ZINC BATTERIES BASICS, DEVELOPMENTS, and APPLICATIONS

Edited by Rajender Boddula, Inamuddin, & Abdullah M. Asiri

WILEY

Zinc Batteries

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Zinc Batteries

Basics, Developments, and Applications

Edited by Rajender Boddula, Inamuddin and Abdullah M. Asiri

This edition first published 2020 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2020 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-66189-4

Cover image: Pixabay.com Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pı	eface	2	xiii					
1	Car	bon Nanomaterials for Zn-Ion Batteries	1					
	Pra	sun Banerjee, Adolfo Franco Jr, Rajender Boddula,						
	<i>K</i> . (Chandra Babu Naidu and Ramyakrishna Pothu						
	1.1	Introduction	2					
	1.2	Co₄N (CN) - Carbon Fibers Network (CFN) -						
		Carbon Cloth (CC)	2					
	1.3	N-Doping of Carbon Nanofibers	2					
	1.4	NiCo ₂ S ₄ on Nitrogen-Doped Carbon Nanotubes	4					
	1.5	3D Phosphorous and Sulfur Co-Doped C ₃ N ₄ Sponge						
		With C Nanocrystal	5					
	1.6	2D Carbon Nanosheets	6					
	1.7	N-Doped Graphene Oxide With NiCo ₂ O ₄	6					
	1.8	Conclusions	7					
		Acknowledgements	8					
		References	8					
2	Construction, Working, and Applications of Different							
	Zn-Based Batteries							
	G. I D. I	Canjith Kumar, K. Chandra Babu Naidu, D. Baba Basha, Prakash Babu, M.S.S.R.K.N. Sarma, Ramyakrishna Pothu,						
	and	Rajender Boddula						
	2.1	Introduction	12					
	2.2	History	13					
	2.3	Types of Batteries	14					
		2.3.1 Primary Battery	14					
		2.3.2 Secondary Battery	14					
	2.4	Zinc-Carbon Batteries	18					
	2.5	Zinc-Cerium Batteries	19					
	2.6	Zinc-Bromine Flow Batteries	20					
		References	21					

vi Contents

3	Nickel and Cobalt Materials for Zn Batteries							
	Son	al Singh, Rishabh Sharma and Manika Khanuja						
	3.1	Introduction						
	3.2	Zinc Batteries						
	3.3	Nickel-Zinc Battery	27					
		3.3.1 History	27					
		3.3.2 Basics	28					
		3.3.3 Materials and Cost	30					
		3.3.4 Reliability	30					
		3.3.5 Voltage Drop	30					
		3.3.6 Performance	31					
	3.4	Advantages	31					
	3.5	Challenges	32					
	3.6	Effect of Metallic Additives, Cobalt and Zinc,						
		on Nickel Electrode	32					
	3.7	Conclusion	33					
		References	34					
4	Manganese-Based Materials for Zn Batteries							
	S. R	amesh, K. Chandrababu Naidu, K. Venkata Ratnam,						
	H. Manjunatha, D. Baba Basha and A. Mallikarjauna							
	4.1	Introduction	37					
	4.2	History of the Zinc and Zinc Batteries						
	4.3	Characteristics of Batteries						
		4.3.1 Capacity	41					
		4.3.2 Current	41					
		4.3.3 Power Density	41					
	4.4	.4 MN-Based Zn Batteries						
	4.5	Conclusion	44					
		References	47					
5	Elec	ctrolytes for Zn-Ion Batteries	51					
	Praveen Kumar Yadav, Sapna Raghav, Jyoti Raghav							
	and	S. S. Swarupa Tripathy						
	5.1	Introduction						
	5.2	Electrolytes for Rechargeable Zinc Ion Batteries (RZIBs)	53					
		5.2.1 Aqueous Electrolytes (AqEs)	54					
		5.2.1.1 Pros and Cons of AEs	55					
		5.2.1.2 Neutral or Mildly Acidic Electrolytes	58					
		5.2.2 Non-Aqueous Electrolytes	59					
		5.2.2.1 Solid Polymer Electrolytes	60					

