELATION OF ¹ H- ¹ H COUPLING WITH STRUCTURE655.6.1NON-AROMATIC SPIN SYSTEMS655.6.2AROMATIC SPIN SYSTEMS665.7THE NUCLEAR OVERHAUSER EFFECT (NOE)695.8LABILE AND EXCHANGEABLE PROTONS701 ³ C NMR SPECTROSCOPY6.1COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA6.2THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR6.3DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT736.4SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN76				
5.6 CORRELATION OF ¹ H- ¹ H COUPLING WITH STRUCTURE 65 5.6.1 NON-AROMATIC SPIN SYSTEMS 65 5.6.2 AROMATIC SPIN SYSTEMS 66 5.7 THE NUCLEAR OVERHAUSER EFFECT (NOE) 69 5.8 LABILE AND EXCHANGEABLE PROTONS 70 ¹³ C NMR SPECTROSCOPY 72 6.1 COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA 72 6.2 THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR 73 SPECTROSCOPY 72 6.3 DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT 73 6.4 SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN 76				
5.6.1NON-AROMATIC SPIN SYSTEMS655.6.2AROMATIC SPIN SYSTEMS665.7THE NUCLEAR OVERHAUSER EFFECT (NOE)695.8LABILE AND EXCHANGEABLE PROTONS7013C NMR SPECTROSCOPY6.1COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA6.2THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR6.3DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT736.4SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN76	56			• •
5.6.2 AROMATIC SPIN SYSTEMS 66 5.7 THE NUCLEAR OVERHAUSER EFFECT (NOE) 69 5.8 LABILE AND EXCHANGEABLE PROTONS 70 13C NMR SPECTROSCOPY 72 6.1 COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA 72 6.2 THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR 73 SPECTROSCOPY 6.3 DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT 73 6.4 SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN 76	0.0			
5.7THE NUCLEAR OVERHAUSER EFFECT (NOE)695.8LABILE AND EXCHANGEABLE PROTONS701 ³ C NMR SPECTROSCOPY6.1COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA6.2THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR6.3DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT6.4SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN				
5.8LABILE AND EXCHANGEABLE PROTONS7013C NMR SPECTROSCOPY726.1COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA726.2THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR73SPECTROSCOPY5.3DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT736.4SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN76	57			
¹³ C NMR SPECTROSCOPY 72 6.1 COUPLING AND DECOUPLING IN ¹³ C NMR SPECTRA 72 6.2 THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR 73 SPECTROSCOPY 73 6.3 DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT 73 6.4 SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN 76				
 6.1 COUPLING AND DECOUPLING IN ¹³C NMR SPECTRA 72 6.2 THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³C NMR 73 SPECTROSCOPY 6.3 DETERMINING ¹³C SIGNAL MULTIPLICITY USING DEPT 73 6.4 SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN 76 	5.0	LADIE		70
 6.2 THE NUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³C NMR 73 SPECTROSCOPY 6.3 DETERMINING ¹³C SIGNAL MULTIPLICITY USING DEPT 73 6.4 SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN 76 	¹³ C NMF	R SPEC	CTROSCOPY	72
SPECTROSCOPY6.3DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT736.4SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN76	6.1	COUP	LING AND DECOUPLING IN ¹³ C NMR SPECTRA	72
SPECTROSCOPY6.3DETERMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT736.4SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN76	6.2	THE N	IUCLEAR OVERHAUSER EFFECT (NOE) IN ¹³ C NMR	73
6.4 SHIELDING AND CHARACTERISTIC CHEMICAL SHIFTS IN 76				
	6.3	DETE	RMINING ¹³ C SIGNAL MULTIPLICITY USING DEPT	73
	6.4			76

6

7	2-DIMEN	SIONAL NMR SPECTROSCOPY	82
	7.1	 PROTON-PROTON INTERACTIONS BY 2D NMR 7.1.1 COSY (CORRELATION SPECTROSCOPY) 7.1.2 TOCSY (TOTAL CORRELATION SPECTROSCOPY) 7.1.3 NOESY (NUCLEAR OVERHAUSER EFFECT SPECTROSCOPY) PROTON-CARBON INTERACTIONS BY 2D NMR 	85 85 86 88
	1.2	7.2.1 THE HSQC (HETERONUCLEAR SINGLE QUANTUM CORRELATION) OR HSC (HETERONUCLEAR SHIFT CORRELATION) SPECTRUM	89
		7.2.2 HMBC (HETERONUCLEAR MULTIPLE BOND CORRELATION)	91
8	MISCELL	ANEOUS TOPICS	96
	8.1 8.2 8.3 8.4 8.5	SOLVENTS FOR NMR SPECTROSCOPY SOLVENT-INDUCED SHIFTS DYNAMIC PROCESSES IN NMR – THE NMR TIME-SCALE 8.3.1 CONFORMATIONAL EXCHANGE PROCESSES 8.3.2 INTERMOLECULAR EXCHANGE OF LABILE PROTONS 8.3.3 ROTATION ABOUT PARTIAL DOUBLE BONDS THE EFFECT OF CHIRALITY THE NMR SPECTRA OF "OTHER NUCLEI"	96 97 98 99 99 100 100 101
9	DETERM FROM SI	INING THE STRUCTURE OF ORGANIC COMPOUNDS PECTRA	102
	9.1 9.2	SOLVING PROBLEMS WORKED EXAMPLES	103 104
10	PROBL	EMS	115
IN	DEX		538

