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PREFACE 
_______________________________________________________________ 

This is the Sixth Edition of the text “Organic Structures from Spectra”.  The 

original text, published in 1986 by J R Kalman and S Sternhell, was a remarkable 

instructive text at a time where spectroscopic analysis, particularly NMR 

spectroscopy, was becoming widespread and routinely available in many 

chemical laboratories.  The original text was founded on the premise that the best 

way to learn to obtain “structures from spectra” is to build up skills by practising 

on simple problems.  Editions two through five of the text have been published at 

about five-yearly intervals and each revision has taken account of new 

developments in spectroscopy as well as dropping out techniques that have 

become less important or obsolete over time.  The collection has grown 

substantially and we are deeply indebted to Dr John Kalman and to Emeritus 

Professor Sev Sternhell for their commitment and contribution to all of the 

previous editions of “Organic Structures from Spectra”. 

Edition Six of the text has been expanded to include a new selection of problems 

and many of the problems now incorporate 2D NMR spectra (COSY, TOCSY, 

NOESY, C–H Correlation spectroscopy or HMBC).   

The overarching philosophy remains the same as in previous editions of the text:  

(a) Theoretical exposition is kept to a minimum, consistent with gaining an

understanding of those aspects of the various spectroscopic techniques

which are actually used in solving problems.  Experience tells us that both

mathematical detail and in-depth theoretical description of advanced

techniques merely confuse or overwhelm the average student.

(b) The learning of data is kept to a minimum.  There are now many sources of

spectroscopic data available online.  It is much more important to learn to

use a range of generalised data well, rather than to achieve a superficial

acquaintance with extensive sets of data.  This book contains summary

tables of essential spectroscopic data and these tables become critical

reference material, particularly in the early stages of gaining experience in

solving problems.
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Preface 

(c) We emphasise the concept of identifying “structural elements or fragments”

and building the logical thought processes needed to produce a structure

out of the structural elements.

The derivation of structural information from spectroscopic data is now an 

integral part of Organic Chemistry courses at all universities.  At the 

undergraduate level, the principal aim is to teach students to solve simple 

structural problems efficiently by using combinations of the major spectroscopic 

techniques (UV, IR, NMR and MS).  We have evolved courses both at the 

University of New South Wales and at the University of Sydney which achieve 

this aim quickly and painlessly.  The text is tailored specifically to the needs and 

approach of these courses.   

The courses have been taught in the second and third years of undergraduate 

chemistry, at which stage students have usually completed an elementary course 

of Organic Chemistry in their first year and students have also been exposed to 

elementary spectroscopic theory, but are, in general, unable to relate the theory 

to actually solving spectroscopic problems. 

We have delivered courses of about 9 lectures outlining the basic theory, 

instrumentation and the structure–spectra correlations of the major spectroscopic 

techniques.  The treatment is highly condensed and elementary and, not 

surprisingly, the students do initially have great difficulties in solving even the 

simplest problems.  The lectures are followed by a series of problem solving 

workshops (about 2 hours each) with a focus on 5 to 6 problems per session.  The 

students are permitted to work either individually or in groups and may use any 

additional resource material that they can find.  At the conclusion of the course, 

the great majority of the class is quite proficient and has achieved a satisfactory 

level of understanding of all methods used.  Clearly, most of the real teaching is 

done during the hands-on problem seminars.  At the end of the course, there is an 

examination usually consisting essentially of 3 or 4 problems from the book and 

the results are generally very satisfactory.  The students have always found this a 

rewarding course since the practical skills acquired are obvious to them.  Solving 

these real puzzles is also addictive – there is a real sense of achievement, 

understanding and satisfaction, since the challenge in solving the graded 

problems builds confidence even though the more difficult examples are quite 

demanding. 

Problems 1–19 are introductory questions designed to develop the understanding 

of molecular symmetry, the analysis of simple spin systems as well as how to 

navigate the common 2D NMR experiments.   
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Preface 

Problems 20–294 are of the standard “structures from spectra” type and are 

arranged roughly in order of increasing difficulty.  A number of problems deal 

with related compounds (sets of isomers) which differ mainly in symmetry or the 

connectivity of the structural elements and are ideally set together.  The sets of 

related examples include Problems 33 and 34; 35 and 36; 40–43; 52 and 53; 57–61; 

66–71; 72 and 73; 74–77; 82 and 83; 84–86; 92–94; 95 and 96; 101 and 102; 106 

and 107; 113 and 114; 118–121; 126 and 127; 129–132; 133 and 134; 137–139; 

140–142; 154 and 155; 157–164; 165–169; 176–180; 185–190; 199–200; 205–206; 

208–209; 211–212; 245–247; 262–264; and 289–290.   