			5.2.2.2	Hydrogel or Gel Electrolytes	61
			5.2.2.3	Gel Polymer Electrolytes	63
		5.2.3	Ionic Lie	uid Electrolytes	63
		5.2.4	Bio-Elec	trolyte	65
	5.3	Sumn	nary	•	65
		Abbre	viation Ta	able	66
		Ackno	owledgme	ents	66
		Refere	ences		67
6	Ano	de Ma	terials for	Zinc-Ion Batteries	73
	Muł	iamma	d Mudass	sir Hassan, Muhammad Inam Khan,	
	Abd	ur Rah	im and N	awshad Muhammad	
	6.1	Introc	luction		73
	6.2	Storag	ge Mechan	nism	75
	6.3	Zinc-1	Ion Batter	y Anodes	77
	6.4	Future	e Prospect	ts	81
	6.5	Concl	usion		81
		Refere	ences		82
7	Catl	node M	laterials f	or Zinc-Air Batteries	85
	Seye	deh M	aryam Mo	ousavi and Mohammad Reza Rahimpour	
	7.1	Introc	luction		85
		7.1.1	Cathode	Definition	86
	7.2	Zinc (Cathode S	tructure	87
	7.3	Non-	Valuable N	Materials for Cathode Electrocatalytic	89
	7.4	Electr	ochemica	l Specifications of Activated Carbon	
		as a C	athode		92
		7.4.1	Electroch	hemical Evaluation of Cathode	
			Substanc	$\cos La_{1-X}Ca_{x}CoO_{3}$ Zinc Batteries	92
	7.5	Extrei	mely Dura	able and Inexpensive Cathode Air Catalyst	93
		7.5.1	$Co_{3}O_{4}/N$	Ino ₂ NPs Dual Oxygen Catalyst as	
			Cathode	for Zn-Air Rechargeable Battery	94
		7.5.2	Carbon 1	Nanotubes (CNT) Employing Nitrogen	
			as Cataly	vst in the Zinc/Air Battery System	94
		7.5.3	Magnesi	um Oxide NPs Modified Catalyst for the	
			Use of A	ir Electrodes in Zn/Air Batteries	94
		7.5.4	Silver-M	agnesium Oxide Nanocatalysts as Cathode	
			for Zn-A	ir Batteries	95
		7.5.5	One-Step	Preparation of C-N Ni/Co-Doped Nanotube	
			Hybrid a	s Outstanding Cathode Catalysts for	
			Zinc-Air	Batteries	95

	7.6	Hierarchical Co ₃ O ₄ Nano-Micro Array With Superior Working Characteristics Using Cathode Ray on Pliable						
		and R	echargea	ble Battery	96			
	7.7	Dual	Function	Oxygen Catalyst Upon Active Iron-Based				
		Zn-A	ir Rechar	geable Batteries	97			
		7.7.1	Co ₄ N ar	nd NC Fiber Coupling Connected to a				
			Free-Acting Binary Cathode for Strong, Efficient,					
			and Plia	ble Air Batteries	98			
	7.8	Conc	lusion		98			
		Nome	enclature		99			
		Refer	ences		99			
8	And	ode Ma	terials fo	r Zinc-Air Batteries	103			
	Abb	as Gha	reghashi	and Ali Mohebbi				
	8.1	Intro	luction		104			
	8.2	Zinc	Anodes		105			
		8.2.1	Downsi	zing of Zn Anodes	106			
		8.2.2	Design	of Membrane Separators	107			
		8.2.3	The Use	of ZnO Instead of Zn	108			
		8.2.4	Increase	e of Surface Area in Zn Anode Structure	110			
		8.2.5	Coating	jot Zn Anode	111			
			8.2.5.1	Bismuth Oxide-Based Glasses	112			
			8.2.5.2	Silica	114			
			8.2.5.3	Carbon Nanotubes	115			
			8.2.5.4	ZnU@C	116			
			8.2.5.5	Zn-Al LDHs	116			
			8.2.5.6	ZnO@C-ZnAI LDHs	118			
			8.2.5.7	Tapioca	119			
	0.2	Const	8.2.5.8		122			
	8.3	Conc	lusions		123			
		Refer	ences		124			
9	Safe	ety and	Environ	mental Impacts of Zn Batteries	131			
	Sau	rabh Sl	harma, A -	bhishek Anand, Amritanshu Shukla				
	and	Atul S	harma					
	9.1	Intro	duction		131			
	9.2	Work	ing Princ	iple of Zinc-Based Batteries	132			
		9.2.1	Zinc-Ai	r Batteries Basic Principle and Advances	133			
		9.2.2	Zinc Or	ganic Polymer Batteries	135			
		9.2.3	Zinc-Io	n Batteries	137			
			9.2.3.1	Zinc-Silver Batteries	137			