PREFACE

This is the Sixth Edition of the text "Organic Structures from Spectra". The original text, published in 1986 by J R Kalman and S Sternhell, was a remarkable instructive text at a time where spectroscopic analysis, particularly NMR spectroscopy, was becoming widespread and routinely available in many chemical laboratories. The original text was founded on the premise that the best way to learn to obtain "structures from spectra" is to build up skills by practising on simple problems. Editions two through five of the text have been published at about five-yearly intervals and each revision has taken account of new developments in spectroscopy as well as dropping out techniques that have become less important or obsolete over time. The collection has grown substantially and we are deeply indebted to Dr John Kalman and to Emeritus Professor Sev Sternhell for their commitment and contribution to all of the previous editions of "Organic Structures from Spectra".

Edition Six of the text has been expanded to include a new selection of problems and many of the problems now incorporate 2D NMR spectra (COSY, TOCSY, NOESY, C–H Correlation spectroscopy or HMBC).

The overarching philosophy remains the same as in previous editions of the text:

- (a) Theoretical exposition is kept to a minimum, consistent with gaining an understanding of those aspects of the various spectroscopic techniques which are actually used in solving problems. Experience tells us that both mathematical detail and in-depth theoretical description of advanced techniques merely confuse or overwhelm the average student.
- (b) The learning of data is kept to a minimum. There are now many sources of spectroscopic data available online. It is much more important to learn to use a range of generalised data well, rather than to achieve a superficial acquaintance with extensive sets of data. This book contains summary tables of essential spectroscopic data and these tables become critical reference material, particularly in the early stages of gaining experience in solving problems.

Preface

(c) We emphasise the concept of identifying "structural elements or fragments" and building the logical thought processes needed to produce a structure out of the structural elements.

The derivation of structural information from spectroscopic data is now an integral part of Organic Chemistry courses at all universities. At the undergraduate level, the principal aim is to teach students to solve simple structural problems efficiently by using combinations of the major spectroscopic techniques (UV, IR, NMR and MS). We have evolved courses both at the University of New South Wales and at the University of Sydney which achieve this aim quickly and painlessly. The text is tailored specifically to the needs and approach of these courses.

The courses have been taught in the second and third years of undergraduate chemistry, at which stage students have usually completed an elementary course of Organic Chemistry in their first year and students have also been exposed to elementary spectroscopic theory, but are, in general, unable to relate the theory to actually solving spectroscopic problems.

We have delivered courses of about 9 lectures outlining the basic theory, instrumentation and the structure-spectra correlations of the major spectroscopic techniques. The treatment is highly condensed and elementary and, not surprisingly, the students do initially have great difficulties in solving even the simplest problems. The lectures are followed by a series of problem solving workshops (about 2 hours each) with a focus on 5 to 6 problems per session. The students are permitted to work either individually or in groups and may use any additional resource material that they can find. At the conclusion of the course, the great majority of the class is quite proficient and has achieved a satisfactory level of understanding of all methods used. Clearly, most of the real teaching is done during the hands-on problem seminars. At the end of the course, there is an examination usually consisting essentially of 3 or 4 problems from the book and the results are generally very satisfactory. The students have always found this a rewarding course since the practical skills acquired are obvious to them. Solving these real puzzles is also addictive - there is a real sense of achievement, understanding and satisfaction, since the challenge in solving the graded problems builds confidence even though the more difficult examples are quite demanding.

Problems 1–19 are introductory questions designed to develop the understanding of molecular symmetry, the analysis of simple spin systems as well as how to navigate the common 2D NMR experiments.

Preface

Problems 20–294 are of the standard "structures from spectra" type and are arranged roughly in order of increasing difficulty. A number of problems deal with related compounds (sets of isomers) which differ mainly in symmetry or the connectivity of the structural elements and are ideally set together. The sets of related examples include Problems 33 and 34; 35 and 36; 40–43; 52 and 53; 57–61; 66–71; 72 and 73; 74–77; 82 and 83; 84–86; 92–94; 95 and 96; 101 and 102; 106 and 107; 113 and 114; 118–121; 126 and 127; 129–132; 133 and 134; 137–139; 140–142; 154 and 155; 157–164; 165–169; 176–180; 185–190; 199–200; 205–206; 208–209; 211–212; 245–247; 262–264; and 289–290.

A number of problems (218, 219, 220, 221, 242, 273, 278, 279, 280, 285, 286 and 287) exemplify complexities arising from the presence of chiral centres, and some problems illustrate restricted rotation about amide bonds (191, 275 and 281). There are a number of problems dealing with the structures of compounds of biological, environmental or industrial significance (41, 49, 64, 91, 92, 93, 94, 98, 146, 151, 152, 160, 179, 180, 191, 198, 219, 225, 231, 235, 236, 269, 285, 277, 278, 279, 284, 286 and 287).

Problems 295–300 are again structures from spectra, but with the data presented in a textual form such as might be encountered when reading the experimental section of a paper or report.

