Jennifer Way · Catherine Attard · Judy Anderson · Janette Bobis · Heather McMaster · Katherin Cartwright Editors

# Research in Mathematics Education in Australasia 2016–2019





Research in Mathematics Education in Australasia 2016–2019

Jennifer Way · Catherine Attard · Judy Anderson · Janette Bobis · Heather McMaster · Katherin Cartwright Editors

### Research in Mathematics Education in Australasia 2016–2019



Editors
Jennifer Way
University of Sydney
Sydney, NSW, Australia

Judy Anderson University of Sydney Sydney, NSW, Australia

Heather McMaster University of Sydney Sydney, NSW, Australia Catherine Attard Western Sydney University Penrith, NSW, Australia

Janette Bobis University of Sydney Sydney, NSW, Australia

Katherin Cartwright University of Sydney Sydney, NSW, Australia

ISBN 978-981-15-4268-8 ISBN 978-981-15-4269-5 (eBook) https://doi.org/10.1007/978-981-15-4269-5

#### © Springer Nature Singapore Pte Ltd. 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

#### **Contents**

| 1 | Janette Bobis, Jennifer Way, Catherine Attard, Judy Anderson, Heather McMaster, and Katherin Cartwright                                                                 | 1   |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2 | Looking Back and Taking Stock: Reflections on the MERGA Research Review 2012–2015  Katie Makar, Shelley Dole, Jana Visnovska, Merrilyn Goos, Anne Bennison, and Kym Fry | 7   |
| 3 | The Contribution of Mathematics Education Researchers to the Current STEM Education Agenda  Judy Anderson, Lyn English, Noleine Fitzallen, and Duncan Symons            | 27  |
| 4 | Facets of Numeracy: Teaching, Learning and Practices Vince Geiger, Keiko Yasukawa, Anne Bennison, Jill Fielding Wells, and Carly Sawatzki                               | 59  |
| 5 | Advancing Our Understanding of Initial Teacher Education Through Research Jennifer Way, Michael Cavanagh, Fiona Ell, Sharyn Livy, and Heather McMaster                  | 91  |
| 6 | Teachers' Professional Learning and Development in Mathematics Education  Janette Bobis, Berinderjeet Kaur, Katherin Cartwright, and Lisa Darragh                       | 117 |
| 7 | Researching the Affective Domain in Mathematics Education Naomi Ingram, Vesife Hatisaru, Peter Grootenboer, and Kim Beswick                                             | 147 |
| 8 | Equity, Social Justice, and Ethics  Colleen Vale, Robin Averill, Jennifer Hall, Helen Forgasz, and Gilah Leder                                                          | 177 |

vi Contents

| 9   | Mathematics Learning and Education from Birth to Eight Years                                                                                                                     | 209 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 10  | The Re-emergence of Spatial Reasoning Within Primary Years  Mathematics Education.  Geoff Woolcott, Tracy Logan, Margaret Marshman, Ajay Ramful, Robert Whannell, and Tom Lowrie | 245 |
| 11  | Research into Teaching and Learning of Tertiary Mathematics and Statistics  Linda Galligan, Mary Coupland, Peter K. Dunn, Paul Hernandez Martinez, and Greg Oates                | 269 |
| 12  | Innovative and Powerful Pedagogical Practices in Mathematics Education  Jodie Hunter, Jodie Miller, Ban Heng Choy, and Roberta Hunter                                            | 293 |
| 13  | <b>Teaching and Learning Mathematics with Digital Technologies</b> Catherine Attard, Nigel Calder, Kathryn Holmes, Kevin Larkin, and Sven Trenholm                               | 319 |
| 14  | Changing Landscapes                                                                                                                                                              | 349 |
| Ind | ex                                                                                                                                                                               | 373 |

#### **Editors and Contributors**

#### **About the Editors**

**Jennifer Way** is an Associate Professor of Mathematics Education at the University of Sydney. Her work has focused on the development of conceptual understanding in problematic areas of mathematics learning for both teachers and students (early-years to middle-years), particularly regarding contextual factors such as digital technologies, and motivation and engagement. Current research projects are centred on the role of mathematical representation in conceptual understanding.

**Catherine Attard** is an Associate Professor (Mathematics Education) at Western Sydney University and Deputy Director of the Centre for Educational Research within the School of Education. Catherine's research interests focus on teachers' technology-related pedagogical practices, student engagement, teacher professional learning in mathematics, and financial literacy education. She is the co-author of *Technology-enabled mathematics education: Optimising student engagement* (2020).

**Judy Anderson** is an Associate Professor in mathematics education at the University of Sydney, and Director of the STEM Teacher Enrichment Academy, an innovative professional learning program for primary and secondary school teachers. She has conducted research into preservice and practicing teachers' problem-solving beliefs and practices, and is currently managing a large scale mixed-methods research project in schools collecting evidence of change in STEM programs and practices from students, teachers, parents, and school leaders' perspectives.

**Janette Bobis** is a Professor of Mathematics Education in the Sydney School of Education and Social Work, University of Sydney. Her research focuses on *teacher learning* in mathematics education, particularly regarding the development of

viii Editors and Contributors

primary and middle-school teachers' professional learning knowledge, beliefs, and practices. Her current research project is exploring the impact on teachers and young students of curricula designed around sequences of challenging mathematical tasks.

**Heather McMaster** is a Scholarly Teaching Fellow at the University of Sydney. She teaches pre-service primary school teachers in mathematics education, and has a research interest in identifying the motivation of final year undergraduates who specialise in mathematics leadership and want to continue this trajectory when they enter the teaching profession. Her research is also concerned with primary school students' developing understanding of measurement concepts and the intersection of the mathematics and science curricula in relation to these concepts.

**Katherin Cartwright** is a third-year Ph.D. candidate researching in the area of mathematics teaching and learning in primary school years. Her focus is on teachers' understanding of mathematical fluency, the characteristics of fluency students display. Her Ph.D. extends the research commenced in her Master's study, *Exploring teachers' conceptions of mathematical fluency*. Cartwright is currently working as a sessional lecturer and tutor at the University of Sydney (2015-present), working with pre-service teachers in their Mathematics Education units of study in the primary undergraduate course and for Master of Teaching students.