		9	0.2.3.2	Zinc-Nickel Batteries	138	
		9	9.2.3.3	Zinc-Manganese Battery	140	
	9.3	Batteries	s: Enviro	onment Impact, Solution, and Safety	141	
		9.3.1 D	Disposal	of Batteries and Environmental Impact	143	
		9.3.2 R	Recycling	g of Zinc-Based Batteries	143	
	9.4	Conclus	sion		146	
		Acknow	ledgem	ent	147	
		Reference	ces		147	
10	Basi	cs and D	evelopn	nents of Zinc-Air Batteries	151	
	Seye	edeh Mar	yam Mo	ousavi and Mohammad Reza Rahimpour		
	10.1	Introdu	uction		151	
		10.1.1	Public	Specifications	151	
	10.2	Zinc-A	ir Elect	rode Chemical Reaction	153	
	10.3	Zinc/A	ir Batte	ry Construction	154	
	10.4	Primar	ry Zn/Ai	ir Batteries	157	
	10.5	Princip	ples of C	onfiguration and Operation	159	
	10.6	Develo	opments	in Electrical Fuel Zn/Air Batteries	161	
		10.6.1	Zn/Ai	r Versus Metal/Air Systems	161	
	10.7	Conclu	ision		162	
		Referei	nces		164	
11	History and Development of Zinc Batteries					
	Pall	avi Jain,	Sapna H	Raghav, Ankita Dhillon and Dinesh Kumar		
	11.1	Introduction				
	11.2	Basic C	Concept		169	
		11.2.1	Comp	onents of Batteries	169	
		11.2.2	Classif	fication of Batteries	171	
			11.2.2.	1 Primary Batteries	171	
			11.2.2.	2 Secondary or Rechargeable		
		0 11 0		Batteries (RBs)	171	
	11.3	Cell O _j	peration		172	
		11.3.1	Proces	s of Discharge	172	
	114	11.3.2	Proces	s of Charge	172	
	11.4	History				
	11.5	Differe	ent Type	s of Zinc Batteries	1/4	
		11.5.1	Zinc-(Larbon Batteries	1/4	
		11.5.2	$L \ln c/I$	vianganese Oxide Batteries	174	
			(AIKal	me Danemes)	1/4	
		1152	Zincle	ilvan Ovida Pattany	174	