Problems 301–309 deal with the use of NMR spectroscopy for quantitative analysis and for the analysis of mixtures of compounds.

In Chapter 9, there are also three worked solutions (to problems 117, 146 and 77) as an illustration of a logical approach to solving problems. However, with the exception that we insist that students perform all routine measurements first, we do not recommend a mechanical attitude to problem solving – intuition has an important place in solving structures from spectra as it has elsewhere in chemistry.

Bona fide instructors may obtain a list of solutions (at no charge) by writing to the authors or EMAIL: L.Field@unsw.edu.au

We wish to thank the many graduate students and research associates who, over the years, have supplied us with many of the compounds used in the problems.

> L. D. Field H. L. Li A. M. Magill January 2020

LIST OF TABLES

Table 2.1	Observable UV Absorption Bands for Acetophenone	9
Table 2.2	The Effect of Extended Conjugation on UV Absorption	10
Table 2.3	UV Absorption Bands in Common Carbonyl Compounds	11
Table 2.4	UV Absorption Bands in Common Benzene Derivatives	12
Table 3.1	IR Absorption Frequencies for Common Organic Functional Groups	17
Table 3.2	C-H IR Absorption Frequencies in Common Functional Groups	19
Table 3.3	C=N and C=C Absorption Frequencies in Common Functional Groups	19
Table 3.4	C=O IR Absorption Frequencies in Common Functional Groups	20
Table 3.5	Characteristic IR Absorption Frequencies for Functional Groups	22
Table 4.1	Accurate Masses of Selected Isotopes	27
Table 4.2	Common Fragments and their Masses	29
Table 5.1	Nuclear Spins and Magnetogyric Ratios for Common NMR-Active Nuclei	38
Table 5.2	Resonance Frequencies of ¹ H and ¹³ C Nuclei in Magnetic Fields of Different Strengths	39
Table 5.3	Typical ¹ H Chemical Shift Values (δ) in Selected Organic Compounds	46
Table 5.4	Typical ¹ H Chemical Shift Values (δ) of Selected Protons	47
Table 5.5	¹ H Chemical Shift Values (δ) for Protons in Common Alkyl Derivatives	47
Table 5.6	Approximate ¹ H Chemical Shift Ranges (δ) for Protons in Organic Compounds	48
Table 5.7	Approximate ¹ H Chemical Shifts (δ) for Olefinic Protons	49
Table 5.8	Approximate ¹ H Chemical Shifts (δ) for Aromatic Protons in Benzene Derivatives Ph–X in ppm Relative to Benzene at δ 7.26 ppm	50
Table 5.9	¹ H Chemical Shifts (δ) for Protons in some Polynuclear Aromatic Compounds and Heteroaromatic Compounds	50
Table 5.10	Typical ¹ H– ¹ H Coupling Constants	53
Table 5.11	Relative Line Intensities for Simple Multiplets	54
Table 5.12	Proton–Proton Coupling Constants in Aromatic and Heteroaromatic Rings	67

List of Tables

Table 6.1	The Number of Aromatic ¹³ C Resonances in Benzenes with Different Substitution Patterns	75
Table 6.2	Typical ¹³ C Chemical Shift Values in Selected Organic Compounds	76
Table 6.3	Typical ¹³ C Chemical Shift Ranges in Organic Compounds	77
Table 6.4	Approximate ¹³ C Chemical Shift Ranges (δ) for Carbons in Organic Compounds	78
Table 6.5	¹³ C Chemical Shifts (δ) for <i>sp</i> ³ -hybridised Carbons in Alkyl Derivatives	79
Table 6.6	¹³ C Chemical Shifts (δ) for <i>sp</i> ² -hybridised Carbons in Vinyl Derivatives CH ₂ =CH–X	79
Table 6.7	¹³ C Chemical Shifts (δ) for <i>sp</i> -hybridised Carbons in Alkynes: X-C=C-Y	80
Table 6.8	Approximate ¹³ C Chemical Shifts (δ) for Aromatic Carbons in Benzene Derivatives Ph–X in ppm Relative to Benzene at δ 128.5 ppm	80
Table 6.9	Characteristic ¹³ C Chemical Shifts (δ) in some Polynuclear Aromatic Compounds and Heteroaromatic Compounds	81
Table 8.1	¹ H and ¹³ C Chemical Shifts for Common NMR Solvents	97