#### **Contributors**

Judy Anderson University of Sydney, Sydney, Australia

Glenda Anthony Massey University, Palmerston North, New Zealand

Catherine Attard Western Sydney University, Sydney, Australia

Robin Averill Victoria University of Wellington, Wellington, New Zealand

**Anne Bennison** University of the Sunshine Coast, Sunshine Coast, Australia

Kim Beswick University of NSW, Sydney, Australia

Janette Bobis University of Sydney, Sydney, Australia

Nigel Calder University of Waikato, Hamilton, New Zealand

Katherin Cartwright University of Sydney, Sydney, Australia

Michael Cavanagh Macquarie University, Sydney, Australia

Jill Cheeseman Monash University, Melbourne, Australia

**Ban Heng Choy** National Institute of Education, Singapore, Singapore

Mary Coupland University of Technology Sydney, Sydney, NSW, Australia

Lisa Darragh University of Auckland, Auckland, New Zealand

Editors and Contributors ix

Shelley Dole University of the Sunshine Coast, Brisbane, Australia

Ann Downton Monash University, Melbourne, Australia

Peter K. Dunn University of the Sunshine Coast, Sunshine Coast, QLD, Australia

Fiona Ell University of Auckland, Auckland, New Zealand

Lyn English Queensland University of Technology, Brisbane, Australia

Noleine Fitzallen La Trobe University, Melbourne, Australia

Helen Forgasz Monash University, Melbourne, Australia

Kym Fry The University of Queensland, Brisbane, Australia

Linda Galligan University of Southern Queensland, Toowoomba, QLD, Australia

Vince Geiger Australian Catholic University, Brisbane, Australia

Merrilyn Goos University of Limerick, Limerick, Ireland

Peter Grootenboer Griffith University, Griffith, Australia

Jennifer Hall Monash University, Melbourne, Australia

Vesife Hatisaru University of Tasmania, Hobart, Australia

Kathryn Holmes Western Sydney University, Sydney, Australia

Jodie Hunter Massey University, Auckland, New Zealand

Roberta Hunter Massey University, Auckland, New Zealand

Naomi Ingram University of Otago, Dunedin, New Zealand

Berinderjeet Kaur Nanyang Technological University, Singapore, Singapore

Kevin Larkin Griffith University, Griffith, Australia

Gilah Leder Monash University, Melbourne, Australia;

La Trobe University, Melbourne, Australia

Sharyn Livy Monash University, Melbourne, Australia

Tracy Logan University of Canberra, Canberra, Australia

Tom Lowrie University of Canberra, Canberra, Australia

Amy MacDonald Charles Sturt University, Bathurst, Australia

Katie Makar The University of Queensland, Brisbane, Australia

Margaret Marshman University of the Sunshine Coast, Sippy Downs, Australia

**Paul Hernandez Martinez** Swinburne University of Technology, Melbourne, VIC, Australia

Jane McChesney University of Canterbury, Christchurch, New Zealand

x Editors and Contributors

Heather McMaster University of Sydney, Sydney, Australia
Jodie Miller University of Queensland, Brisbane, Australia
Greg Oates University of Tasmania, Launceston, Tasmania, Australia
Ajay Ramful Mauritius Institute of Education, Moka, Mauritius
James Russo Monash University, Melbourne, Australia
Carly Sawatzki Deakin University, Melbourne, Australia
Duncan Symons The University of Melbourne, Melbourne, Australia
Sven Trenholm University of South Australia, Adelaide, Australia
Colleen Vale Monash University, Melbourne, Australia
Jana Visnovska The University of Queensland, Brisbane, Australia
Jennifer Way University of Sydney, Sydney, Australia
Jill Fielding Wells Australian Catholic University, Brisbane, Australia
Robert Whannell University of New England, Armidale, Australia
Geoff Woolcott Southern Cross University, Lismore, Australia

Keiko Yasukawa University of Technology Sydney, Ultimo, Australia

#### **List of Reviewers**

Judy Anderson

Robin Averill

Janette Bobis

Michael Cavanagh

Barbara Clarke

Lisa Darragh

Sue Dockett

Shelley Dole

Ann Downton

Cris Edmonds-Wathen

Vince Geiger

Peter Grootenboer

Greg Hine

Kathryn Holmes

**Bobbie Hunter** 

Tom Lowrie

Margaret Marshman

Tamsin Meaney

Jodie Miller

Tracey Muir

**Duncan Symons** 

Max Stephens

Dave Tout

Jenni Way

## Chapter 1 Research in Mathematics Education in Australasia 2016–2019



1

Janette Bobis, Jennifer Way, Catherine Attard, Judy Anderson, Heather McMaster, and Katherin Cartwright

**Abstract** In this chapter we present an introduction to the tenth volume in the review series *Research in Mathematics Education in Australasia*. MERGA's four-yearly reviews present critical analyses of research in mathematics education in Australasia over the preceding periods. Moreover, they serve to highlight significant enduring and emerging trends and forecast possible directions for future research in mathematics education. In this chapter, we provide a historical overview of the four-yearly review series, describe the current review's production process and briefly introduce the review's overall structure.

**Keywords** Research in mathematics education in Australasia  $\cdot$  RiMEA  $\cdot$  MERGA review

#### 1 Research in Mathematics Education in Australasia Review Series

The four-yearly reviews cover a wide cross-section of topics of research conducted in the Australasian region or by Australasian researchers abroad. Each review is

J. Bobis (🖾) · J. Way · J. Anderson · H. McMaster · K. Cartwright

University of Sydney, Sydney, Australia e-mail: janette.bobis@sydney.edu.au

J. Way

e-mail: jennifer.way@sydney.edu.au

J. Anderson

e-mail: judy.anderson@sydney.edu.au

H. McMaster

e-mail: heather.mcmaster@sydney.edu.au

K. Cartwright

e-mail: katherin.cartwright@sydney.edu.au

C. Attard

Western Sydney University, Sydney, Australia e-mail: c.attard@westernsydney.edu.au

© Springer Nature Singapore Pte Ltd. 2020

J. Way et al. (eds.), Research in Mathematics Education in Australasia 2016–2019, https://doi.org/10.1007/978-981-15-4269-5\_1 J. Bobis et al.

published to coincide with the International Congress on Mathematical Education (ICME) conference. The first volume was published in 1984 (Briggs, 1984) to coincide with ICME-5 in Adelaide. The next volume is to be published in 2024 and, significantly, will coincide with ICME-15, which will be held in Sydney, Australia. More so than ever, the current and next review will spotlight Australasian research on the global stage of mathematics education.

The Mathematics Education Research Group of Australasia (MERGA) is a professional association whose members are interested in mathematics education research in Australasia. It provides a range of opportunities for members to raise important issues in mathematics education and share research findings that speak to how these issues might be effectively addressed. A major goal of MERGA is to encourage, promote and disseminate quality research in mathematics education. This goal is partly fulfilled by an annual conference and the association's two journals—Mathematics Education Research Journal and Mathematics Teacher Education and Development. Additionally, RiMEA also plays a major role as it serves to highlight significant enduring and emerging trends and forecasts possible directions for future research in mathematics education in Australasia and internationally. In accordance with the guidelines of previous volumes of RiMEA, only Australasian research published as readily accessible outputs in the review period 2016–2019 is included in RiMEA 10. Rather than attempting an exhaustive review of all research outputs in this period, chapter authors were requested to be selective, to highlight noteworthy findings or trends in the research and to provide a critical perspective.

