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Preface

Many scientific and engineering problems can be written as a nonlinear equation F(x) =
0, where F is a nonlinear operator defined on a nonempty open convex subset � of a
Banach space X with values in a Banach space Y . The solutions of this equation can rarely
be found in closed form, so that we usually look for numerical approximations of these
solutions. As a consequence, the methods for solving the previous equation are usually
iterative. So, starting from one initial approximation of a solution x∗ of the equation
F(x) = 0, a sequence {xn} of approximations is constructed such that the sequence
{‖xn − x∗‖} is decreasing and a better approximation to the solution x∗ is then obtained at
every step. Obviously, one is interested in limn xn = x∗.

We can then obtain a sequence of approximations {xn} in different ways, depending
on the iterative methods that are applied. Among these, the best known and most used is
Newton’s method, whose algorithm is

xn+1 = xn − [F ′(xn)]−1F(xn), n ≥ 0, with x0 given.

It is well known that three types of studies can be carried out when we are interested in
proving the convergence of Newton’s sequence {xn} to the solution x∗: local, semilocal
and global. First, the local study of the convergence is based on imposing conditions
on the solution x∗, based on certain conditions on the operator F , and provides the so-
called ball of convergence [25] of the sequence {xn}, which shows the accessibility to x∗
from the initial approximation x0 belonging to the ball. Second, the semilocal study of
the convergence is based on imposing conditions on the initial approximation x0, based
on certain conditions on the operator F , and provides the so-called domain of parameters
[32] corresponding to the conditions required to the initial approximation that guarantee
the convergence of the sequence {xn} to the solution x∗. Third, the global study of the
convergence guarantees, based on certain conditions on the operator F , the convergence
of the sequence {xn} to the solution x∗ in a domain and independently of the initial
approximation x0. The three approaches involve conditions on the operator F . However,
requirement of conditions on the solution, on the initial approximation, or on none of these,
determines the different types of studies. vii
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The local study of the convergence has the disadvantage of being able to guarantee
that the solution, that is unknown, can satisfy certain conditions. In general, the global
study of the convergence is very specific as regards the type of underlying operators, as
a consequence of absence of conditions on the initial approximation and on the solution.
There is a plethora of studies devoted to the weakening and/or extension of the hypotheses
made on the underlying operators. In this monograph, we focus on the analysis of the
semilocal convergence of Newton’s method.

Three types of conditions are required to obtain semilocal convergence results for
Newton’s method: conditions on the starting point x0, conditions on the underlying
operator F and conditions that the two proceeding types of conditions. An important
feature of the semilocal convergence results is that conclusions about the existence and
uniqueness of solution of the equation to be solved can be drawn based on the theoretical
result and the initial approximation. This fact makes the choice of the starting points for
Newton’s method a basic aspect in semilocal convergence studies.

The generalization of Newton’s method to Banach spaces is due to the Russian
mathematician L. V. Kantorovich, who was the first researcher to study the semilocal
convergence of Newton’s method in Banach spaces by publishing some several in the
mid-twenty century, [49–57], and giving an influential result, known as the Newton–
Kantorovich theorem. This gave rise to what is now known as Kantorovich’s theory.

In our monograph Newton’s Method: An Updated Approach of Kantorovich’s Theory,
[37], we analyse Kantorovich’s theory based on the well-known majorant principle
developed by Kantorovich, which in turn is based on the concept of majorizing sequence.
There we present an adapted approach of this theory that includes old results, refines
old results, proves the most relevant results and gives alternative approaches that lead to
new sufficient semilocal convergence criteria for Newton’s method. As we can see in that
monograph, if we pay attention to the type of conditions required for the operator F to
guarantee the semilocal convergence of Newton’s method, there are conditions on F ′, as
well as conditions on F ′′ or even conditions on successive derivatives of F .

However, if we look at the algorithm of Newton’s method, we see that only the first
derivative F ′ of the operator F is involved, so one should try to prove the semilocal
convergence of the method by imposing conditions only to F ′. If we proceed in this
way, then the technique based on majorizing sequences of Kantorovich cannot be used
to prove the semilocal convergence of Newton’s method in all the situations that can be
encountered. So, in the present monograph, we focus our attention on the analysis of
the semilocal convergenece of Newton’s method under mild differentiability conditions
on F ′ and use a technique based on recurrence relations which is different from that
based on majorizing sequences and which was introduced and developed by us over
the years. As a consequence, we improve the domains of parameters associated with
the Newton–Kantorovich theorem and other existing semilocal convergence results for
Newton’s method which are obtained under mild differentiability conditions on F ′. In
addition, center conditions on the operator F ′ play an important role in the study of the
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semilocal convergence of Newton’s method, since we can improve the domain of starting
points when the technique of recurrence relations is used to prove semilocal convergence.