		11.5.4	Zn-Air (Zn-O ₂) Batteries		176	
			11.5.4.1	Mechanically Rechargeable Batteries		
				(Zn-O ₂ Batteries)	177	
			11.5.4.2	Electrically Rechargeable Batteries		
				$(Zn-O_2 Batteries)$	178	
		11.5.5	Hybrid Z	n-O ₂ Batteries	178	
			11.5.5.1	Hybrid Zn-Ni/O ₂ Batteries	178	
			11.5.5.2	Hybrid Zn-Co/O ₂ Batteries	179	
		11.5.6	Aqueous	Zinc-Ion Rechargeable Batteries	180	
			11.5.6.1	Zn ²⁺ Insertion/Extraction Mechanism	180	
			11.5.6.2	Chemical Conversion Mechanism	180	
			11.5.6.3	H ⁺ and Zn ²⁺ Insertion/Extraction		
				Mechanism	181	
	11.6	Future	Perspective	es	181	
	11.7	Conclu	ision		182	
		Abbrev	viations		182	
		Acknow	wledgemen	t	183	
		Referer	nces		183	
12	Elect	rolytes f	or Zinc-Ai	r Batteries	187	
		Farmani, Mohammad Amin Sedghamiz,				
	Zahra	a Farma	ni, Mohan	ımad Amin Sedghamiz,		
	Zahra and N	a Farma Aohamn	ni, Mohan nad Reza R	umad Amin Sedghamiz, Cahimpour		
	Zahra and N 12.1	a Farma Aohamn Introdu	n i, Mohan nad Reza R action	umad Amin Sedghamiz, Cahimpour	187	
	Zahra and M 12.1 12.2	a Farma Iohamn Introdu Aqueou	a ni, Moham nad Reza R action us Electroly	amad Amin Sedghamiz, Pahimpour Ptes	187 188	
	Zahra and N 12.1 12.2	a Farma Iohamn Introdu Aqueou 12.2.1	a ni, Moham nad Reza R action us Electroly Alkaline I	amad Amin Sedghamiz, Cahimpour Ptes Electrolytes	187 188 189	
	Zahra and N 12.1 12.2	a Farma Johamn Introdu Aqueou 12.2.1	ni, Moham nad Reza R action us Electroly Alkaline I 12.2.1.1	amad Amin Sedghamiz, Cahimpour Prtes Electrolytes Dissolution of Zinc in Alkaline Systems	187 188 189 189	
	Zahra and M 12.1 12.2	a Farma Iohamm Introdu Aqueou 12.2.1	ni, Moham nad Reza R action us Electroly Alkaline I 12.2.1.1 12.2.1.2	amad Amin Sedghamiz, Cahimpour Ptes Electrolytes Dissolution of Zinc in Alkaline Systems Insoluble Carbonates Precipitation	187 188 189 189 192	
	Zahra and M 12.1 12.2	a Farma Iohamm Introdu Aqueou 12.2.1	mi, Moham mad Reza R action us Electroly Alkaline I 12.2.1.1 12.2.1.2 12.2.1.3	amad Amin Sedghamiz, Cahimpour Ptes Electrolytes Dissolution of Zinc in Alkaline Systems Insoluble Carbonates Precipitation Effect of Water	187 188 189 189 192 193	
	Zahra and M 12.1 12.2	a Farma Iohamm Introdu Aqueou 12.2.1	ni, Moham nad Reza R action us Electroly Alkaline I 12.2.1.1 12.2.1.2 12.2.1.3 12.2.1.4	amad Amin Sedghamiz, cahimpour etes Electrolytes Dissolution of Zinc in Alkaline Systems Insoluble Carbonates Precipitation Effect of Water Hydrogen Evolution	187 188 189 189 192 193 194	
	Zahra and M 12.1 12.2	a Farma Iohamm Introdu Aqueou 12.2.1	<i>mi, Moham</i> <i>nad Reza R</i> action us Electroly Alkaline I 12.2.1.1 12.2.1.2 12.2.1.3 12.2.1.4 Neutral E	amad Amin Sedghamiz, Cahimpour Pres Electrolytes Dissolution of Zinc in Alkaline Systems Insoluble Carbonates Precipitation Effect of Water Hydrogen Evolution lectrolytes	187 188 189 189 192 193 194 195	
	Zahra and M 12.1 12.2	a Farma Johamm Introdu Aqueou 12.2.1 12.2.2 12.2.2	mi, Moham nad Reza R action us Electroly Alkaline I 12.2.1.1 12.2.1.2 12.2.1.3 12.2.1.4 Neutral E Acidic Ele	amad Amin Sedghamiz, Cahimpour Ptes Electrolytes Dissolution of Zinc in Alkaline Systems Insoluble Carbonates Precipitation Effect of Water Hydrogen Evolution lectrolytes ectrolytes	187 188 189 192 193 194 195 196	
	Zahra and M 12.1 12.2 12.3	a Farma Johamm Introdu Aqueou 12.2.1 12.2.2 12.2.3 Electro	mi, Moham nad Reza R action us Electroly Alkaline I 12.2.1.1 12.2.1.2 12.2.1.3 12.2.1.4 Neutral E Acidic Ele	amad Amin Sedghamiz, Cahimpour Petes Electrolytes Dissolution of Zinc in Alkaline Systems Insoluble Carbonates Precipitation Effect of Water Hydrogen Evolution lectrolytes ectrolytes n-Aqueous	187 188 189 192 193 194 195 196 197	
	Zahra and M 12.1 12.2 12.3	<i>a Farma</i> <i>Iohamm</i> Introdu Aqueou 12.2.1 12.2.2 12.2.3 Electro 12.3.1	mi, Moham nad Reza R action us Electroly Alkaline I 12.2.1.1 12.2.1.2 12.2.1.3 12.2.1.4 Neutral E Acidic Ele lytes of No Non-Aqu	amad Amin Sedghamiz, cahimpour rtes Electrolytes Dissolution of Zinc in Alkaline Systems Insoluble Carbonates Precipitation Effect of Water Hydrogen Evolution lectrolytes ectrolytes en-Aqueous eous Electrolytes	187 188 189 192 193 194 195 196 197 199	
	Zahra and M 12.1 12.2 12.3 12.3	a Farma Introdu Aqueou 12.2.1 12.2.2 12.2.3 Electroo 12.3.1 Summa	mi, Moham nad Reza R action us Electroly Alkaline I 12.2.1.1 12.2.1.2 12.2.1.3 12.2.1.4 Neutral E Acidic Ele lytes of No Non-Aqu	amad Amin Sedghamiz, Cahimpour Pres Electrolytes Dissolution of Zinc in Alkaline Systems Insoluble Carbonates Precipitation Effect of Water Hydrogen Evolution lectrolytes ectrolytes n-Aqueous eous Electrolytes	187 188 189 192 193 194 195 196 197 199 203	
	Zahra and M 12.1 12.2 12.3 12.3	12.2.2 12.2.3 Electro 12.3.1 Summa	mi, Moham nad Reza R action us Electroly Alkaline I 12.2.1.1 12.2.1.2 12.2.1.3 12.2.1.4 Neutral E Acidic Ele lytes of No. Non-Aqu	amad Amin Sedghamiz, Cahimpour Petes Electrolytes Dissolution of Zinc in Alkaline Systems Insoluble Carbonates Precipitation Effect of Water Hydrogen Evolution lectrolytes ectrolytes n-Aqueous eous Electrolytes	187 188 189 192 193 194 195 196 197 199 203 206	
13	Zahra and M 12.1 12.2 12.3 12.3 Secur	12.2.2 12.2.3 Electro 12.3.1 Summa Referen	mi, Moham nad Reza R action us Electroly Alkaline I 12.2.1.1 12.2.1.2 12.2.1.3 12.2.1.4 Neutral E Acidic Ele lytes of No Non-Aqu ary nces rage, Hand	amad Amin Sedghamiz, Cahimpour Ptes Electrolytes Dissolution of Zinc in Alkaline Systems Insoluble Carbonates Precipitation Effect of Water Hydrogen Evolution lectrolytes ectrolytes n-Aqueous eous Electrolytes	187 188 189 192 193 194 195 196 197 199 203 206	
13	Zahra and M 12.1 12.2 12.3 12.3 Secur and L	12.2.2 12.2.3 Electro 12.3.1 Summa Referen	mi, Moham mad Reza R action us Electroly Alkaline I 12.2.1.1 12.2.1.2 12.2.1.3 12.2.1.3 12.2.1.4 Neutral E Acidic Ele lytes of No Non-Aqu ary aces rage, Hand /Recycling	amad Amin Sedghamiz, Cahimpour Petes Electrolytes Dissolution of Zinc in Alkaline Systems Insoluble Carbonates Precipitation Effect of Water Hydrogen Evolution lectrolytes ectrolytes n-Aqueous eous Electrolytes ling, Influences of Zinc Batteries	 187 188 189 192 193 194 195 196 197 199 203 206 215 	
13	Zahra and M 12.1 12.2 12.3 12.3 Secur and E Manj	a Farma Johamm Introdu Aqueou 12.2.1 12.2.2 12.2.3 Electro 12.3.1 Summa Referen :ity, Ston Disposal <i>uYadav</i>	mi, Moham nad Reza R action us Electroly Alkaline I 12.2.1.1 12.2.1.2 12.2.1.3 12.2.1.4 Neutral E Acidic Ele lytes of No. Non-Aqu ary nces rage, Hand /Recycling and Dines	amad Amin Sedghamiz, Cahimpour Pres Electrolytes Dissolution of Zinc in Alkaline Systems Insoluble Carbonates Precipitation Effect of Water Hydrogen Evolution lectrolytes ectrolytes en-Aqueous eous Electrolytes ling, Influences of Zinc Batteries h Kumar	 187 188 189 192 193 194 195 196 197 199 203 206 215 	
13	Zahra and M 12.1 12.2 12.3 12.3 12.3 Secur and I Manj 13.1	A Farma Johamm Introdu Aqueou 12.2.1 12.2.2 12.2.3 Electro 12.3.1 Summa Referen Fity, Stor Disposal u Yadav Introdu	mi, Moham nad Reza R action us Electroly Alkaline I 12.2.1.1 12.2.1.2 12.2.1.3 12.2.1.4 Neutral E Acidic Ele lytes of No Non-Aqu ary nces rage, Hand /Recycling and Dines action	amad Amin Sedghamiz, Cahimpour Antes Electrolytes Dissolution of Zinc in Alkaline Systems Insoluble Carbonates Precipitation Effect of Water Hydrogen Evolution lectrolytes ectrolytes ectrolytes n-Aqueous eous Electrolytes ling, Influences of Zinc Batteries h Kumar	 187 188 189 192 193 194 195 196 197 199 203 206 215 	

