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Preface

The growing demand for electric energy storage has prompted many 
researchers to pursue advanced replacement batteries. Zinc-ion bat-
teries have attracted widespread attention as a viable alternative to the 
lithium-ion batteries that dominate the market. Zinc is the 4th most 
abundant metal in the world, which can help to increase the popular-
ity of electric vehicles (EVs) by diminishing the cost of the vehicles. 
Theoretically, a zinc battery possesses five times the energy density of a 
lithium battery. Primary Zn-air batteries were first introduced and com-
mercialized in the 1930s. Since then, companies like Evercel, Fluidic 
Energy, Z-Power, EOS, Zinc Five, ZnR Batteries, ZAF, Zinium, etc., have 
patented and commercialized zinc-based battery solutions. However, 
Fluidic energy is currently producing reversible Zn-air technology. 
Zn-based batteries are preferred among all other metal-air batteries 
because of their salient features like low cost, lightweight, scale up, high 
energy density, safer battery technology, and environmental friend-
liness. These rechargeable batteries are very important rising  energy 
storage systems because of their usability in portable electronic devices, 
grid management, and electric vehicles.

Zinc Batteries: Basics, Developments, and Applications is intended as 
a discussion of the different zinc batteries for energy storage applica-
tions. It also provides an in-depth description of various energy storage 
materials for Zn batteries. This book is an invaluable reference guide 
for electrochemists, chemical engineers, students, faculty, and R&D 
professionals in energy storage science, material science, and renewable 
energy. Based on thematic topics, the book contains the following four-
teen chapters:

Chapter 1 details the various types of carbon structures used for the devel-
opment of the zinc-ion battery (ZB). The major focus is on the ultimate 
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design of ZBs using carbon to enhance oxygen reduction reaction for the 
better performance of ZBs. 

Chapter 2 elucidates the different zinc batteries for energy-storage applica-
tions. The structure of a zinc battery is discussed. Also, the anode and cath-
ode materials of zinc-carbon, zinc-cerium, and zinc–bromine batteries are 
highlighted for energy storage applications.

Chapter 3 discusses the fundamentals of zinc batteries and their scope of 
improvement by presence of metal additives like nickel and cobalt to pre-
pare them as futurist batteries on a large scale. It focuses on their work-
ing, advantages and disadvantages, and the outlook and prospects of metal 
additives–based zinc batteries.

Chapter 4 focuses on how manganese-based material for Zn batteries will 
exhibit extensive properties for future use. 

Chapter 5 discusses the different types of electrolytes, such as aqueous, 
nonaqueous, solid polymer and biopolymer electrolytes that are used 
in Zn-ion batteries. Additionally, it also highlights the different types of 
advancements in the electrolytes and recently reported electrolytes for the 
Zn-ion batteries.

Chapter 6 discusses zinc-ion batteries, their types and storage mecha-
nisms. Several anodes for zinc-ion batteries with different morphologies 
and nanostructures are discussed and analyzed.  A glimpse of the future of 
zinc-ion batteries is also discussed.

Chapter 7 discusses the cathode materials for zinc-air batteries. It also dis-
cusses the cathode definition, zinc cathode structure, non-valuable materi-
als for cathode electrocatalytic, electrochemical specifications of activated 
carbon as a cathode, electrochemical evaluation of cathode substances 
La1-xCaxCoO3 zinc batteries and introduction of the other important syn-
thesized cathode for zinc-air batteries.

Chapter 8 provides an up-to-date overview of research efforts on vari-
ous zinc anode coatings to improve the stability of the charging cycle and 
design a new and improved zinc anode for increasing the battery energy 
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efficiency and its lifetime. The challenges and problems facing zinc anodes 
of electrically rechargeable zinc-air batteries are discussed. 

Chapter 9 discusses the basic principle and types of zinc-based batteries, 
along with their environmental effects. A detail discussion is presented 
on safety- related issues.  Further, disposal and recycling methods are also 
highlighted.

Chapter 10 overviews the basic principles and developments of zinc-air 
batteries. This chapter elaborates on the public specifications, zinc-air 
electrode chemical reaction, zinc/air battery construction, primary Zn/
Air Batteries, principles of configuration and operation of Zn/air batteries, 
developments in electrical fuel Zn/Air batteries and Zn/air versus metal/
air systems.

Chapter 11 covers the widespread study of the history and advance-
ments identified with Zinc batteries. Further, challenges confronting the 
advancement of new Zinc batteries are featured, along with future research 
viewpoints.

Chapter 12 discusses the effects of electrolyte selection, different electro-
lyte types, and anode selection on the inherent characteristics of the elec-
trolyte, in rechargeable zinc-air batteries. Broad categories of electrolytes, 
e.g., acidic or alkaline electrolytes, polymers, and ionic liquids are investi-
gated in this chapter with focus on the performance enhancement of zinc 
batteries by the proper electrolyte selection.

Chapter 13 overviews different issues associated with the zinc electrode. 
Safety, storage, handling, influences and disposal/recycling of zinc batter-
ies are also discussed. The primary focus is given on the impacts on the 
ecological system. 