The term 'Australasia' primarily refers to Australia and New Zealand. However, as was the case for RiMEA 2012–2015, chapter authors of the current RiMEA were provided with a slightly broader context than was historically the case. This broader context reflects the increasingly significant presence of Singaporean researchers in MERGA. Hence, the regional context was described to chapter authors to be inclusive of:

... papers published in MERGA conference proceedings and articles published in MERGA journals by researchers from countries in the South Pacific and south-east Asian regions and with particular relevance to these regions should also be considered for inclusion in the review.

The current RiMEA was fashioned to be consistent with and maintain the high standard set by editors of previous volumes in the series. Previous RiMEAs and their editorial teams were:

- 2016—Makar, Dole, Visnovska, Goos, Bennison, and Fry
- 2012—Perry, Lowrie, Lodan, MacDonald, and Greenlees
- 2008—Forgasz, Barkatsas, Bishop, Clarke, Keast, Seah, and Sullivan
- 2004—Perry, Anthony, and Diezmann
- 2000—Owens and Mousley
- 1996—Atweh, Owens, and Sullivan
- 1992—Atweh and Watson
- 1988—Blane and Leder
- 1984—Briggs.

Although this review has been profoundly shaped by preceding volumes, it is important to note that the tone and substance of RiMEA is constantly evolving. This evolution is in part a reflection of events coinciding with each new review period as much as emerging trends in research foci. Notably, the current review period saw MERGA celebrate its 40th anniversary in 2017. Returning to Monash University, the site of our very first conference, the MERGA 40 conference organisers adopted the theme: 40 years on: We are still learning! The theme was chosen to acknowledge the significant contributions of MERGA researchers over the past 40 years and highlighted "the impact and importance of our collective research for enabling new learning, innovation, and critique of mathematics education for those in our region and beyond" (Gervasoni & Forgasz, 2017, p. 3). 'New learning' is also an apt description for the collective work in this 10th volume of RiMEA. Like MERGA 40, RiMEA 10 is not only a means to disseminate research findings and reflect on the lessons of the past, it is a celebration of our new learning that allows a growing audience of researchers and practitioners to think forward and imagine mathematics education research of the future.

#### 2 Editors and the Production Process

The current editorial team responded to a call for expressions of interest by the MERGA Executive to edit RiMEA 2016–2019 in the second half of 2017. The editors were then selected by the Executive from a pool of applicants. The current team comprises experienced and early career mathematics education researchers drawn from The University of Sydney and Western Sydney University. All editors are members of MERGA.

In February 2019 MERGA members were invited to submit an expression of interest to:

- lead a team of authors to write a chapter proposed by the editing team,
- suggest a chapter beyond those suggested by the editors, or,
- indicate an interest in joining a team of authors in one of the areas suggested by the editors.

In the call for chapter authors, it was requested that:

- Each chapter be written by a team of authors rather than an individual author,
- Author teams comprise experienced and early career researchers, and if possible, a blend of geographical diversity,
- All authors must be current MERGA members,
- Each individual author should only be involved in the writing of one chapter.

The result of this recruitment process was 11 author teams comprising 50 individual MERGA members. Final chapter topics eventually emerged from a blend of those originally proposed by the editorial team, those slightly modified by authoring teams and a few totally new topics proposed by authors to reflect emerging trends

J. Bobis et al.

in mathematics education research. Added to this collection of chapters and keeping with the tradition of past RiMEAs, editors of the previous RiMEA were invited to compose a reflective chapter (Chap. 2) and a distinguished member of the MERGA community was invited to write a concluding reflective chapter. Combined with this introductory chapter composed by the current editorial team, RiMEA 2016–2019 comprises 14 chapters and involved 57 MERGA members in writing teams.

Except for the authors of the first two introductory chapters and the final reflective chapter, author teams submitted detailed outlines of their chapters to the editors by early March 2019 and full drafts by early July 2019. Each chapter was sent to at least two experienced reviewers in the relevant field of the chapter. Members of the editorial team consolidated comments from reviewers into a report that was returned to author teams by early September. Final chapter drafts were submitted by the end of December 2019 and reviewed by independent members of the editorial team to ensure reviewers' comments were addressed. Final chapters were formatted and copyedited by Bronwyn Lacken, to whom we are grateful for working across the holiday period. Final revisions were undertaken by chapter authors as needed throughout January 2020.

A distinguishing feature of RiMEA 10 is the lack of sections whereby chapters are clustered according to common themes, as was the case in the past few volumes of RiMEA. Instead, we chose to foreground this review with two chapters that reflect emerging areas of research interest and strength for MERGA members—STEM (Science, Technology, Engineering and Mathematics) and numeracy. Following these two chapters are chapters that focus mostly on topics of enduring concern to mathematics education researchers. However, within each of these enduring topics of interest, each team of authors have successfully identified new research trends and foreshadowed new directions for future research.

#### 3 Concluding Comments and Acknowledgments

The editorial team consider it a great honour to have been bestowed the responsibility of creating the *Research in Mathematics Education in Australasia 2016–2019*. We hope that this volume, like so many RiMEAs before it, brings both pleasure and pride to all MERGA members as they read and reflect on the collective efforts of their colleagues. As editors we would like to express our gratitude to the MERGA Executive and members for their support throughout the making of this volume. Without the enormous support and generosity of time from all people involved—the researchers who forwarded copies of their work, author teams, reviewers, and the copy editor—this volume would not have been possible. We look forward to the next review of MERGA research, *Research in Mathematics Education in Australasia 2020–2023* that will be released to coincide with ICME-15 in Sydney, Australia.

#### References

Briggs, J. (Ed.). (1984). Summary of research in mathematics education in Australia. Brisbane: MERGA.

Gervasoni, A., & Forgasz, H. (2017). Preface. In A. Downton, S. Livy, & J. Hall (Eds.), *Proceedings of the 40th Annual Conference of the Mathematics Education Research Group of Australasia* (p. 3). Melbourne: MERGA.

**Janette Bobis** is Professor of Mathematics Education in the Sydney School of Education and Social Work, University of Sydney. Her research focuses on *teacher learning* in mathematics education, particularly regarding the development of primary and middle-school teachers' professional learning knowledge, beliefs and practices. Her current research project is exploring the impact on teachers and young students of curricula designed around sequences of challenging mathematical tasks

**Jennifer Way** is Associate Professor of Mathematics Education at the University of Sydney. Her work has focused on the development of conceptual understanding in problematic areas of mathematics learning for both teachers and students (early-years to middle-years), particularly regarding contextual factors such as digital technologies, and motivation and engagement. Current research projects are centred on the role of mathematical representation in conceptual understanding.

**Catherine Attard** is an Associate Professor (Mathematics Education) at Western Sydney University and Deputy Director of the Centre for Educational Research within the School of Education. Catherine's research interests focus on teachers' technology-related pedagogical practices, student engagement, teacher professional learning in mathematics, and financial literacy education. She is the co-author of *Technology-enabled mathematics education: Optimising student engagement* (2020).