		13.2.1	Modificat	tions for Improving Performance	218
			13.2.1.1	High Surface Area	218
			13.2.1.2	Carbon-Based Electrode Additives	221
			13.2.1.3	Discharge-Capturing Electrode	
				Additives	221
			13.2.1.4	Electrode Coatings	222
			13.2.1.5	Electrolyte Additives	222
			13.2.1.6	Heavy-Metals Electrode Additive	222
			13.2.1.7	Polymeric Binders	223
		13.2.2	Storage a	nd Handling	224
	13.3	Influen	ice of Zinc	Battery	224
		13.3.1	Consump	otion of Natural Resources	225
		13.3.2	Toxicity of	of Batteries to Humans	226
		13.3.3	Toxicity of	of Batteries to the Aquatic Environment	226
	13.4 Disposal/Recycling Options		ng Options	227	
	Acknowledgement				228
		Referen	nces		228
14	Mate	rials for	Ni-Zn Bat	teries	235
	Vaisk	iali Tom	ar and Dir	esh Kumar	
	14.1	Introdu	uction		235
		14.1.1	Function	ing Principles of Nickel-Zinc Battery	237
		14.1.2	Ni-Zn Ba	ttery Design	238
	14.2	4.2 Expansion of Ni-Zn Battery		Zn Battery	239
		14.2.1	Active M	aterials for the Battery	240
	14.3	Applica	cation		
	14.4	Conclu	lusion		
		Acknowledgement			243
	References				243
In	dex				249