LIST OF FIGURES

Figure 1.1	Schematic Absorption Spectrum	1
Figure 1.2	Definition of a Spectroscopic Transition	2
Figure 2.1	Schematic Representation of an IR or UV Spectrometer	6
Figure 2.2	Schematic Representation of a Double-Beam Absorption Spectrometer	7
Figure 2.3	Definition of Absorbance (A)	8
Figure 4.1	Schematic Mass Spectrum	24
Figure 4.2	Schematic Diagram of an Electron-Impact Magnetic Sector Mass Spectrometer	26
Figure 4.3	Relative Intensities of the Cluster of Molecular Ions for Molecules Containing Combinations of Bromine and Chlorine Atoms	30
Figure 5.1	A Spinning Positive Charge Generates a Magnetic Field and Behaves Like a Small Magnet	36
Figure 5.2	Schematic Representation of a CW NMR Spectrometer	40
Figure 5.3	Schematic Representation of a Pulsed NMR Spectrometer	40
Figure 5.4	¹ H NMR Spectra: (a) Time Domain Spectrum (FID); (b) Frequency Domain Spectrum Obtained after Fourier Transformation of (a)	41
Figure 5.5	¹ H NMR Spectrum of Bromoethane (400 MHz, CDCl ₃)	44
Figure 5.6	Shielding/deshielding Zones for Common Non-aromatic Functional Groups	52
Figure 5.7	¹ H NMR Spectrum of Bromoethane (400 MHz, CDCl ₃) Showing the Multiplicity of the Two ¹ H Signals	54
Figure 5.8	Characteristic Multiplet Patterns for Common Organic Fragments	55
Figure 5.9	Aromatic Region of the ¹ H NMR Spectrum of 2-Bromotoluene (acetone- <i>d</i> ₆ solution) in Three Different Magnetic Field Strengths	57
Figure 5.10	Simulated ¹ H NMR Spectra of a 2-Spin System as the Ratio $\Delta v/J$ is Systematically Decreased from 10.0 to 0.0	58
Figure 5.11	A Portion of the ¹ H NMR Spectrum of Styrene Epoxide (100 MHz as a 5% solution in CCl ₄)	61
Figure 5.12	The 60 MHz ¹ H NMR Spectrum of a 4-Spin AMX ₂ Spin System	62
Figure 5.13	Selective Decoupling in the ¹ H NMR Spectrum of Bromoethane	64
Figure 5.14	Selective Decoupling in a Simple 4-Spin System	65
Figure 5.15	Characteristic Aromatic Splitting Patterns in the ¹ H NMR Spectra for some Tri-substituted Benzenes	68

List of Figures

Figure 5.16	Characteristic Aromatic Splitting Patterns in the ¹ H NMR Spectra for some Di-substituted Benzenes (ignoring the small <i>para</i> couplings)	68
Figure 5.17	¹ H NMR Spectrum of <i>p</i> -Nitrophenylacetylene (200 MHz as a 10% solution in CDCl ₃)	69
Figure 5.18	 Aromatic Region of the ¹H NMR Spectrum of 2,4-Dinitrotoluene. (i) Basic NMR Spectrum; (ii) NMR Spectrum with Irradiation of the -CH₃ Group at δ 2.7; (iii) Difference Spectrum: Spectrum (ii) minus Spectrum (i) 	70
Figure 5.19	D ₂ O Exchange in the ¹ H NMR Spectrum of 1-Propanol (300 MHz, CDCl ₃ solution)	71
Figure 6.1	 ¹³C NMR Spectra of Methyl Cyclopropyl Ketone (CDCl₃ solvent, 100 MHz). (a) with Broadband Decoupling of ¹H; (b) DEPT Spectrum (c) with no Decoupling of ¹H 	74
Figure 7.1	Acquisition of a 2D NMR spectrum: a series of individual FIDs are acquired; each individual FID is subjected to a Fourier transformation; a second Fourier transformation in the remaining time dimension gives the final 2D spectrum	83
Figure 7.2	Representations of 2D NMR spectra: (a) Stacked plot; (b) Contour plot	83
Figure 7.3	Representations of Phase-sensitive 2D NMR spectra: (a) Stacked plot; (b) Contour plot	84
Figure 7.4	¹ H COSY Spectrum of 1-Iodobutane (CDCl ₃ solvent, 298K, 400 MHz)	85
Figure 7.5	¹ H TOCSY Spectrum of Butyl Ethyl Ether (CDCl ₃ solvent, 298K, 400 MHz)	87
Figure 7.6	¹ H NOESY Spectrum of β-Butyrolactone (CDCl ₃ solvent, 298K, 600 MHz)	88
Figure 7.7	¹ H– ¹³ C <i>me</i> -HSQC Spectrum of 1-Iodobutane (CDCl ₃ solvent, 298K, ¹ H 400 MHz, ¹³ C 100 MHz)	90
Figure 7.8	¹ H– ¹³ C HMBC Spectrum of 1-Iodobutane (CDCl ₃ solvent, 298K, ¹ H 400 MHz, ¹³ C 100 MHz)	92
Figure 7.9	¹ H– ¹³ C HMBC Spectrum of 2-Bromophenol (CDCl ₃ solvent, 298K, ¹ H 400 MHz, ¹³ C 100 MHz)	94
Figure 8.1	Schematic NMR Spectra of Two Exchanging Nuclei	98
Figure 8.2	¹ H NMR Spectrum of the Aliphatic Region of Cysteine	101

INTRODUCTION

1

1.1 GENERAL PRINCIPLES OF ABSORPTION SPECTROSCOPY

Spectroscopy involves resolving electromagnetic radiation into its component wavelengths (or frequencies) and absorption spectroscopy is the absorption of electromagnetic radiation by matter as a function of wavelength.

In Organic Chemistry, we typically deal with molecular spectroscopy, *i.e.* the spectroscopy of atoms that are bound together in molecules rather than absorption by individual atoms or ions.

An absorption spectrum is a plot or graph of the absorption of energy (radiation) as a function of its wavelength (λ) or frequency (v). A schematic absorption spectrum is given in Figure 1.1.