A number of problems (218, 219, 220, 221, 242, 273, 278, 279, 280, 285, 286 

and 287) exemplify complexities arising from the presence of chiral centres, and 

some problems illustrate restricted rotation about amide bonds (191, 275 and 

281).  There are a number of problems dealing with the structures of compounds 

of biological, environmental or industrial significance (41, 49, 64, 91, 92, 93, 94, 

98, 146, 151, 152, 160, 179, 180, 191, 198, 219, 225, 231, 235, 236, 269, 285, 277, 

278, 279, 284, 286 and 287). 

Problems 295–300 are again structures from spectra, but with the data presented 

in a textual form such as might be encountered when reading the experimental 

section of a paper or report. 

Problems 301–309 deal with the use of NMR spectroscopy for quantitative 

analysis and for the analysis of mixtures of compounds. 

In Chapter 9, there are also three worked solutions (to problems 117, 146 and 77) 

as an illustration of a logical approach to solving problems.  However, with the 

exception that we insist that students perform all routine measurements first, we 

do not recommend a mechanical attitude to problem solving – intuition has an 

important place in solving structures from spectra as it has elsewhere in 

chemistry.  

Bona fide instructors may obtain a list of solutions (at no charge) by writing to 
the authors or EMAIL: L.Field@unsw.edu.au  

We wish to thank the many graduate students and research associates who, over 

the years, have supplied us with many of the compounds used in the problems.   

L. D. Field 

H. L. Li 

A. M. Magill  

January 2020
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1  

INTRODUCTION 
_______________________________________________________________ 

1.1 GENERAL PRINCIPLES OF ABSORPTION SPECTROSCOPY 

Spectroscopy involves resolving electromagnetic radiation into its component 
wavelengths (or frequencies) and absorption spectroscopy is the absorption of 
electromagnetic radiation by matter as a function of wavelength.   

In Organic Chemistry, we typically deal with molecular spectroscopy, i.e. the 
spectroscopy of atoms that are bound together in molecules rather than 
absorption by individual atoms or ions.   

An absorption spectrum is a plot or graph of the absorption of energy (radiation) 
as a function of its wavelength ( ) or frequency ( ).  A schematic absorption 
spectrum is given in Figure 1.1.   

Figure 1.1 Schematic Absorption Spectrum 

It follows that the x-axis in Figure 1.1 is an energy scale, since the frequency, 
wavelength and energy (E) of electromagnetic radiation are interrelated by the 
Planck–Einstein relation: 

where  is the frequency of the electromagnetic radiation,  is the wavelength of 
the electromagnetic radiation, and c is the velocity of light. 
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Chapter 1   Introduction 

An absorption band can be characterised primarily by two parameters: 

(a) the wavelength (or frequency) at which maximum absorption occurs

(b) the intensity of absorption at this wavelength compared to base-line (or
background) absorption

A spectroscopic transition takes a molecule from one energy state to a state of 
higher energy.  For any spectroscopic transition between energy states (e.g. E1 
and E2 in Figure 1.2), the change in energy ( E) is given by: 

E = h  

where h is Planck's constant and  is the frequency of the electromagnetic energy 
absorbed.   

Figure 1.2  Definition of a Spectroscopic Transition 

It follows that    and that   1/  i.e. the larger E, the higher the 
frequency of radiation required for absorption to take place or the shorter the 
wavelength of radiation required for absorption to take place.   

The y-axis in Figure 1.1 measures the intensity of the absorption band and this 
depends on the number of molecules observed (the Beer–Lambert Law) and the 
probability of the transition between the energy levels.   

A spectrum consists of distinct bands or transitions because the absorption (or 
emission) of energy is quantised.  The energy gap for a transition (and hence the 
absorption frequency) is a molecular property and it is characteristic of molecular 
structure.  The absorption intensity is also a molecular property and both the 
frequency and the intensity of a transition can provide structural information. 