Preface

The growing demand for electric energy storage has prompted many researchers to pursue advanced replacement batteries. Zinc-ion batteries have attracted widespread attention as a viable alternative to the lithium-ion batteries that dominate the market. Zinc is the 4th most abundant metal in the world, which can help to increase the popularity of electric vehicles (EVs) by diminishing the cost of the vehicles. Theoretically, a zinc battery possesses five times the energy density of a lithium battery. Primary Zn-air batteries were first introduced and commercialized in the 1930s. Since then, companies like Evercel, Fluidic Energy, Z-Power, EOS, Zinc Five, ZnR Batteries, ZAF, Zinium, etc., have patented and commercialized zinc-based battery solutions. However, Fluidic energy is currently producing reversible Zn-air technology. Zn-based batteries are preferred among all other metal-air batteries because of their salient features like low cost, lightweight, scale up, high energy density, safer battery technology, and environmental friendliness. These rechargeable batteries are very important rising energy storage systems because of their usability in portable electronic devices, grid management, and electric vehicles.

Zinc Batteries: Basics, Developments, and Applications is intended as a discussion of the different zinc batteries for energy storage applications. It also provides an in-depth description of various energy storage materials for Zn batteries. This book is an invaluable reference guide for electrochemists, chemical engineers, students, faculty, and R&D professionals in energy storage science, material science, and renewable energy. Based on thematic topics, the book contains the following fourteen chapters:

Chapter 1 details the various types of carbon structures used for the development of the zinc-ion battery (ZB). The major focus is on the ultimate

xiv Preface

design of ZBs using carbon to enhance oxygen reduction reaction for the better performance of ZBs.

Chapter 2 elucidates the different zinc batteries for energy-storage applications. The structure of a zinc battery is discussed. Also, the anode and cathode materials of zinc-carbon, zinc-cerium, and zinc-bromine batteries are highlighted for energy storage applications.

Chapter 3 discusses the fundamentals of zinc batteries and their scope of improvement by presence of metal additives like nickel and cobalt to prepare them as futurist batteries on a large scale. It focuses on their working, advantages and disadvantages, and the outlook and prospects of metal additives–based zinc batteries.

Chapter 4 focuses on how manganese-based material for Zn batteries will exhibit extensive properties for future use.

Chapter 5 discusses the different types of electrolytes, such as aqueous, nonaqueous, solid polymer and biopolymer electrolytes that are used in Zn-ion batteries. Additionally, it also highlights the different types of advancements in the electrolytes and recently reported electrolytes for the Zn-ion batteries.

Chapter 6 discusses zinc-ion batteries, their types and storage mechanisms. Several anodes for zinc-ion batteries with different morphologies and nanostructures are discussed and analyzed. A glimpse of the future of zinc-ion batteries is also discussed.