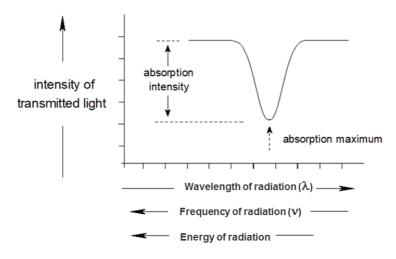


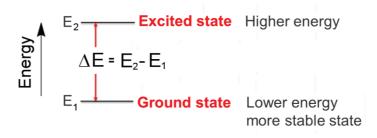
Figure 1.1 Schematic Absorption Spectrum

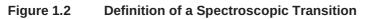
It follows that the *x*-axis in Figure 1.1 is an **energy** scale, since the frequency, wavelength and energy (E) of electromagnetic radiation are interrelated by the Planck–Einstein relation:

$$E = h.v$$

and $v.\lambda = c$

where v is the frequency of the electromagnetic radiation, λ is the wavelength of the electromagnetic radiation, and *c* is the velocity of light.


An absorption band can be characterised primarily by two parameters:


- (a) the wavelength (or frequency) at which maximum absorption occurs
- (b) the intensity of absorption at this wavelength compared to base-line (or background) absorption

A spectroscopic transition takes a molecule from one energy state to a state of higher energy. For any spectroscopic transition between energy states (*e.g.* E_1 and E_2 in Figure 1.2), the change in energy (ΔE) is given by:

$$\Delta E = hv$$

where *h* is Planck's constant and v is the frequency of the electromagnetic energy absorbed.

It follows that $\Delta E \propto v$ and that $\Delta E \propto 1/\lambda$; *i.e.* the larger ΔE , the *higher* the frequency of radiation required for absorption to take place or the *shorter* the wavelength of radiation required for absorption to take place.

The *y*-axis in Figure 1.1 measures the intensity of the absorption band and this depends on the number of molecules observed (the Beer–Lambert Law) and the probability of the transition between the energy levels.

A spectrum consists of distinct bands or transitions because the absorption (or emission) of energy is quantised. The energy gap for a transition (and hence the absorption frequency) is a *molecular property* and it is *characteristic of molecular structure*. The absorption intensity is also a molecular property and both the frequency and the intensity of a transition can provide structural information.

1.2 CHROMOPHORES

In general, any spectral feature, *i.e.* a band or group of bands, is due not to the whole molecule, but to an identifiable part of the molecule, which we loosely call a *chromophore*.

A chromophore may correspond to a functional group (*e.g.* a hydroxyl group or the double bond in a carbonyl group). However, it may equally well correspond

to a single atom within a molecule or to a group of atoms (*e.g.* a methyl group) that is not normally associated with chemical functionality.

The detection of a chromophore permits us to deduce the presence of a *structural fragment* or a *structural element* in the molecule. The fact that it is the chromophores and not the molecule as a whole that give rise to spectral features is fortunate because it permits complete molecular structures to be built up piece-by-piece from the molecular fragments.

1.3 DEGREE OF UNSATURATION

Traditionally, the molecular formula of a compound was derived from elemental analysis and its molecular weight, and these were determined independently. The concept of the **degree of unsaturation** of an organic compound derives simply from the tetravalency of carbon. For a non-cyclic hydrocarbon (*i.e.* an alkane) the number of hydrogen atoms must be twice the number of carbon atoms plus two, any "deficiency" in the number of hydrogens must be due to the presence of unsaturation, *i.e.* double bonds, triple bonds or rings in the structure.

The degree of unsaturation can be calculated from the molecular formula for all compounds containing C, H, N, O, S or the halogens. There are three basic steps in calculating the degree of unsaturation:

Step 1 – take the molecular formula and replace all halogens by hydrogens

Step 2 – omit all of the sulfur or oxygen atoms

Step 3 – for each nitrogen, omit the nitrogen and omit one hydrogen

After these three steps, the molecular formula is reduced to C_nH_m and the degree of unsaturation is given by:

Degree of Unsaturation = n -
$$\frac{m}{2}$$
 + 1

The degree of unsaturation indicates the number of π bonds or rings that the compound contains. For example, a compound whose molecular formula is C₄H₉NO₂ is reduced to C₄H₈, which gives a degree of unsaturation of 1. This indicates that the molecule must have one π bond or one ring. Note that a triple bond (*e.g.* the -C=C- bond in an alkyne or the -C=N bond in a nitrile) contributes two units of unsaturation (two π bonds). Note also that any compound that contains an aromatic ring always has a degree of unsaturation greater than or equal to 4, since the aromatic ring contains a ring plus three π bonds. Similarly, if a compound has a degree of unsaturation greater than or equal to 4, one should suspect the possibility that the structure contains an aromatic ring.