1.2 CHROMOPHORES 

In general, any spectral feature, i.e. a band or group of bands, is due not to the 
whole molecule, but to an identifiable part of the molecule, which we loosely call 
a chromophore. 

A chromophore may correspond to a functional group (e.g. a hydroxyl group or 
the double bond in a carbonyl group).  However, it may equally well correspond 
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Chapter 1   Introduction 

to a single atom within a molecule or to a group of atoms (e.g. a methyl group) 
that is not normally associated with chemical functionality. 

The detection of a chromophore permits us to deduce the presence of a structural 
fragment or a structural element in the molecule.  The fact that it is the 
chromophores and not the molecule as a whole that give rise to spectral features 
is fortunate because it permits complete molecular structures to be built up piece-
by-piece from the molecular fragments. 

1.3 DEGREE OF UNSATURATION 

Traditionally, the molecular formula of a compound was derived from elemental 
analysis and its molecular weight, and these were determined independently.  The 
concept of the degree of unsaturation of an organic compound derives simply 
from the tetravalency of carbon.  For a non-cyclic hydrocarbon (i.e. an alkane) 
the number of hydrogen atoms must be twice the number of carbon atoms plus 
two, any “deficiency” in the number of hydrogens must be due to the presence of 
unsaturation, i.e. double bonds, triple bonds or rings in the structure.   

The degree of unsaturation can be calculated from the molecular formula for all 
compounds containing C, H, N, O, S or the halogens.  There are three basic steps 
in calculating the degree of unsaturation: 

Step 1 – take the molecular formula and replace all halogens by hydrogens 

Step 2 – omit all of the sulfur or oxygen atoms 

Step 3 – for each nitrogen, omit the nitrogen and omit one hydrogen 

After these three steps, the molecular formula is reduced to CnHm and the degree 
of unsaturation is given by: 

Degree of Unsaturation = n - 
m
2

+ 1

The degree of unsaturation indicates the number of  bonds or rings that the 
compound contains.  For example, a compound whose molecular formula is 
C4H9NO2 is reduced to C4H8, which gives a degree of unsaturation of 1.  This 
indicates that the molecule must have one  bond or one ring.  Note that a triple 
bond (e.g. the –C≡C– bond in an alkyne or the –C≡N bond in a nitrile) 
contributes two units of unsaturation (two  bonds).  Note also that any 
compound that contains an aromatic ring always has a degree of unsaturation 
greater than or equal to 4, since the aromatic ring contains a ring plus three  
bonds.  Similarly, if a compound has a degree of unsaturation greater than or 
equal to 4, one should suspect the possibility that the structure contains an 
aromatic ring.  

3
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1.4 CONNECTIVITY 

Even if it were possible to identify sufficient structural elements in a molecule to 
account for the molecular formula, it may not be possible to deduce the 
structural formula from a knowledge of the structural elements alone.  For 
example, it could be demonstrated that a substance of molecular formula 
C3H5OCl contains the structural elements: 

 

and this leaves two possible structures: 

   

Not only the presence of various structural elements, but also their juxtaposition, 
must be determined to establish the structure of a molecule.  Fortunately, 
spectroscopy often gives valuable information concerning the connectivity of 
structural elements and in the above example it would be very easy to determine 
whether there is a ketonic carbonyl group (as in 1) or an acid chloride (as in 2).  
In addition, it is possible to determine independently whether the methyl (–CH3) 
and methylene (–CH2–) groups are separated (as in 1) or adjacent (as in 2). 

 

1.5 SENSITIVITY 

Sensitivity is generally taken to signify the limits of detectability of a 
chromophore.  Some methods (e.g. 1H NMR spectroscopy) detect all 
chromophores accessible to them with equal sensitivity while in other techniques 
(e.g. UV spectroscopy) the range of sensitivity towards different chromophores 
spans many orders of magnitude.  Mass spectroscopy is the most sensitive of the 
common spectroscopic techniques and requires only very small amounts of 
sample (< 10−10 g) whereas 13C NMR typically requires tens of milligrams of 
sample.   In terms of overall sensitivity: 

  MS > UV > IR > 1H NMR > 13C NMR 

but the relative sensitivity of different spectroscopic techniques often depends on 
the specific chromophores present in a molecule.  