**Judy Anderson** is Associate Professor in mathematics education at the University of Sydney, and Director of the STEM Teacher Enrichment Academy, an innovative professional learning program for primary and secondary school teachers. She has conducted research into preservice and practicing teachers' problem-solving beliefs and practices, and is currently managing a large scale mixed-methods research project in schools collecting evidence of change in STEM programs and practices from students, teachers, parents, and school leaders' perspectives.

**Heather McMaster** is a Scholarly Teaching Fellow at the University of Sydney. She teaches preservice primary school teachers in mathematics education, and has a research interest in identifying the motivation of final year undergraduates who specialise in mathematics leadership and want to continue this trajectory when they enter the teaching profession. Her research is also concerned with primary school students' developing understanding of measurement concepts and the intersection of the mathematics and science curricula in relation to these concepts.

**Katherin Cartwright** is a third year Ph.D. candidate researching in the area of mathematics teaching and learning in primary school years. Her focus is on teachers' understanding of mathematical fluency and the characteristics of fluency students display. Her Ph.D. extends the research commenced in her Master's study, *Exploring teachers' conceptions of mathematical fluency*. Cartwright is currently working as a sessional lecturer and tutor at the University of Sydney (2015–present), working with pre-service teachers in their Mathematics Education units of study in the primary undergraduate and Master of Teaching courses.

# Chapter 2 Looking Back and Taking Stock: Reflections on the MERGA Research Review 2012–2015



Katie Makar, Shelley Dole, Jana Visnovska, Merrilyn Goos, Anne Bennison, and Kym Fry

Abstract Since 2004, each edition of the MERGA Research Review has invited the previous editorial team to write a chapter that reflects on issues that have occurred since the last Review. As the editorial team for Research in Mathematics Education in Australasia 2012–2015 (RiMEA-9), we have followed suit. The reflection chapters often compare the current MERGA Review with the previous one. Given that this is the tenth MERGA Review, we have taken the opportunity to look further back from RiMEA-1 in 1984 until now (RiMEA-10). Like the previous Review, we also comment on how mathematics education research in Australasia is affected by new reforms that have occurred in the past four years. In particular, we examine the implications of recent changes in initial teacher education, STEM teaching and learning, and the assessment of research impact and engagement. We use these three areas of reform to reflect on how related issues projected in the chapters of the last review played out and urge mathematics education researchers to focus their research on implications of these reforms for the field.

**Keywords** MERGA history  $\cdot$  Research assessment  $\cdot$  STEM  $\cdot$  Teacher education reforms

K. Makar (⋈) · J. Visnovska · K. Fry

The University of Queensland, Brisbane, Australia

e-mail: k.makar@uq.edu.au

J. Visnovska

e-mail: j.visnovska@uq.edu.au

K. Fry

e-mail: k.fry1@uq.edu.au

S. Dole

University of the Sunshine Coast, Brisbane, Australia

e-mail: sdole@usc.edu.au

M. Goos

University of Limerick, Limerick, Ireland

e-mail: merrilyn.goos@ul.ie

A. Bennison

University of the Sunshine Coast, Sunshine Coast, Australia

e-mail: abenniso@usc.edu.au

© Springer Nature Singapore Pte Ltd. 2020

J. Way et al. (eds.), Research in Mathematics Education in Australasia 2016–2019, https://doi.org/10.1007/978-981-15-4269-5\_2 8 K. Makar et al.

#### 1 Introduction

As the editorial team of *Research in Mathematics Education in Australasia 2012–2015* (RiMEA-9, Makar, Dole, Visnovska, Goos, Bennison, & Fry, 2016), we continue the tradition of reflecting on the past four years in light of the chapters we edited in RiMEA-9. Former editors (RiMEA-8) Perry, MacDonald, Greenlees, Logan, and Lowrie (2016), saw the task of this chapter as being: "to reflect on the 4 years following the publication of this review, consider the directions the review foreshadowed and provide an overview of the context for the current review" (p. 14). We continued with their ethos in reflecting on the 17 chapters in RiMEA-9. Following the introductory chapter, Chaps. 2–16 were:

#### Issues and Contexts for Mathematics Education

- Reflections on the MERGA Research Review 2008–2011: Taking stock
- A philosophical gaze on Australasian mathematics education research
- Researching curriculum, policy and leadership in mathematics education
- Mathematics education and the affective domain
- Equity, social justice and ethics in mathematics education
- Inclusive practices in mathematics education
- Distribution, recognition and representation: Mathematics education and Indigenous students.

#### • Learning and Teaching

- Mathematics education in the early years
- Tertiary mathematics education
- Innovative and powerful pedagogical practices in mathematics education
- Assessment of mathematics learning: What are we doing?
- Transformations of teaching and learning through digital technologies
- Research into mathematical applications and modelling.

#### • Teacher Preparation and Development

- Challenges, reforms, and learning in initial teacher education
- The education and development of practising teachers.

The concluding Chap. 17, following tradition, was a reflection on the volume, and was written by an eminent MERGA scholar from a perspective of her choice. Lyn English (2016), winner of the 2012 MERGA Career Research Medal, authored the final chapter entitled *Advancing Mathematics Education Research within a STEM Environment*. English drew on the chapters in RiMEA-9 to forecast the future of STEM education, a significant initiative that deeply affects mathematics education in Australasia.

In this chapter, we first reflect on how MERGA Review chapters have highlighted research interests over time. The analysis of chapters and their authors in RiMEA-1 through RiMEA-10 provided insights into complexities of the drivers of our research

community. We also look at three policy issues that have emerged since RiMEA-9 with respect to the future that its chapters foretold. In particular, we (1) examine recent policies in New Zealand and Australia and their implications for initial teacher education, (2) question if mathematics education is sufficiently present within the STEM Agenda and (3) summarise how mathematics education research fared in the recent impact and engagement assessment conducted by the Australian Research Council.

#### 2 Looking Back at Previous Chapters in RiMEA

The current edition of *Research in Mathematics Education in Australasia 2016–2019* (RiMEA-10) is the tenth edition of the MERGA Research Review (as RiMEA is often referred to, or simply the "Review"). To have such an ongoing review of research in the field is rare. The Review series allows scholars to follow trends, trace patterns of research and their influences from and on educational policy in Australasia and gauge fruitful emerging areas of research. Authors of each chapter in the Review were asked to identify potential future directions of research based on their account of the research in the field in which they are reporting. Looking across editions of the Review, therefore, can give insight on where research momentum was moving, and if and how it meandered through time.

Authors of previous Reflection chapters have compared the chapters that they edited to the current Review. We take the opportunity in this tenth edition of the Review to look back a little further at the previous Reviews and comment on patterns we observed. A further gaze back is timely given that the impetus for the first Review was the opportunity of having the 1984 International Congress on Mathematical Education (ICME) held in Adelaide. Subsequent Reviews continue to coincide with ICME. Fittingly, the 2024 ICME will be held in Sydney when the 11th Review (RiMEA-11) will be launched forty years after MERGA's first Research Review.