This monograph is addressed to researchers interested in the theory of Newton’s
method in Banach spaces. Each chapter contains several theoretical results and interesting
applications to nonlinear integral and differential equations.

We begin the monograph with a quick overview of Newton’s method in Chap. 1,
presenting a brief history of the method that ends with Kantorovich’s theory, where the
Newton–Kantorovich theorem is remembered and illustrated with an application to a
Hammerstein integral equation. Then, we define what we mean by accessibility of an
iterative method, defining the three ways in which it can be seen: basin of attraction,
region of accessibility and domain of parameters. We finish the chapter by introducing
mild differentiability conditions on F ′ as generalizations of Kantorovich’s condition on
F ′, along with a technique based on recurrence relations, that is used throughout the
monograph as an alternative to the majorant principle of Kantorovich, to prove the
semilocal convergence of Newton’s method.

In Chap. 2, we develop the technique based on recurrence relations to prove the
semilocal convergence of Newton’s method when F ′ is Lipschitz continuous in the domain
of definition of the operator F and conclude with an application to a Chandrasekhar
integral equation.

The first generalization of the condition that F ′ is Lipschitz continuous is presented
in Chap. 3, where we require that F ′ is Hölder continuous in the domain of definition
of the operator F . We do an analysis similar to that given in the previous chapter for
the Lipschitz case, complete this analysis with a comparative study involving semilocal
convergence results given by other authors, and finish with an application that highlights
how the theoretical power of Newton’s method is used to draw conclusions about the
existence and uniqueness of a solution and about the region in which it is located.

Chapter 4 contains a variant of the Hölder continuity condition on F ′ discussed in
Chap. 3 that includes the Lipschitz and Hölder cases as special ones and leads to a
modification of the domain of starting points, obtained previously, coming to a greater
applicability of the method.

Chapter 5 introduces what we call the ω-Lipschitz continuous operators and analyzes
the semilocal convergence of Newton’s method when F ′ is ω-Lipschitz continuous in the
domain of definition of the operator F . This condition includes, besides the Lipschitz and
Hölder cases, the case in which F ′ is a combination of operators such that F ′ is Lipschitz
or Hölder continuous, which often occurs for some nonlinear integral equations of mixed
Hammerstein type.

We show in Chaps. 6 and 7 the important role played by the previous conditions
when they are centered at the starting point x0 of Newton’s method, which leads to an
improvement of the domain of starting points. We complete this analysis by comparing
our results with results by other authors and highlight the importance of the domain of
parameters associated with a semilocal convergence result. We illustrate the conclusions
given applications to conservative problems and mildly nonlinear elliptic equations.
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The fact that the conditions imposed to the starting point and to the operator F are
independent enables us to can choose the initial approximation inside a domain of starting
points depending on the conditions that the two types of hypotheses. In another case, if the
two types of conditions are connected, the domain of starting points can be significantly
reduced and this is a problem. In Chap. 8, we try to solve this problem by introducing
an auxiliary point, different from the starting point, which allows us to eliminate the
connection between the conditions required for the starting points and those required for
the operator F , and thus recover the domain of starting points.

Applications to nonlinear integral and differential equations are included to motivate
the ideas presented and illustrate the results given. In particular, we consider Hammerstein
integral equations, conservative problems and elliptic equations, which are solved by
discretization.

We have developed all the proofs presented in the monograph for a better understanding
of the ideas presented, so that the reading of the monograph follows without difficulty. All
the ideas presented in the monograph have been developed by us over the recent years
and references to our work as well as to works of other researchers are provided in the
bibliography.

Finally, throughout the monograph, we pursue to extend the application of Newton’s
method from the modification of the domain of starting points. To end, we impose
various conditions on the operator involved and used a technique based on recurrence
relations that allows us to study the semilocal convergence of Newton’s method under mild
differentiability conditions on the first derivative of the operator. In this way, Kantorovich’s
theory for Newton’s method has been considerably broadened.