  

CH3

Cl

C O

CH2
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1.6 PRACTICAL CONSIDERATIONS 

The five major spectroscopic methods (MS, UV, IR, 1H NMR and 13C NMR) 
have become established as the principal tools for the determination of the 
structures of organic compounds because, between them, they detect a wide 
variety of structural elements. 

The instrumentation and skills involved in the use of all five major spectroscopic 
methods are now widely spread, but the ease of obtaining and interpreting the 
data from each method under real laboratory conditions varies.   

In very general terms: 

(a) While the cost of each type of instrumentation differs greatly (NMR
instruments cost between $50,000 and several million dollars), as an overall
guide, MS and NMR instruments are much more costly than UV and IR
spectrometers.  With increasing cost comes increasing difficulty in
maintenance and the required operator expertise, thus compounding the
total outlay.

(b) In terms of ease of usage for routine operation, most UV and IR
instruments are comparatively straightforward bench-top laboratory
instruments.  NMR spectrometers are also common as “hands-on”
instruments in most chemistry laboratories and the users require routine
training and a degree of basic computer literacy.  Similarly some mass
spectrometers are now designed to be used by researchers as “hands-on”
routine instruments.  However, the more advanced NMR spectrometers
and most mass spectrometers are still sophisticated instruments that are
usually operated and maintained by specialists.

(c) The scope of each spectroscopic method can be defined as the amount of
useful information it provides.  This is a function of the total amount of
information obtainable and also how difficult the data are to interpret.  The
scope of each method varies from problem to problem, and each method
has its aficionados and specialists, but the overall utility undoubtedly
decreases in the order:

NMR > MS > IR > UV 

with the combination of 1H and 13C NMR spectroscopy providing the most 
useful information. 

(d) The theoretical background  needed for each method varies with the nature
of the experiment, but the minimum overall amount of theory needed
decreases in the order:

NMR >> MS > UV  IR 
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2  

ULTRAVIOLET (UV) SPECTROSCOPY 
_______________________________________________________________ 

2.1 THE NATURE OF ULTRAVIOLET SPECTROSCOPY 

The term “UV spectroscopy” generally refers to the excitation of electronic 
transitions by absorption of energy in the ultraviolet region of the 
electromagnetic spectrum (  in the range approximately 200−380 nm) accessible 
to standard UV spectrometers. 

Electronic transitions are also responsible for absorption in the visible region of 
the spectrum (approximately 380–800 nm) which is easily accessible 
instrumentally but of less importance when solving structural problems because 
most organic compounds are colourless.  An extensive region at wavelengths 
shorter than ~200 nm (“vacuum ultraviolet”) also corresponds to electronic 
transitions, but this region is not readily accessible with standard instruments.  
UV spectra used for determination of structures are invariably obtained in 
solution. 

2.2 BASIC INSTRUMENTATION 

Basic instrumentation for both UV and IR spectroscopies consists of an energy 
source, a dispersing device (prism or grating), a sample cell and a detector, 
arranged as schematically shown in Figure 2.1. 

Figure 2.1 Schematic Representation of an IR or UV Spectrometer 

The dispersing device scans through the range of wavelengths produced by the 
source and these pass through the sample. The drive of the dispersing device is 
synchronised with the x-axis of the recorder or fed directly to a computer, so that 
the x-axis tracks the wavelength of radiation reaching the detector.  The signal 

6



Chapter 2   Ultraviolet Spectroscopy 

 

from the detector is transmitted to the y-axis of the recorder or to a computer 
and this records how much radiation is absorbed by the sample at any particular 
wavelength.   

In practice, almost all instruments are double-beam spectrometers and in this 
type of instrument, the beam is split and part of the beam goes through a 
reference cell, containing only solvent, and part of the beam goes through the 
sample.  The absorbance of the reference cell is subtracted from the absorbance 
of the sample cell.  Double-beam instruments eliminate any absorbance from the 
solvent and also cancel out absorption resulting from the atmosphere in the 
optical path (Figure 2.2). 

 
Figure 2.2 Schematic Representation of a Double-Beam Absorption Spectrometer 

The energy source must be appropriate for the wavelengths of radiation being 
scanned.  For UV spectroscopy the source is usually a deuterium lamp in which 
an electrical discharge through a lamp filled with deuterium gas produces a broad 
spectrum of light across the UV range in the electromagnetic spectrum.   