The initial two volumes (1984 and 1988) did not yet have the spread of content chapters that is familiar to RiMEA readers today; but they provided annotated bibliographies and several topical review chapters to facilitate access to Australian research. RiMEA-3, published in 1992, was the first one with 'Australasia' in its title, and included references to mathematics education research from New Zealand. It was, however, not until RiMEA-5 that the first New Zealander appeared as a chapter co-author. This slow start to diversifying author teams is in considerable contrast to RiMEA practices of the recent Reviews, where half or more of the chapters are authored by international teams. The inclusion first of New Zealand, and later more international perspectives from the region, is a result of conscious commitments within the community. In 2008, RiMEA-7 editors explicitly defined Australasia and made a greater effort to include work of authors beyond Australia and New Zealand. Similar efforts have been since reflected in increasingly international composition of chapter author teams. Table 1 lists the number of chapters with at least one co-author

10 K. Makar et al.

|          | Year | Number of chapters | Number of chapters with at least one co-author from |                                  |
|----------|------|--------------------|-----------------------------------------------------|----------------------------------|
|          |      |                    | New Zealand                                         | Australasia (Non-AUS,<br>Non-NZ) |
| RiMEA-1  | 1984 | 5                  |                                                     |                                  |
| RiMEA-2  | 1988 | 5                  |                                                     |                                  |
| RiMEA-3  | 1992 | 13                 |                                                     |                                  |
| RiMEA-4  | 1996 | 16                 |                                                     |                                  |
| RiMEA-5  | 2000 | 12                 | 1                                                   |                                  |
| RiMEA-6  | 2004 | 16                 | 6                                                   |                                  |
| RiMEA-7  | 2008 | 16                 | 7                                                   |                                  |
| RiMEA-8  | 2012 | 16                 | 10                                                  |                                  |
| RiMEA-9  | 2016 | 17                 | 8                                                   | 3                                |
| RiMEA-10 | 2020 | 14                 | 7                                                   | 2                                |

 Table 1
 Authorship participation in Reviews across Australasia

from listed location, in comparison with the total number of chapters. (Authors affiliated only with a non-Australasian institution were not included in the counts, there were several from RiMEA-8 on.)

Returning to the structure of RiMEAs, reflections, trends, and/or future-oriented chapters became a stable presence in most of the volumes. Besides front and back matters chapters, we categorised chapters into several themes to gain a sense of changes in foci through different periods. The themes are presented in Fig. 1 and include:

- Focus on learners by age;
- Theoretical underpinnings of research;
- Educational issues;
- Teacher learning, pedagogies, practices;
- Systemic issues; and
- Mathematics domains and proficiencies.

In Fig. 1, each opaque coloured box represents a chapter, while semi-transparent coloured boxes illustrate a theme that was a substantial part in another chapter. This was most useful in capturing the structure of early volumes. For example, the 1988 annotated bibliography on *Psychology in Mathematics Education* included sections devoted to research on affect and exceptional students; the annotated bibliography on *Problem Solving* included substantial sections on research in algebra, geometry, and early arithmetic. In 2004, a chapter on *Learning to Teach Mathematics* predominantly discussed teacher education, but also included significant content related to in-service teacher professional development. Similarly, a chapter on *Social Justice and Sociocultural Perspectives in Mathematics Education* (2004) presented extensive

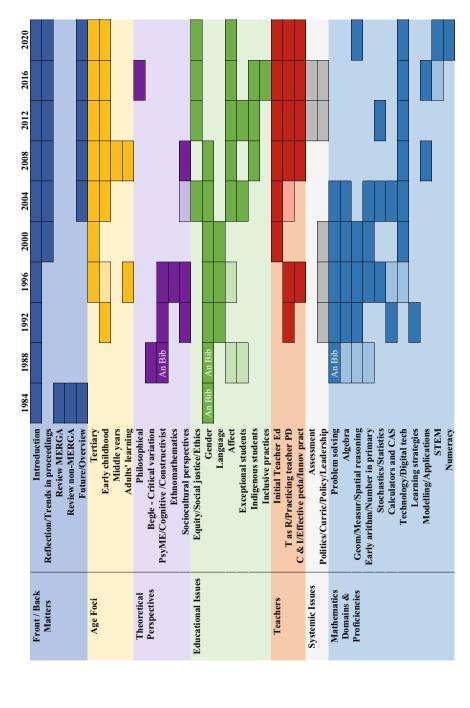



Fig. 1 Themes of MERGA Review chapters 1984-2020

12 K. Makar et al.

discussion of various themes within social justice agenda, and then somewhat more briefly addressed the underpinning theoretical matters within sociocultural theories.

It was not always obvious where a specific chapter fits best, or which sub-section deserved to be represented independently. In making the categorising and highlighting decisions, we were guided by the aim of illustrating developments that took place over time. For example, a chapter on sociocultural theories was included in 1992, was absent in 2000 (with chapters on gender and language carrying on some of the theoretical debates), then re-appeared in 2004 and more strongly in 2008, and was subsequently subsumed within specific educational issues of equity, social justice, and ethics (with independent chapters on gender, indigenous students, exceptional students, or inclusive practices, as the distinct debates were highlighted by editors).

A changing research climate is evident in other patterns. While learning theories production and justification remains important for research in educational settings, it is less commonly the distinguishing element in a study. As theoretical research results faced limitations when attempting to guide practice, in-depth explorations of those practices became research-worthy in their own right. Student learning was initially the primary target of research; yet over time, an increasing emphasis was evident on explorations of teaching. This transition of focus from learning to teaching appears to be well illustrated in how the blue block of mathematical domain chapters ceased dominance around the same time that the red block of teachers' work chapters became firmly established. In this transition, not only did new theoretical paradigms enter the scene, but pragmatic considerations gained legitimacy for researchers to study and work to improve practices in classrooms and schools. Early signs of this transition are evident in chapters like Teachers as Researchers (1992). While learning theories continue to provide tools for disciplined inquiry, the drive for advances within specific educational issues might have provided new organising principles along which research work is conducted and collated. As the Philosophical chapter (2016) reminds us, even when our theoretical underpinnings are specified, philosophical assumptions are more and more likely to remain unexplored and implicit.

Tightening of accountability measures in Australia and New Zealand swung funding priorities from basic (pure theoretical) towards more practice-oriented research (see Clarke et al., 2012; Clements, 2008). The shifts in the Review chapter themes from *learning theories* towards *specific educational issues* that emerged in early 2000s, and those from *learning* to *teaching* that followed closely, appear to follow these funding changes as well as being mirrored in recent policy commitments to research with demonstrable engagement and impact that we discuss in a later section. This historical overview of RiMEA chapters demonstrates that—perhaps with an advantage to other fields of research—the mathematics education community has long carried an appreciation for the pragmatic alongside the theoretical.