Logroño, La Rioja, Spain José Antonio Ezquerro Fernández
October 2019 Miguel Ángel Hernández Verón
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1The Newton-Kantorovich Theorem

Solving nonlinear equations is one of the mathematical problems that is frequently
encountered in diverse scientific disciplines. Thus, with the notation

f (x) = 0,

we include the problem of finding unknown quantity x, which can be a real or complex
number, a vector, a function, etc., from data provided by the function f , which can be,
for example, a real function, a system of equations, a differential equation, an integral
equation, etc. Even when f is a real function of a real variable, it is well known that
in general it is not possible to solve a nonlinear equation accurately. Instead, iterative
techniques are usually employed to obtain approximations of a solution. Among the
iterative techniques, Newton’s method is undoubtedly the most studied and used in
practice. Thus, in order to approximate a solution α of a nonlinear equation f (x) = 0,
Newton’s method constructs, starting from an initial approximation x0 of α, a sequence of
the form

xn+1 = xn − f (xn)

f ′(xn)
, n ≥ 0. (1.1)

Under adequate conditions, the sequence (1.1) converges to the solution α.
Among researchers, it is customary to baptise their discoveries with their own names

or with the name of a relevant celebrity in the matter. In the present, the name of the
method is linked to the eminent British scientist Isaac Newton. His works at the end of
the seventeenth century seem to be the germ of the method that currently bears his name.
However, as it is shown in more detail in Sect. 1.1 and references therein, the method is the
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fruit of the contributions of a great number of scientists, both before and after Newton’s
work. The various forms constructions that the method admits constitute another example
of the plurality of backgrounds on Newton’s method, see [30].

In the mid-twentieth century, the Soviet mathematician Leonid Vitaliyevich Kan-
torovich extended the study of Newton’s method to equations defined in Banach spaces,
initially what is currently known as Kantorovich’s theory. Combining techniques from
functional analysis and numerical analysis, Kantorovich’s theory allows us to address
numerous nonlinear problems such as solving integral equations, ordinary and partial
differential equations, or problems of variational calculus, as it will be detailed throughout
this monograph.

1.1 Brief History of Newton’s Method

The “paternity” of Newton’s method is attributed to Isaac Newton, who described it in
several of his works published at the end of the seventeenth century. However, the idea of
finding an unknown amount through successive approximations dates back many centuries
before Newton. Thus, in antique Greece, techniques to approximate irrational numbers
(mostly, π) by rational numbers were known. But, even earlier, 2000 years before Christ,
Mesopotamians already knew techniques to approximate the square root of a number.
Relevant references are abundant. For example, in [61, p. 42–43], it highlights how the
famous tablet YBC 7289 (see Fig. 1.1) from the Yale Babylonian Collection shows a square
of 30 units of side whose diagonal displays1 the numbers 1; 24, 51, 10 and 42; 25, 35.

Conversion to the decimal system of the first number is 1.4142129629 . . . , which
matches

√
2 = 1.4142135623 . . . up to the fifth decimal digit. The second number is

the product of 30 by the first and is, therefore, the length of the diagonal of the square.
So, it seems clear that the Babylonians knew an approximate value for

√
2 and used it in

calculations.
Another indication of the Babylonians knew how to approximate irrational numbers

appears in tablet VAT6598, which is preserved in the Berlin Museum and is dated in 2000–
1700 BC, where the problem of finding the diagonal of a rectangle of height 40 and side
10 is stated among others. In the current notation, the problem amounts to finding

√
402 + 102 = √

1700.

1The Babylonians used a system of cuneiform numbering with sexadecimal base. Currently, experts
in the field write the Babylonian numbers by using a mixture of our notation in base 10 and their
notation in base 60. The Babylonian equivalent of the decimal comma is denoted by a point and
coma. The rest of the digits are separated by commas. So, the number 5, 51, 13; 2, 30 means 5 ×
602 + 51 × 60 + 13 + 2 × 1/60 + 30 × 1/602 � 21073.0416.
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Fig. 1.1 Tablet YBC 7289 of
the Yale Babylonian Collection
(photograph of Bill Casselman)

In the same tablet, the number 41; 15 = 41 + 15/60 is proposed as an approximation. It is
not known how this number was obtained or if there is evidence of the use of an iterative
method, but some authors [19] mention the fact that this number coincides with the known
approximation for a square root

√
h2 + l2 � h + l2

2h

for h = 40 and l = 10.
The proceeding approximation is known as the formula of Heron for the calculation

of square roots, in which, starting from an initial approximation a of
√
A, the value

(a +A/a)/2 is proposed as a new approximation. Indeed, for A = h2 + l2 and a = h, the
approximation given in the Babylonian tablet coincides with Heron’s. Although there are
people who attributed the formula of Heron to the Pythagorean Archytas of Tarentum
(428–347 BC) or even to Archimedes (282–212 BC), the method appears in the first
volume of the Metrica that Heron published in the first century. This book, discovered by
H. Schöne in 1896 (see [19] for details) shows how Heron estimated the area of a triangle
of sides 7, 8 and 9 units, namely

√
720. In the same book, Heron mentions explicitly that

a given approximation can be chosen as starting point to obtain best approximations. It
seems clear, therefore, that this book contains the first reference of the use of an iterative
method.