1.4 CONNECTIVITY

Even if it were possible to identify sufficient structural elements in a molecule to account for the molecular formula, it may not be possible to deduce the structural formula from a knowledge of the structural elements alone. For example, it could be demonstrated that a substance of molecular formula C_3H_3OCl contains the structural elements:

and this leaves two possible structures:

$$\begin{array}{c} \mathsf{CH}_3 - \mathsf{C} - \mathsf{CH}_2 - \mathsf{CI} \quad \text{and} \quad \mathsf{CH}_3 - \mathsf{CH}_2 - \mathsf{C} - \mathsf{CI} \\ \parallel \\ 0 \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{2} \\ \mathbf{1} \\ \mathbf{2} \\$$

Not only the presence of various structural elements, but also their juxtaposition, must be determined to establish the structure of a molecule. Fortunately, spectroscopy often gives valuable information concerning the *connectivity* of structural elements and in the above example it would be very easy to determine whether there is a ketonic carbonyl group (as in 1) or an acid chloride (as in 2). In addition, it is possible to determine independently whether the methyl ($-CH_3$) and methylene ($-CH_2$ -) groups are separated (as in 1) or adjacent (as in 2).

1.5 SENSITIVITY

Sensitivity is generally taken to signify the limits of detectability of a chromophore. Some methods (*e.g.* ¹H NMR spectroscopy) detect all chromophores accessible to them with equal sensitivity while in other techniques (*e.g.* UV spectroscopy) the range of sensitivity towards different chromophores spans many orders of magnitude. Mass spectroscopy is the most sensitive of the common spectroscopic techniques and requires only very small amounts of sample (< 10^{-10} g) whereas ¹³C NMR typically requires tens of milligrams of sample. In terms of overall sensitivity:

 $MS > UV > IR > {}^{1}H NMR > {}^{1}C NMR$

but the relative sensitivity of different spectroscopic techniques often depends on the specific chromophores present in a molecule.

1.6 PRACTICAL CONSIDERATIONS

The five major spectroscopic methods (MS, UV, IR, ¹H NMR and ¹³C NMR) have become established as the principal tools for the determination of the structures of organic compounds because, between them, they detect a wide variety of structural elements.

The instrumentation and skills involved in the use of all five major spectroscopic methods are now widely spread, but the ease of obtaining and interpreting the data from each method under real laboratory conditions varies.

In very general terms:

- (a) While the cost of each type of instrumentation differs greatly (NMR instruments cost between \$50,000 and several million dollars), as an overall guide, MS and NMR instruments are much more costly than UV and IR spectrometers. With increasing cost comes increasing difficulty in maintenance and the required operator expertise, thus compounding the total outlay.
- (b) In terms of *ease of usage* for routine operation, most UV and IR instruments are comparatively straightforward bench-top laboratory instruments. NMR spectrometers are also common as "hands-on" instruments in most chemistry laboratories and the users require routine training and a degree of basic computer literacy. Similarly some mass spectrometers are now designed to be used by researchers as "hands-on" routine instruments. However, the more advanced NMR spectrometers and most mass spectrometers are still sophisticated instruments that are usually operated and maintained by specialists.
- (c) The *scope* of each spectroscopic method can be defined as the amount of useful information it provides. This is a function of the total amount of information obtainable and also how difficult the data are to interpret. The scope of each method varies from problem to problem, and each method has its aficionados and specialists, but the overall utility undoubtedly decreases in the order:

NMR > MS > IR > UV

with the combination of ¹H and ¹³C NMR spectroscopy providing the most useful information.

(d) The *theoretical background* needed for each method varies with the nature of the experiment, but the minimum overall amount of theory needed decreases in the order:

NMR >> MS > UV
$$\approx$$
 IR

ULTRAVIOLET (UV) SPECTROSCOPY

2.1 THE NATURE OF ULTRAVIOLET SPECTROSCOPY

The term "UV spectroscopy" generally refers to the excitation of *electronic transitions* by absorption of energy in the ultraviolet region of the electromagnetic spectrum (λ in the range approximately 200–380 nm) accessible to standard UV spectrometers.

Electronic transitions are also responsible for absorption in the visible region of the spectrum (approximately 380–800 nm) which is easily accessible instrumentally but of less importance when solving structural problems because most organic compounds are colourless. An extensive region at wavelengths shorter than ~200 nm ("vacuum ultraviolet") also corresponds to electronic transitions, but this region is not readily accessible with standard instruments. UV spectra used for determination of structures are invariably obtained in solution.

2.2 BASIC INSTRUMENTATION

Basic instrumentation for both UV and IR spectroscopies consists of an energy *source*, a *dispersing device* (prism or grating), a *sample cell* and a *detector*, arranged as schematically shown in Figure 2.1.

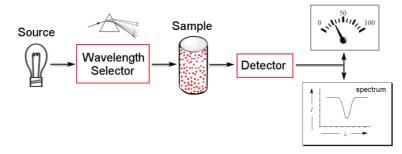


Figure 2.1 Schematic Representation of an IR or UV Spectrometer

The dispersing device scans through the range of wavelengths produced by the source and these pass through the sample. The drive of the dispersing device is synchronised with the *x*-axis of the recorder or fed directly to a computer, so that the *x*-axis tracks the wavelength of radiation reaching the detector. The signal

6

from the detector is transmitted to the *y*-axis of the recorder or to a computer and this records how much radiation is absorbed by the sample at any particular wavelength.

In practice, almost all instruments are *double-beam* spectrometers and in this type of instrument, the beam is split and part of the beam goes through a *reference cell*, containing only solvent, and part of the beam goes through the sample. The absorbance of the reference cell is subtracted from the absorbance of the sample cell. Double-beam instruments eliminate any absorbance from the solvent and also cancel out absorption resulting from the atmosphere in the optical path (Figure 2.2).