Another shift, discernible in the chapters on 'Mathematics Domains and Proficiencies', is the transition from mathematical domains (e.g., number, algebra, stochastics, geometry) to mathematics as activity (e.g., statistical and spatial reasoning, modelling, STEM, numeracy). Here the transition from conceptualising the key problems as being those of how mathematics is created by the human mind, to recognising

the need for addressing the problems of *how and why* mathematics might be created and sustained by collectives of problem-solvers appears highly relevant. Similar shifts can be imagined within the broader context of STEM disciplines. Approaches to teaching and learning of mathematics, science, engineering, and technology as both products of human inventiveness, and purposeful creations capable of addressing problems that humanity faces are highly consistent with the directions apparent across the Reviews. We later discuss the extent to which this is the direction taken up in recent policies regarding STEM.

The four chapters—two on assessment (2012, 2016) and two on curriculum/policy issues (2012, 2016)—are examples of how chapters in RiMEA can be prompted by policy changes. On the one hand, both assessment chapters deal with issues around NAPLAN and international tests (how high stakes accountability testing should not be the only/main focus, or how could NAPLAN become more meaningful in face of curricular goals) at the time when these became influential, and NAPLAN started shaping teaching practices. The two curriculum chapters, on the other hand, are both very strongly shaped by introduction of new curricula in Australia and New Zealand. Here, the 2012 chapter is about how the curricula were developed and 2016 more about how to think about, and research, the relationships among curriculum, policy, and leadership, especially in the space of 'bringing' the official curriculum to shape the operational curriculum effectively.

In interpreting the table, it is useful to note that it does not speak to the individual research foci taken up by the researchers in Australasia. Instead, it is useful to view the chapters as those topics where the critical mass of researchers existed at the time and was overt enough, or organised enough, that (1) a group of chapter authors was formed to propose or undertake the chapter and (2) the editorial team recognised the theme as both a significant contribution and as sufficiently different from other proposals to be accepted. The cases of statistical reasoning (2012) and spatial reasoning (2020) chapters are instructive in that regard. In spite of the seeming 'disappearance' of mathematical-domain-focused chapters, the chapters were formed around a mathematical content theme when a sizeable productive *community* of researchers existed, on which the chapter would draw. For instance, Australian and New Zealand researchers were instrumental in the work of the International Collaboration for Research on Statistical Reasoning, Thinking, and Literacy, but also in the Modelling and Applications community, each of which organise bi-annual domain-specialised international conferences. Similarly, a recent completion of a large Australian project (e.g., ELSA) on spatial reasoning generated the core of the chapter contributions.

We do not take the change in chapter foci as indicating that there is no longer interest in researching content domain learning. But where do the researchers with strong focus on a specific mathematical content domain send their work for consideration when the chapter themes are announced? It is very likely that they are oriented by the number of issues, including the pedagogical approaches used, modes of delivery, or a specific policy framing that was relevant to how the research study was framed (e.g., equity, numeracy, STEM). In this way, the shifts in the Review chapter themes might illustrate that drawing on existing insights into mathematical learning allows researchers to attend to additional problems of practice.

#### **3** Reflection on Three Policy Developments

Since the previous review, new policy developments have occurred that impact the research landscape in mathematics education. We focus on three of these—initial teacher education, STEM teaching and learning, and recent assessment of research impact and engagement—in relation to the previous MERGA Research Review. Initial teacher education reforms were also highlighted in the Perry et al. (2016) reflection chapter, highlighting how this area of work has been under constant scrutiny by policymakers. We encourage readers to compare policy developments in initial teacher education from their chapter and how they have continued to change in our reflection below. We recognise that the Closing the Gap initiative, which Perry et al. included in their reflection chapter, is missing from ours. Perry and his colleagues commented on the slow progress made on this initiative in Australia. We found developments slowed even further, leaving little to report. Better progress on similar initiatives in New Zealand is discussed below within initial teacher education. Researchers in mathematics education have been actively urging governments to take action, as outlined in the chapters in this volume.

#### 3.1 Initial Teacher Education

Australia and New Zealand have each had new policies affecting initial teacher education (ITE). We briefly reflect on these policies, referencing the 2016 MERGA Review (2012–2015). Implications of teacher accreditation were also addressed as an issue within the political landscape in Australia and New Zealand in the last reflection on the MERGA Research Review (Perry et al., 2016).

In a review of the existing ITE system, the New Zealand Education Council (2016) made a number of recommendations to guide the ongoing development of ITE. The recommendations spanned entry requirements, program design and accreditation, and system-wide management issues. The Education Council described the change: "[the] area of specification and assessment of outcomes from ITE is the most important long-term step it can take to strengthen the ITE system" (p. 11). From 1 July 2019, new requirements governing the approval, monitoring and review of ITE programs were introduced (Teaching Council, 2019). Standards for graduating teachers have been aligned with the Standards for the Teaching Profession (Education Council, 2017) and ITE providers must demonstrate how programs enable pre-service teachers to meet each standard in a supported environment. Interpretation of the standards extends beyond the elaborations of the Standards and includes consideration of Tātaiako cultural competencies (Ministry of Education, 2011) and Tapasā cultural "compass" (Ministry of Education, 2018) to ensure graduating teachers develop culturally responsive teaching practices that address the learning needs of students from Māori and Pasifika backgrounds, respectively. There is also a strong emphasis on

demonstrating how programs enable graduates to develop inclusive teaching practices that cater for the diverse learning needs of all students, especially those from disadvantaged backgrounds and those with additional learning needs.

In their chapter in the previous MERGA review, Vale, Atweh, Averill, and Skourdoumbis (2016) noted that in many ITE programs issues of equity, social justice and ethics are dealt with in general education courses and suggest that these issues should be an integral part of all mathematics education courses. The limited research in Australasia during the previous review period on how ITE programs can support teachers to develop mathematics teaching practices that cater for diversity (Anthony, Cooke, & Muir, 2016) may reflect the lack of attention to such issues in mathematics education courses. Research is needed to assist ITE providers to design courses that enable pre-service teachers to develop inclusive practices for teaching mathematics.

A recent review was extended to the provision of compulsory schooling in New Zealand (Tomorrow's Schools Independent Taskforce, 2018) and identified a number of system-wide challenges that the current system of self-governing schools is struggling to address. In the report, authors made recommendations on eight key issues they believe need to be addressed: governance, schooling provision, competition and choice, disability and learning support, teaching, school leadership, school resourcing and central education agencies. It is unclear at this stage which of the recommendations will be adopted. However, the findings and recommendations of this review are likely to influence the content of New Zealand's Initial Teacher Education programs. It is promising to see that inclusion is a vital part of the vision for education in New Zealand. The Australasian mathematics education community looks forward to learning about this progress in the coming years.