Now then, was Heron’s method original in his time? or was it a technique already
known and used by previous civilizations? The answer is in the air, although the majority
of researchers of this part of the history of mathematics seem to lean towards the second
option, since there is evidence of the use of Babylonian texts by mathematicians and
astronomers contemporary with Heron. For example, in the work known as the Almagest,
Claudius Ptolemy (100–170 AC) cites astronomical data of the time of the Assyrian King
Nabonassar (747 BC).
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From Heron’s formula on techniques for calculating the square root of a number (and, in
general, n-th roots) were transmitted and/or rediscovered over centuries and civilizations
the seventeenth century. Although there is not much written evidence of what took place
during that long period of time, we can find some references on methods for the calculation
of n-th roots [19]. We can mention, for example, the Chinese mathematics book par excel-
lence, the Jiuzhang suanshu, which translates as Nine chapters of mathematical art. There
exists a third century version, with reviews of Liu Hui (220–280 AC, approximately),
which contains a collection of problems that require the calculation of square and cubic
roots. Later, in the fourth century, Theon of Alexandria (335–405 AC, approximately),
father of Hypatia, developed a completely geometric method to approximate square roots.
In the works of the Persian mathematician Sharaf Al-Din Al-Tusi (1135–1213) one finds
the solutions, both algebraic and numerical, of some cubic equations. It seems that Al-Tusi
was also the first to calculate the derivative of a third-degree polynomial.

In the work Raf al-Hijab of the Arab mathematician Al-Marrakushi Ibn Al-Banna
(1256–1321), which one can translate by Lifting the Veil, it is shown how to calculate
square roots by using series and continued fractions. It seems that Al-Banna was a great
collector of the mathematical knowledge of his time, and he shows its versions of the
works of earlier Arab mathematicians in his writings.

The problem of finding the n-th root of a number continued to evolve towards the more
general problem of finding the roots of a polynomial equation and, even of a transcendental
equation (for example, Kepler’s equation). Starting with the fifteenth century, the problem
bifurcated into several lines (algebraic solutions of polynomial equations, approximate
solutions by using fixed-point iterations, approximations by continuous fractions, etc.). A
detailed analysis of the historical development of these problems is beyond the scope of
this monograph, so we refer the interested reader to one of the specialized textbooks, such
as [19], or the paper [79].

Focusing on the birth of Newton’s method, we can highlight the antecedent work of the
French mathematician François Viète (1540–1603), who developed an ambitious project
aimed at positive solutions of polynomial equations of degree 2 to 6 of generic form. Viète
was the first to represent the parameters of an equation by letters, not only the unknowns.
The method employed by Viète (“specious logistic” or “art of the calculation on symbols”)
was rooted in the Greek geometric tradition. The method of Viète, written in an archaic
language and with tedious notations, did not have continuation, soon become ignored and
was displaced by the Cartesian geometry. However, Viète was the first to understand the
relationship between roots and coefficients of a polynomial and to try to use algebra.

It seems that the work of Viète was what inspired Isaac Newton (1643–1727) to
develop his method of solving equations. The first written reference to Newton’s method
is found in De analysi per aequationes numero terminorum infinitas, in a letter written to
his colleagues Barrow and Collins in 1669, which however was not published til 1711.
Two years after writing this letter, in 1671, Newton developed his method in De metodis
fluxionum et serierum infinitarum. Again, the publication of this work was delayed and it
was not til 1736 that a translation was published under the title Method of Fluxions.
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To get an idea of how Newton worked, we can illustrate his method with the same
example that he considered, the equation x3 − 2x − 5 = 0. Newton argued as follows:

By estimation, we see that the solution is near 2. Taking x = 2 + ε and substituting in the
equation, we obtain:

ε3 + 6ε2 + 10ε − 1 = 0. (1.2)

Ignoring the terms ε3 + 6ε2 because ε is small, we have 10ε − 1 � 0, or ε = 0.1. Then,
x = 2.1 is a better approximation of the solution than the initial one. Doing now ε = 0.1 + ν

and substituting in (1.2), we get

ν3 + 6.3ν2 + 11.23ν + 0.061 = 0.