The samples for UV spectroscopy are typically dissolved in solution and 
contained in small cells (cuvettes).  The cells and optical components must be as 
transparent as possible to wavelengths being scanned and are typically made of 
quartz or fused silica.  Note that conventional glass and most plastics absorb UV 
radiation very strongly so these materials are not used in cells for UV 
spectroscopy.  Ethanol, hexane, water or dioxane are usually chosen as solvents 
as these have minimal absorption in the UV region of the spectrum. 
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2.3 QUANTITATIVE ASPECTS OF ULTRAVIOLET SPECTROSCOPY 

The y-axis of a UV spectrum may be calibrated in terms of the intensity of 
transmitted light (i.e. the percentage of transmission or absorption) or it may be 
calibrated on a logarithmic scale, i.e. in terms of absorbance (A) (Figure 2.3). 

 
Figure 2.3 Definition of Absorbance (A) 

Absorbance is proportional to concentration and path length (the Beer–Lambert 
Law).  The intensity of absorption is usually expressed in terms of molar 
absorbance or the molar extinction coefficient ( ) given by: 

 

where M is the molecular weight, C the concentration (in grams per litre) and l  is 
the path length through the sample in centimetres. 

UV absorption bands (Figure 2.3) are characterised by the wavelength of the 
absorption maximum ( max) and .  The values of  associated with commonly 
encountered chromophores vary between 10 and 105.  For convenience, 
extinction coefficients are usually tabulated as log10( ) as this gives numerical 
values that are easier to manage.  The fact that some species may have very large 
extinction coefficients means that care must be taken in the preparation of 
samples because the presence of small amounts of strongly absorbing impurities 
may lead to errors in the interpretation of UV data. 

 

2.4 CLASSIFICATION OF UV ABSORPTION BANDS 

UV absorption bands have fine structure because of the presence of vibrational 
sub-levels, but this is rarely observed in solution due to collisional broadening.  
As the transitions are associated with changes of electron orbitals, they are often 
described in terms of the orbitals involved, e.g. 

    * 
    * 

n    * 
n    * 

where n denotes a non-bonding orbital, 
the asterisk denotes an antibonding orbital 
and  and  have the usual meaning in 
terms of bonding categories. 

 = 
M A
C l
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Another method of classification uses the symbols: 

B (for benzenoid) 

E (for ethylenic) 

R (for radical-like) 

K (for conjugated – from the German “konjugierte”) 

A molecule may give rise to more than one band in its UV spectrum, either 
because it contains more than one chromophore or because more than one 
transition of a single chromophore is observed.  However, UV spectra typically 
contain far fewer features (bands) than IR, MS or NMR spectra and therefore 
have a lower information content.  The ultraviolet spectrum of acetophenone in 
ethanol contains three easily observed bands (Table 2.1). 

Table 2.1 Observable UV Absorption Bands for Acetophenone 

max(nm)  log10( ) Assignment 

244 12,600 4.1 π  →  π* K 

280 1,600 3.2 π  →  π* B 

acetophenone 60 317 1.8 n  →  π* R 

2.5 SPECIAL TERMS IN UV SPECTROSCOPY 

Auxochromes (auxiliary chromophores) are groups that have little UV 
absorption by themselves, but which often have significant effects on the 
absorption (both max and ε) of a chromophore to which they are attached.  
Generally, auxochromes contain atoms with one or more lone pairs, e.g. –OH, 
−OR, –NR2, –halogen.

If a structural change, such as the attachment of an auxochrome, leads to the 
absorption maximum being shifted to a longer wavelength, the phenomenon is 
termed a bathochromic shift.  A shift towards shorter wavelength is called a 
hypsochromic shift. 

C

O

CH3
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2.6 IMPORTANT UV CHROMOPHORES 

Most of the reliable and useful data are due to relatively strongly absorbing 
chromophores (  > 200) that are mainly indicative of conjugated or aromatic 
systems.  The examples listed below encompass most of the commonly 
encountered effects. 

2.6.1 DIENES AND POLYENES 

Extension of conjugation in a carbon chain is always associated with a 
pronounced shift towards longer wavelength, and usually towards greater 
absorption intensity (Table 2.2).   