The advent of the Australian Professional Standards for Teachers occurred in 2012 as Australia progressed towards nationally consistent accreditation of initial teacher education programs aligned with the standards. The Teacher Education Ministerial Advisory Group's (2014) position paper, entitled *Action Now: Classroom Ready Teachers—Report of the Teacher Education Ministerial Advisory Group* (now commonly referred to as the TEMAG Review), was addressed in relation to new entry requirements into initial teacher education programs associated with personal levels of literacy and numeracy. A test to measure literacy and numeracy of aspiring teachers was developed by the Australian Council for Educational Research (ACER).

The TEMAG Review has had a major impact in the last four years on initial teacher education programs in Australia, and it is predicted that this will continue. A rationale for TEMAG was to raise the profile of the teaching profession in the eyes of the public (Bahr, 2016). It appeared to level blame for Australian students' falling literacy and numeracy standards, as measured on international assessments such as TIMSS and PISA, on the poor preparation of graduate teachers, and by default, the institutions that prepare teachers. The release of the latest PISA 2018 results, and Australia's slippage in mathematics in particular, will continue to put pressure on improving the preparation and development of mathematics teachers. The media continue to highlight low tertiary admission scores for entry to initial teacher education (ITE), publishing league tables of the cut-off scores of post-year 12 students who are offered places into education by higher education providers (HEPs) across

the country. The test for measuring literacy and numeracy (referred to as LANTITE—Literacy and Numeracy Test for Initial Teacher Education) is now fully implemented in all Australian initial teacher education programs. HEPs can elect to use this test as an entry requirement into ITE programs, or as a requirement for graduation. The ACER website states that "the test standard is literacy and numeracy achievement equivalent to the top 30% of the Australian adult population" (ACER, 2019). As with annual results of Australia's National Assessment Plan Literacy and Numeracy (NAPLAN) test results, the Australian media continues to sensationalise results of LANTITE and the literacy and numeracy of teacher graduates. Interestingly, there is no equivalent to Australia's national literacy and numeracy testing policy for ITE providers in New Zealand. Rather, institutions must have entry testing which reflects university entrance of literacy and numeracy requirements and HEPs must provide their assessment tools as part of the ITE programme approval process (Teaching Council, 2019).

We highlight Anthony and her colleagues' (2016) chapter in the previous Review to remind the mathematics education community of the value of examining the ongoing impact of policy associated with initial teacher education and on the field. For example, Anthony et al. reported that changes in New Zealand had resulted in two HEPs offering only postgraduate ITE programs. Pre-service teachers' numeracy, preparation for teaching both numeracy and mathematics, as well as pedagogical content knowledge has been the focus of research, as reported in the previous review period. Anthony et al.'s caveat was associated with the complexity of measuring pre-service teachers' preparedness for teaching numeracy and mathematics, and the issue of pre-service teacher confidence and enjoyment of mathematics, which was the focus of work by Young-Loveridge, Bicknell, and Mills (2012) for New Zealand pre-service primary teachers. Their exploration of initial teacher education from a mathematics education perspective spanned teacher preparation and accountability, effectiveness and policies; teacher preparation for the knowledge society, and included studies associated with curriculum, opportunities to learn within coursework, designing opportunities to learn in school settings, the continuum of teacher learning; and teacher preparation for social justice. Anthony et al. offered valuable insights into what the mathematics education community can offer and where it needs to continue to build strength:

The politicised attention to teacher preparation and the press to institute reforms will not abate in the near future...we must build on the existing large-scale studies concerning mathematics teacher entry and graduating knowledge/testing to address concerns around accountability, equity, and access for teacher candidates. (p. 321)

They end their review by highlighting the large-scale national Australian project *Inspiring Mathematics and Science in Teacher Education* (see Goos & Bennison, 2018), which they state

provides an example of collaboration between academics from different communities of practice ... [that] bodes well for the opportunity for mathematics teacher educators to open up their practice, to share their practice, and learn in, from and for practice. Only then will mathematics teacher educators be able to experience the benefits of a learning community of practice that we so readily advocate for teacher and student learning. (p. 321)

The mathematics education community has a strong history of research into initial teacher education as attested through the richness of Anthony et al.'s (2016) chapter in the previous RiMEA. The impact of national Australian policy associated with literacy and numeracy standards, and specifically the LANTITE, is a potential focus of research for the mathematics education community to improve the policy land-scape in ITE. With respect to recent developments and future RiMEA chapters, we find it possible that attention to measures introduced to assess pre-service teachers would lead to return of the chapter on assessment in 2024 in this context. Would these policies impact our teaching lives and push us to develop stronger research-based arguments and advocacy in this space? The implications of measures on the upcoming generations of teachers of mathematics would be worth documenting.

#### 3.2 STEM Agenda 2016–2026

The National STEM Agenda 2016–2026 (Education Council, 2015) endorsed by the Australian Ministers of Education set out the priorities for the next decade in building Australian students' STEM (Science, Technology, Engineering and Mathematics) capabilities. The report argued that "STEM literacy is increasingly becoming part of the core capabilities that Australian employers need" (p. 4) as a critical driver of the future national economy. The Agenda set out goals, actions and principles to guide future initiatives undertaken by the Commonwealth. Activity in STEM has been present for a number of years, but recent momentum has accelerated. For example, the ELSA project (Lowrie & Logan, 2019) addresses STEM learning in early years. At the policy level, Toh, Kaur, and Tay (2019) outlined Singapore's response to STEM in updating the national mathematics curriculum and Anthony (2018) suggested that recent funding of research in mathematics education in Australia, New Zealand and Singapore are likely linked to government interests in STEM. Despite challenges (Timms, Moyle, Weldon, & Mitchell, 2018), the STEM Agenda is an opportunity for the mathematics education community to do more to connect to STEM initiatives in schools.

In the final chapter of the previous Review, English (2016) expressed the critical importance in mathematics education for greater connection to the STEM movement at both school and university level. Members of the MERGA community have indeed published on STEM policy and practice since the last Review and a new chapter that reviews research on STEM is given in the current Review (see Chap. 3, this Volume). Murphy, Macdonald, Danaia, and Wang (2019) examined state-level versions of the STEM agenda across the areas of STEM capabilities—STEM dispositions, STEM educational practices, Equity, Trajectories, and Educator capacities. It is concerning that they found little focus in the research on STEM dispositions and improving equity access to STEM (see Prieto & Dugar, 2017; Wilkie & Tan, 2019). Focused on the "rising premium on skills in STEM" (p. 1), Prinsley and Johnston (2015) from Australia's Office of the Chief Scientist outlined a position paper on STEM teaching in the primary schools. In its short report, the paper lists dozens of STEM

18 K. Makar et al.

initiatives and case studies that progress STEM teaching in primary schools. Within these, one key project in mathematics education has been *reSolve: Maths by Inquiry* (2015–2018, www.resolve.edu.au).