Chapter 14 deals with the functioning principle and expansion of the 
nickel-zinc battery. The active material for nickel zinc batteries is a good 
approach to refining the life cycle of the nickel zinc battery. This chapter 
also includes different types of active material for a better life cycle in nickel 
zinc battery. The applications of nickel-zinc battery are also discussed.



xvi Preface

Key Features 

• Coverage on basic research and application approaches
• Explores challenges and future directions of Zn-based 

batteries
• Elaborates extensive properties of Zn batteries electrodes for 

future use
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Carbon Nanomaterials for Zn-Ion Batteries
Prasun Banerjee1*, Adolfo Franco Jr2, Rajender Boddula3,  

K. Chandra Babu Naidu1 and Ramyakrishna Pothu4

1Department of Physics, Gandhi Institute of Technology and Management 
(GITAM) University, Bangalore, India

2Institute of Physics, Federal University of Goiás, Goiânia, Brazil
3CAS Center for Excellence in Nanoscience, National Center for Nanoscience and 

Technology, Beijing, China
4College of Chemistry and Chemical Engineering, Hunan University, Changsha, China

Abstract
The development of the zinc-ion battery (ZB) hindered due to the problem asso-
ciated with the suitability of its design especially on the catalyst and electrodes 
parts. Modified surface of carbon can enhance oxygen reduction reaction signifi-
cantly for the catalytic performances. An ultimate design of ZBs should contain 
proper synthesis along with a precursor-like nitrogen with carbon-metal support 
for enhanced performances of ZBs. Electrodes formed with N-doped carbon fiber 
network with Co4N NPs not only provide high current density but also flexibil-
ity to ZBs. The ORR of ZBs can also be increased by using the N-doped carbon 
nanofiber (NCN). The enhancement of OER/ORR activity has been observed by 
coupling NiCo2S4 nanocrystals with nitrogen-doped carbon nanotubes (N-CNT/
NiCo2S4) for electrocatalyst applications in ZBs. P and S co-doped C3N4 sponge 
with C nanocrystal (P-S-CNS) demonstrated good OER and ORR activity. 
The OER and ORR performance can also be enhanced with the use of carbon 
nanosheets because of its greater surface area. The morphology and the porous 
structure in the N-rGO/NC cathode surface OER and ORR activity in ZBs. 

Keywords: Zinc-ion battery, carbon, nanocomposites, oxygen-reduction, 
oxygen-evolution

*Corresponding author: prasun.banerjee@gitam.edu
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2 Zinc Batteries

1.1 Introduction

The demand of storage energy especially without depending much on fos-
sil fuels has been accelerated recent years with the progress in the battery 
field technologies [1–7]. The use of lithium undoubtedly makes it the leader 
in this sector. But, for the sake of electric vehicles (EVs), the use of lithium 
increase the cost many folds which is one of the reasons of unpopularity 
of EVs in the consumer vehicle market [8, 9]. In these sense, zinc, the 4th 
abundant metal in the world, can help to increase the popularity of the EVs 
by diminishing the cost the vehicles [10]. Theoretically, the zinc battery (ZB) 
possesses five times the energy density with respect to the lithium batteries. 
Hence, they are much more superior to that of its lithium counterpart both 
theoretically as well as economically. Despite of all this the advantages of ZB 
technology, its development highly hindered due to the problem associated 
with the suitability of its design especially on the catalyst and electrodes parts 
[11]. Modified surface of carbon can enhance oxygen reduction reaction 
significantly for the catalytic performances [12]. Hence, an ultimate design 
should contain proper synthesis along with a precursor-like nitrogen with 
carbon-metal support for enhanced performances of ZBs. 

1.2 Co4N (CN) - Carbon Fibers Network (CFN) - 
Carbon Cloth (CC)

Electrodes formed with N-doped carbon fiber network with Co4N NPs 
shown in Figure 1.1 [13]. Meng et al. observed enhanced catalytic perfor-
mances of CN/CFN/CC as an electrode in ZBs [13]. The following design 
not only provides 1 mA cm−2 current density but also flexible nature to ZBs 
in contrast to the conventional metal electrodes. The design can withstand 
408 cycles with 1.09-V discharge-charge gap at 50 mA per cm2 with 20 h of 
retention of current density. Moreover, the flexible nature of the ZBs makes 
it a perfect power source for a wide range of wearable portable devices.

1.3 N-Doping of Carbon Nanofibers

The ORR of ZBs can enhance with the N-doped carbon nanofiber (NCN) as 
shown in Figure 1.2 [14]. Here, large surface area as well as the exposure of 
the NCNs increased the ORR activity. The use of NCNs can surpass the peak 
power density of available platinum/carbon catalyst of magnitude 192 mW 
cm−2 to by using NCNs in ZBs with a new magnitude of 194 mW cm−2 [14].  
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4 Zinc Batteries

Moreover, the superiority of NCNs can also helps to achieve better electron 
numbers and hydrogen peroxide yields than that of the platinum/carbon 
catalyst. 