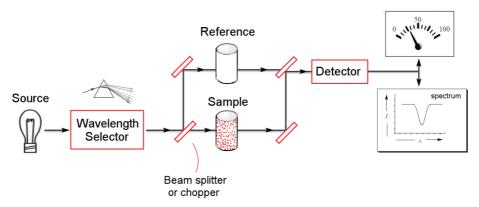


Figure 2.2 Schematic Representation of a Double-Beam Absorption Spectrometer

The energy source must be appropriate for the wavelengths of radiation being scanned. For UV spectroscopy the source is usually a deuterium lamp in which an electrical discharge through a lamp filled with deuterium gas produces a broad spectrum of light across the UV range in the electromagnetic spectrum.

The samples for UV spectroscopy are typically dissolved in solution and contained in small cells (cuvettes). The cells and optical components must be as transparent as possible to wavelengths being scanned and are typically made of quartz or fused silica. Note that conventional glass and most plastics absorb UV radiation very strongly so these materials are not used in cells for UV spectroscopy. Ethanol, hexane, water or dioxane are usually chosen as solvents as these have minimal absorption in the UV region of the spectrum.

2.3 QUANTITATIVE ASPECTS OF ULTRAVIOLET SPECTROSCOPY

The *y*-axis of a UV spectrum may be calibrated in terms of the intensity of transmitted light (*i.e.* the percentage of transmission or absorption) or it may be calibrated on a logarithmic scale, *i.e.* in terms of *absorbance* (A) (Figure 2.3).

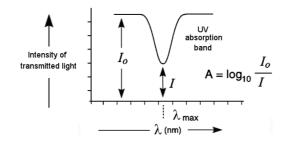


Figure 2.3 Definition of Absorbance (A)

Absorbance is proportional to concentration and path length (the Beer–Lambert Law). The intensity of absorption is usually expressed in terms of *molar absorbance* or the *molar extinction coefficient* (ε) given by:

$$\varepsilon = \frac{MA}{C/}$$

where M is the molecular weight, C the concentration (in grams per litre) and I is the path length through the sample in centimetres.

UV absorption bands (Figure 2.3) are characterised by the wavelength of the absorption maximum (λ_{max}) and ε . The values of ε associated with commonly encountered chromophores vary between 10 and 10⁵. For convenience, extinction coefficients are usually tabulated as $log_{10}(\varepsilon)$ as this gives numerical values that are easier to manage. The fact that some species may have very large extinction coefficients means that care must be taken in the preparation of samples because the presence of small amounts of strongly absorbing impurities may lead to errors in the interpretation of UV data.

2.4 CLASSIFICATION OF UV ABSORPTION BANDS

UV absorption bands have fine structure because of the presence of vibrational sub-levels, but this is rarely observed in solution due to collisional broadening. As the transitions are associated with changes of electron orbitals, they are often described in terms of the orbitals involved, *e.g.*

$\sigma \rightarrow \sigma^*$	where <i>n</i> denotes a non-bonding orbital,
$\pi \rightarrow \pi^*$	the asterisk denotes an antibonding orbital
$n \rightarrow \pi^*$	and σ and π have the usual meaning in
$n \rightarrow \sigma^*$	terms of bonding categories.

Another method of classification uses the symbols:

- B (for benzenoid)
- E (for ethylenic)
- R (for radical-like)
- K (for conjugated from the German "konjugierte")

A molecule may give rise to more than one band in its UV spectrum, either because it contains more than one chromophore or because more than one transition of a single chromophore is observed. However, UV spectra typically contain far fewer features (bands) than IR, MS or NMR spectra and therefore have a lower information content. The ultraviolet spectrum of acetophenone in ethanol contains three easily observed bands (Table 2.1).

Table 2.1 Observable UV Absorption Bands for Acetophenone

	λ _{max} (nm)	3	log ₁₀ (ɛ)	Assignme	ent
0 0	244	12,600	4.1	$\pi \rightarrow \pi^*$	К
CH3	280	1,600	3.2	$\pi \ \rightarrow \ \pi^{\star}$	В
acetophenone	60	317	1.8	$n \rightarrow \pi^{\star}$	R

2.5 SPECIAL TERMS IN UV SPECTROSCOPY

Auxochromes (auxiliary chromophores) are groups that have little UV absorption by themselves, but which often have significant effects on the absorption (both λ_{max} and ε) of a chromophore to which they are attached. Generally, auxochromes contain atoms with one or more lone pairs, *e.g.* –OH, –OR, –NR₂, –halogen.

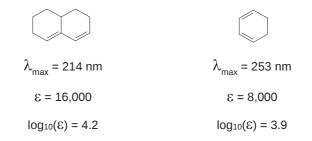
If a structural change, such as the attachment of an auxochrome, leads to the absorption maximum being shifted to a longer wavelength, the phenomenon is termed a *bathochromic shift*. A shift towards shorter wavelength is called a *hypsochromic shift*.

2.6 IMPORTANT UV CHROMOPHORES

Most of the reliable and useful data are due to relatively strongly absorbing chromophores ($\epsilon > 200$) that are mainly indicative of conjugated or aromatic systems. The examples listed below encompass most of the commonly encountered effects.