The reSolve project was a \$7.4M partnership between the Australian Academy of Science and the Australian Association of Mathematics Teachers, funded by the Australian Government to develop a large set of classroom resources, online professional development and to organise 300+ "Champions" in schools to build capacity and scale the use of inquiry-based learning in mathematics. reSolve is driven by a protocol that emphasises mathematics as purposeful, with inclusive and challenging tasks, and a productive classroom culture that embraces higher-order thinking, collaborative inquiry and dispositions that support productive struggle and confidence to take intellectual risks (Thornton, 2017). The reSolve project ensured that its products were significantly linked to the Australian Curriculum: Mathematics for Years F-10 (particularly Mathematical Proficiencies, which are often overlooked) and to the AITSL Australian Professional Standards for Teachers. These connections were intended to ensure that the curriculum and professional development were explicitly linked to teachers' professional work. The project has ended, but an additional \$1M in funding to 2020 was provided to continue promoting and updating the resources. reSolve is a significant initiative that the mathematics education community can capitalise on to further mathematics education reform, and highlight the potential contribution of mathematics education within the STEM agenda.

If policymakers, like the public, see mathematics as no more than fluency in number facts, there is little opportunity for them to see how mathematics connects to the STEM agenda. As national governments across the world see jobs of the future coming from STEM areas, there is an emphatic rise in funding initiatives focused on STEM. A recent report on 69 STEM initiatives being funded in 2018 by the Australian and state governments confirms the millions of dollars being spent on these projects, with only nine of them focused specifically on mathematics (Education Council, 2019). Panizzon and Corrigan (2017) analysed the 2016 STEM Program Index (SPI) listing published by Australia's Chief Scientist of 250 active STEM programs catering to schools and students. Only 36 of these included explicit mention of mathematics. Because innovation and entrepreneurship had been identified as recognised drivers of the economy, the authors sought to investigate the extent to which STEM promoted these and other valued characteristics. In their summary table, the contrast was striking in comparing particular characteristics to their appearance in the SPI for STEM, science and mathematics (a few of which are listed in Table 2). The table speaks to a number of areas highly valued by STEM that have been adopted in science to some extent but not in mathematics. The entries that did include mathematics were almost exclusively listed under "STEM content" (characterised by 33 of 36 programs), with "Motivation" as the second most common characteristics listed in the 36 mathematics programs (12 programs). Because SPI are funded projects, it emphasises that in some areas, innovations in mathematics teaching and learning are not being included in the national STEM conversation.

Much of the work we do in mathematics education contributes to the development of STEM, including the applications of particular curriculum content, pedagogy and

**Table 2** Selection of characteristics in the 2016 STEM Program Index (Panizzon & Corrigan, 2017)

| Characteristic       | STEM | Mathematics | Science |
|----------------------|------|-------------|---------|
| Communication        | 4    | 0           | 10      |
| Creativity           | 12   | 2           | 6       |
| Critical thinking    | 3    | 0           | 3       |
| Curiosity            | 0    | 0           | 1       |
| Entrepreneurship     | 2    | 0           | 0       |
| Independent thinking | 2    | 0           | 1       |
| Innovation           | 12   | 0           | 1       |
| Inquiry              | 13   | 2           | 9       |

assessment. However, English (2016) argued that there is a danger within STEM that mathematics is being overlooked or sidelined, with most of the emphasis placed on science, digital technologies (including coding) and engineering, possibly because policymakers cannot envisage how mathematics could fit into their futures agenda. She advocated for more work in statistics, problem solving and modelling as places where mathematics can continue to raise its profile. These three areas foster generic, as well as mathematics-specific skills and processes that are significantly needed in STEM, yet under-developed in many mathematics classrooms. English concluded her chapter with four recommendations that are critical for the mathematics education community to engage meaningfully with the STEM agenda:

- seeking to raise the profile of mathematics in STEM through statistics, modelling and problem-solving
- capitalising on and extending national assessment items that build on rich mathematical experiences
- emphasising twenty-first century skills in mathematics: creativity and innovation, critical thinking and problem-solving, and communication and collaboration
- connecting to and engaging with mathematics related to computational thinking and coding (pp. 366–368).

These recommendations create useful avenues for the mathematics education research community to continue to connect with the international push for STEM education. We anticipate that they will orient both international research agendas broadly, and Australasian research agendas within the period leading to RiMEA-11.

#### 3.3 Assessment of Research Impact and Engagement

In December 2015, as part of its *National Innovation and Science Agenda*, the Australian government announced the development of a national assessment of research engagement and impact. The Australian Research Council (ARC) and the Department of Education and Training (DET) released an *Engagement and Impact Assessment Consultation Paper* in May 2016 to seek feedback from stakeholders on how this

20 K. Makar et al.

assessment should be undertaken (ARC & DET, 2016). Subsequently a pilot study of research engagement and impact was conducted in 2017, and in 2018 the inaugural Engagement and Impact Assessment (EI2018) was implemented as a companion exercise to Excellence in Research for Australian (ERA).

The ARC Consultation Paper drew on the definition used by the Academy of Technological Sciences and Engineering to develop metrics for Australian universities' research engagement. Engagement was defined as:

the interaction between researchers and research organisations and their larger communities/industries for the mutually beneficial exchange of knowledge, understanding and resources in a context of partnership and reciprocity. (ATSE, 2015)

However, the *Consultation Paper* noted that metrics, which are largely based on research commercialisation income and patents, may not capture the complexity of some forms of research engagement.

The Australian Research Council defines research impact as:

the demonstrable contribution that research makes to the economy, society, culture, national security, public policy or services, health, the environment, or quality of life, beyond contributions to academia. (ARC, 2012)

While noting that there were no clearly defined indicators for research impact, the Consultation Paper referred to peer reviewed case studies—similar to those reported in the UK REF exercise—as being an appropriate means of assessment. Nevertheless, it was acknowledged that full case studies are expensive to produce. As a compromise, a template was developed for impact case studies that requested a short summary of the impact; a list of beneficiaries and countries in which the impact occurred; a narrative that clearly outlined the research impact, especially the impact made beyond academia with specific reference to appropriate evidence; and a description of the research that led to the impact. They also required an extended explanation of the "approach to impact", demonstrating how the university putting up the case study had facilitated the research to seek and attain its impact.

Altogether 38 of Australia's 40 universities submitted engagement and impact case studies in Education (FoR13; *El 2018 Institution Report*). Of these, 21 were rated as demonstrating "high" for engagement (12 of 38), impact (17 of 38) and/or approach to impact (5 of 38). According to the rating scale used in the assessment (see https://dataportal.arc.gov.au/EI/NationalReport/2018/pages/introduction/index. html?id=ei-rating-scales), those so rated were characterised by:

- **highly effective interactions** between researchers and research end-users outside of academia for the mutually beneficial transfer of knowledge, technologies, methods and resources and research engagement that is **well integrated** into the development and ongoing conduct of research within the unit of assessment;
- having made a **highly significant contribution** beyond academia, with a clear link between the associated research and the impact was demonstrated.

Four of the high-impact case studies were in mathematics education: *Transforming mathematics education in preschool and primary school contexts* (Macquarie