Ignoring again the terms in ν of degree greater than or equal to two, we have ν � −0.054 and,
therefore, x = 2.046 is an approximation that improves the previous ones. Newton indicated
that the process can be repeated as many times as necessary.

Thus Newton’s idea consists of adding a correcting term to a given initial approxima-
tion. To obtain this approximation, we truncate Newton’s binomial at the second term in
expressions of the type

(a + ε)n � an + nan−1ε.

So, to obtain the approximate value of ε, we only have to solve a linear equation.
Writing the problem in modern notation and denoting p(x) = x3 − 2x − 5, we see that

the new approximation is

2 − p(2)

p′(2)
= 2 + 1

10
= 2.1,

which corresponds to the well-known formulation of Newton’s method (1.1) when f (x) is
the polynomial p(x). However, there is no evidence that Newton used differential calculus
or that he expressed the process as an iterative method in the sense that one approximation
can be considered as the starting point of the next approximation. Furthermore, Newton
used “his method” only to solve polynomial equations. Therefore, Newton’s idea of his
method is far from what we have today.

The idea of iteration is attributed to Joseph Raphson (1648–1715) (see, for example,
[19, 79]), who also simplified the operational aspect of Newton’s technique. In 1690,
Raphson published the treatise Analysis aequationum universalis, in which he gave explicit
formulas for the corrector term for some particular cases of equations. In particular, he
calculated the corrector terms for the equations x3 − r = 0 and x3 − px − q = 0 and
found that they are

r − x3
0

3x2
0

and
q + px0 − x3

0

3x2
0 − p

,
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where x0 is the initial approximation. Notice that Raphson published his work 46 years
before Newton’s Method of Fluxions. However, Raphson was the first to recognize that
Newton’s method was already known in the scientific circles of that time and that his
method was an improved version.

The contribution of Raphson has been historically recognized and many authors call
the method the Newton-Raphson method. However, in the works of Raphson, we cannot
appreciate the connection existing between the corrector term, the function that defines the
equation, and its derivative.

The incorporation of the differential calculus is due to Thomas Simpson (1710–1761).
As we can see in [79], Simpson, in his work Essays on Mathematics, published in
1740, was the one who established the method as it is currently known, except for the
notational aspects (Simpson explained in a rhetoric form how to obtain the successive
approximations). In addition, Simpson extended the process to arbitrary function’s, not
only polynomials.

On the occasion of certain observations that use infinite series, Newton seemed to be
concerned with the concept of convergence, but he did not provide any solution to this
problem. The first time the convergence of Newton’s method is discussed in the 1768
Traité de la résolution des équations en general of Jean Raymond Mourraille (1720–1808).
Despite the fact that it contained novel ideas, most of Mourraille’s work went unnoticed.

Contrary to Newton and Raphson, Mourraille emphasized the geometric aspect of
Newton’s method, justifying why this method is also known as the tangent method.
Mourraille used the geometric representation of Newton’s method to explain the behavior
of the iterative sequences it generates. Besides, Mourraille observes by first time that,
depending on the starting point chosen, the sequence generated by the method can
converge to any of the roots of the equation, oscillate, approach to infinity or a limit that
is not a solution of the equation. Finally, Mourraille also showed that the convergence can
be more or less fast, but he only indicated this in quantitative form.

Later, Joseph-Louis Lagrange (1736–1813), in his Traité de la résolution des équations
numériques de tous les degrés, published in 1808 [40], says that the method attributed to
Newton is usually employed to solve numerical equations. However, he warns that this
method can be only used for equations that are already “almost solved”, in the sense that
a good approximation of the solution is reached. Moreover, he raises questions about the
accuracy of each new iteration and observes that the method may run into difficulties in
the case of multiple roots or roots that are very close to one another.

Jean Baptiste Joseph Fourier (1768–1830) was the first to analyze the rate of conver-
gence of Newton’s method in a work entitled Question d’analyse algébraique (1818),
[40]. In this work, Fourier expressed the method in the current notation and baptized it
as la méthode newtonienne, making explicit reference to the works of Newton, Raphson
and Lagrange. Perhaps, Fourier is the “originator” of the lack of recognition for Simpson’s
work.

The next important mathematician to study Newton’s method was Augustin Louis
Cauchy (1789–1857), who started to work on it in 1821, but did not give a satisfactory