2.6.1 DIENES AND POLYENES

Extension of conjugation in a carbon chain is always associated with a pronounced shift towards longer wavelength, and usually towards greater absorption intensity (Table 2.2).


Table 2.2 The Effect of Extended Conjugation on UV Absorption

Alkene	λ_{\max} (nm)	3	log10(£)
CH ₂ =CH ₂	165	10,000	4.0
CH ₃ -CH ₂ -CH=CH-CH ₂ -CH ₃ (trans)	184	10,000	4.0
CH ₂ =CH–CH=CH ₂	217	20,000	4.3
CH ₃ –CH=CH–CH=CH ₂ (trans)	224	23,000	4.4
CH ₂ =CH–CH=CH–CH=CH ₂ (trans)	263	53,000	4.7
CH ₃ –(CH=CH) ₅ –CH ₃ (trans)	341	126,000	5.1

When there are more than eight conjugated double bonds, the absorption maximum of polyenes is further shifted such that they absorb light strongly in the visible region of the spectrum.

There are empirical rules (Woodward's Rules) of good predictive value and these allow the estimation of the positions of the absorption maxima in conjugated alkenes and conjugated carbonyl compounds.

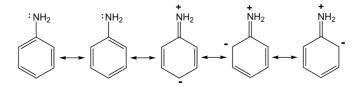
The stereochemistry and the presence of substituents also influence UV absorption by the diene chromophore. For example:

2.6.2 CARBONYL COMPOUNDS

All carbonyl derivatives exhibit weak ($\epsilon < 100$) absorption between 250 and 350 nm, and this is only of marginal use in determining structure. However, conjugated carbonyl derivatives always exhibit strong UV absorption (Table 2.3).

Compound	Structure	λ _{max} (nm)	3	log ₁₀ (ε)
Acetaldehyde	CH ₃ 、C≠O H	293 (hexane solution)	12	1.1
Acetone	CH₃、C [∞] O CH₃ CH₃	279 (hexane solution)	15	1.2
Propenal	H CH₂ ^{≠C} C ^{≠O} H	207 328 (ethanol solution)	12,000 20	4.1 1.3
(E)-Pent-3-en-2-one	$\begin{array}{c} H \\ CH_{3} \\ C \neq C \\ C \\ H \\ H \\ CH_{3} \end{array} = \begin{array}{c} 0 \\ C \\ C \\ H \\ CH_{3} \end{array}$	221 312 (ethanol solution)	12,000 40	4.1 1.6
4-Methylpent-3-en-2-one	$\begin{array}{c} H \\ CH_3 \\ C \neq \mathbb{C} \\ CH_3 \\ CH_3 \\ CH_3 \end{array} \\ CH_3 \end{array} \\ \mathbf{C} \\ H_3 \end{array}$	238 316 (ethanol solution)	12,000 60	4.1 1.8
Cyclohex-2-en-1-one	0	225	7,950	3.9
Benzoquinone	0=	247 292 363	12,600 1,000 250	4.1 3.0 2.4

 Table 2.3
 UV Absorption Bands in Common Carbonyl Compounds


2.6.3 BENZENE DERIVATIVES

Benzene derivatives exhibit medium to strong absorption in the UV region. Bands usually have characteristic fine structure and the intensity of the absorption is strongly influenced by substituents. Examples listed in Table 2.4 include weak auxochromes ($-CH_3$, -Cl, $-OCH_3$), groups which increase conjugation ($-CH=CH_2$, -C(=O)-R, $-NO_2$) and auxochromes whose absorption is pH dependent ($-NH_2$ and -OH).

Compound	Structure	λ _{max} (nm)	3	log ₁₀ (ε)
Benzene		184 204 256	60,000 7,900 200	4.8 3.9 2.3
Toluene	CH3	208 261	8,000 300	3.9 2.5
Chlorobenzene	<cl< td=""><td>216 265</td><td>8,000 240</td><td>3.9 2.4</td></cl<>	216 265	8,000 240	3.9 2.4
Anisole	CCH3	220 272	8,000 1,500	3.9 3.2
Styrene	CH=CH ₂	244 282	12,000 450	4.1 2.7
Acetophenone	C-CH ₃	244 280	12,600 1,600	4.1 3.2
Nitrobenzene		251 280 330	9,000 1,000 130	4.0 3.0 2.1
Aniline	NH ₂	230 281	8,000 1,500	3.9 3.2
Anilinium ion	~	203 254	8,000 160	3.9 2.2
Phenol	——————————————————————————————————————	211 270	6,300 1,500	3.8 3.2
Phenoxide ion	ō	235 287	9,500 2,500	4.0 3.4

Table 2.4	UV Absorption Bands in Common Benzene Derivatives
-----------	---

Aniline and phenoxide ion have strong UV absorptions resulting from the overlap of the lone pair on the nitrogen (or oxygen) with the π -system of the benzene ring. This may be visualised in the usual Valence Bond terms:

The striking changes in the ultraviolet spectra accompanying protonation of aniline and phenoxide ion are because of the loss (or substantial reduction) of the overlap between the lone pairs and the benzene ring.