 

Table 2.2 The Effect of Extended Conjugation on UV Absorption  

Alkene max (nm)  log10( ) 

CH2=CH2 165 10,000 4.0 

CH3–CH2–CH=CH–CH2–CH3  (trans) 184 10,000 4.0 

CH2=CH–CH=CH2 217 20,000 4.3 

CH3–CH=CH–CH=CH2  (trans) 224 23,000 4.4 

CH2=CH–CH=CH–CH=CH2  (trans) 263 53,000 4.7 

CH3–(CH=CH)5–CH3  (trans) 341 126,000 5.1 

 

When there are more than eight conjugated double bonds, the absorption 
maximum of polyenes is further shifted such that they absorb light strongly in the 
visible region of the spectrum.   

There are empirical rules (Woodward's Rules) of good predictive value and these 
allow the estimation of the positions of the absorption maxima in conjugated 
alkenes and conjugated carbonyl compounds. 

The stereochemistry and the presence of substituents also influence UV 
absorption by the diene chromophore.  For example: 

  

max = 214 nm max = 253 nm 

 = 16,000  = 8,000 

log10( ) = 4.2 log10( ) = 3.9 
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2.6.2 CARBONYL COMPOUNDS 

All carbonyl derivatives exhibit weak (  < 100) absorption between 250 and 
350 nm, and this is only of marginal use in determining structure.  However, 
conjugated carbonyl derivatives always exhibit strong UV absorption (Table 2.3). 

Table 2.3 UV Absorption Bands in Common Carbonyl Compounds 

Compound Structure max (nm)  log10( ) 

Acetaldehyde 293 

(hexane solution) 

12 1.1 

Acetone 
279 

(hexane solution) 

15 1.2 

Propenal 

207 

328 

(ethanol solution) 

12,000 

20 

4.1 

1.3 

(E)-Pent-3-en-2-one 

221 

312 

(ethanol solution) 

12,000 

40 

4.1 

1.6 

4-Methylpent-3-en-2-one

238 

316 

(ethanol solution) 

12,000 

60 

4.1 

1.8 

Cyclohex-2-en-1-one 225 7,950 3.9 

Benzoquinone 

247 

292 

363 

12,600 

1,000 

250 

4.1 

3.0 

2.4 

2.6.3 BENZENE DERIVATIVES 

Benzene derivatives exhibit medium to strong absorption in the UV region.  
Bands usually have characteristic fine structure and the intensity of the 
absorption is strongly influenced by substituents.  Examples listed in Table 2.4 
include weak auxochromes (–CH3, –Cl, –OCH3), groups which increase 
conjugation (–CH=CH2, –C(=O)–R, −NO2) and auxochromes whose absorption 
is pH dependent (–NH2 and –OH).  

CH3
C

H

O

CH3
C

CH3

O

CH2
C

H

C

H

O

C
C

H

C

CH3

OCH3

H

C
C

H

C

CH3

OCH3

CH3

O
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Table 2.4 UV Absorption Bands in Common Benzene Derivatives 

Compound Structure max (nm)  log10( ) 

Benzene 
 

184 

204 

256 

60,000 

7,900 

200 

4.8 

3.9 

2.3 

Toluene 
 

208 

261 

8,000 

300 

3.9 

2.5 

Chlorobenzene 
 

216 

265 

8,000 

240 

3.9 

2.4 

Anisole 
 

220 

272 

8,000 

1,500 

3.9 

3.2 

Styrene 
 

244 

282 

12,000 

450 

4.1 

2.7 

Acetophenone 
 

244 

280 

12,600 

1,600 

4.1 

3.2 

Nitrobenzene 
 

251 

280 

330 

9,000 

1,000 

130 

4.0 

3.0 

2.1 

Aniline 
 

230 

281 

8,000 

1,500 

3.9 

3.2 

Anilinium ion 
 

203 

254 

8,000 

160 

3.9 

2.2 

Phenol 
 

211 

270 

6,300 

1,500 

3.8 

3.2 

Phenoxide ion 
 

235 

287 

9,500 

2,500 

4.0 

3.4 

 

Aniline and phenoxide ion have strong UV absorptions resulting from the 

overlap of the lone pair on the nitrogen (or oxygen) with the -system of the 

benzene ring.  This may be visualised in the usual Valence Bond terms: 

 

The striking changes in the ultraviolet spectra accompanying protonation of 

aniline and phenoxide ion are because of the loss (or substantial reduction) of the 

overlap between the lone pairs and the benzene ring. 
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