1.4 NiCo2S4 on Nitrogen-Doped Carbon Nanotubes

The enhancement of OER/ORR activity has been observed by Han et al. 
by coupling NiCo2S4 nanocrystals with nitrogen-doped carbon nano-
tubes (N-CNT/NiCo2S4) for electrocatalyst applications in ZBs [15]. The 
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N-CNT/NiCo2S4. Reprint with the permission from Reference [15]. Copyright 2017, Elsevier.



Carbon Nanomaterials for Zn-Ion Batteries 5

reversibility, stability, and bifunctional activity as shown in Figure 1.3 were 
up to the level of well-known metal catalysts performances. More positive 
cathode potential has been observed for N-CNT/NiCo2S4 in compression 
to its counterpart. Hence, this new design with carbon composites along 
with chalcogenides enables better performances for the ZBs. 

1.5 3D Phosphorous and Sulfur Co-Doped C3N4 
Sponge With C Nanocrystal

P and S co-doped C3N4 sponge with C nanocrystal (P-S-CNS) demon-
strated good OER at 10 mA per cm2 current density with 1.56 V. The ORR 
activity also enhanced up to 7 mA cm−2 with 1-V potential [16]. Figure 
1.4 also showed that the power density with the use of P-S-CNS in ZBs 
can reach up to 200 mW per cm2 at 200 mA per cm2 current density. Not 
only that, it can provide emf of 1.5 V at a specific capacitance of around  
830 mAh per g1. The energy density also can reach up to 970 Wh per kg1 at 
5 mA per cm2 current density. The reversibility and stability also enhances 
up to 500 cycles. Hence, the use of P-S-CNS in place of precious metals 
indeed demonstrates a cleaner and greener way of storage devices with 
respect to the conventional batteries. 
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1.6 2D Carbon Nanosheets

The larger surface area of 1,050 m2 per g of the nanosheets of carbon indeed 
makes it suitable for the application of the ZBs [17]. Figure 1.5 shows the 
SEM images of the 2D structure of the nanosheets. The OER and ORR per-
formance can be enhanced with the use of carbon nanosheets because of 
its greater surface area which increase the oxygen absorption and enhance 
the catalytic activities in many folds. The platinum/carbon galvanic dis-
charge voltage 1.2 V of current density of 5 mA per cm2 can be achievable 
using the carbon nanosheets in ZBs. Hence, the competitive performances 
with the low cost of production indeed make it a suitable choice to use in  
the ZBs. 

1.7 N-Doped Graphene Oxide With NiCo2O4

Graphene oxide with N-doped along with NiCo2O4 (N-rGO/NC) can be 
used as another stable cathode electrode for the ZBs applications [18]. The 
flower-like structure of the N-rGO/NC is shown in Figure 1.6. The flower- 
like structure helps to obtain 4-V plateau in the charge profile whereas 

(a) (b)

(c) (d)

2 µm 500 nm

2 µm 500 nm

Figure 1.5 SEM images of 2D carbon nanosheets. Reprint with the permission from 
Reference [17]. Copyright 2015, RSC.
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the plateau is situated around 2.6 V for the discharge profile. The capacity  
of the ZBs with the use of N-rGO/NC cathode can reach up to 7,000 mAh 
g−1 till 35 h. The morphology and the porous structure in the N-rGO/NC 
cathode surface help better flow of oxygen which enhances the OER and 
ORR activity. 

1.8 Conclusions

In summary, the development of the zinc-ion battery (ZB) hindered due 
to the problem associated with the suitability of its design especially on 
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Figure 1.6 SEM, TEM, and XRD N-rGO/NC. Reprint with the permission from Reference 
[18]. Copyright 2017, RSC.
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the catalyst and electrodes parts. Modified surface of carbon can enhance 
oxygen reduction reaction significantly for the catalytic performances. 
An ultimate design of ZBs should contain proper synthesis along with a 
precursor-like nitrogen with carbon-metal support for enhanced perfor-
mances of ZBs. For example, electrodes formed with N-doped carbon fiber 
network with Co4N NPs not only provide 1 mA cm−2 current density but 
also flexibility to ZBs. The ORR of ZBs can also increase with N-doped 
carbon nanofiber (NCN). The enhancement of OER/ORR activity has 
been observed by coupling NiCo2S4 nanocrystals with nitrogen-doped car-
bon nanotubes (N-CNT/NiCo2S4) for electrocatalyst applications in ZBs.  
P and S co-doped C3N4 sponge with C nanocrystal (P-S-CNS) demon-
strated good OER 10 mA per cm2 current density with 1.56 V. The ORR 
activity also enhanced up to 7 mA cm−2 with 1-V potential. The OER 
and ORR performance can be enhanced with the use of carbon nanosheets 
because of its greater surface area which increase the oxygen absorption 
and enhance the catalytic activities in many folds. The morphology and 
the porous structure in the N-rGO/NC cathode surface help better flow of 
oxygen which enhances the OER and ORR activity in the ZBs. 
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