Chapter 7 discusses the cathode materials for zinc-air batteries. It also discusses the cathode definition, zinc cathode structure, non-valuable materials for cathode electrocatalytic, electrochemical specifications of activated carbon as a cathode, electrochemical evaluation of cathode substances $La_{1-x}Ca_{x}CoO_{3}$ zinc batteries and introduction of the other important synthesized cathode for zinc-air batteries.

Chapter 8 provides an up-to-date overview of research efforts on various zinc anode coatings to improve the stability of the charging cycle and design a new and improved zinc anode for increasing the battery energy efficiency and its lifetime. The challenges and problems facing zinc anodes of electrically rechargeable zinc-air batteries are discussed.

Chapter 9 discusses the basic principle and types of zinc-based batteries, along with their environmental effects. A detail discussion is presented on safety-related issues. Further, disposal and recycling methods are also highlighted.

Chapter 10 overviews the basic principles and developments of zinc-air batteries. This chapter elaborates on the public specifications, zinc-air electrode chemical reaction, zinc/air battery construction, primary Zn/ Air Batteries, principles of configuration and operation of Zn/air batteries, developments in electrical fuel Zn/Air batteries and Zn/air versus metal/ air systems.

Chapter 11 covers the widespread study of the history and advancements identified with Zinc batteries. Further, challenges confronting the advancement of new Zinc batteries are featured, along with future research viewpoints.

Chapter 12 discusses the effects of electrolyte selection, different electrolyte types, and anode selection on the inherent characteristics of the electrolyte, in rechargeable zinc-air batteries. Broad categories of electrolytes, e.g., acidic or alkaline electrolytes, polymers, and ionic liquids are investigated in this chapter with focus on the performance enhancement of zinc batteries by the proper electrolyte selection.

Chapter 13 overviews different issues associated with the zinc electrode. Safety, storage, handling, influences and disposal/recycling of zinc batteries are also discussed. The primary focus is given on the impacts on the ecological system.

Chapter 14 deals with the functioning principle and expansion of the nickel-zinc battery. The active material for nickel zinc batteries is a good approach to refining the life cycle of the nickel zinc battery. This chapter also includes different types of active material for a better life cycle in nickel zinc battery. The applications of nickel-zinc battery are also discussed.

xvi Preface

Key Features

- Coverage on basic research and application approaches
- Explores challenges and future directions of Zn-based batteries
- Elaborates extensive properties of Zn batteries electrodes for future use

Editors Rajender Boddula Inamuddin Abdullah M. Asiri

Carbon Nanomaterials for Zn-Ion Batteries

Prasun Banerjee^{1*}, Adolfo Franco Jr², Rajender Boddula³, K. Chandra Babu Naidu¹ and Ramyakrishna Pothu⁴

¹Department of Physics, Gandhi Institute of Technology and Management (GITAM) University, Bangalore, India ²Institute of Physics, Federal University of Goiás, Goiânia, Brazil ³CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China ⁴College of Chemistry and Chemical Engineering, Hunan University, Changsha, China

Abstract

The development of the zinc-ion battery (ZB) hindered due to the problem associated with the suitability of its design especially on the catalyst and electrodes parts. Modified surface of carbon can enhance oxygen reduction reaction significantly for the catalytic performances. An ultimate design of ZBs should contain proper synthesis along with a precursor-like nitrogen with carbon-metal support for enhanced performances of ZBs. Electrodes formed with N-doped carbon fiber network with Co₄N NPs not only provide high current density but also flexibility to ZBs. The ORR of ZBs can also be increased by using the N-doped carbon nanofiber (NCN). The enhancement of OER/ORR activity has been observed by coupling NiCo₂S₄ nanocrystals with nitrogen-doped carbon nanotubes (N-CNT/NiCo₂S₄) for electrocatalyst applications in ZBs. P and S co-doped C₃N₄ sponge with C nanocrystal (P-S-CNS) demonstrated good OER and ORR activity. The OER and ORR performance can also be enhanced with the use of carbon nanosheets because of its greater surface area. The morphology and the porous structure in the N-rGO/NC cathode surface OER and ORR activity in ZBs.

Keywords: Zinc-ion battery, carbon, nanocomposites, oxygen-reduction, oxygen-evolution

^{*}Corresponding author: prasun.banerjee@gitam.edu

Rajender Boddula, Inamuddin and Abdullah M. Asiri (eds.) Zink Batteries: Basics, Developments, and Applications, (1–10) © 2020 Scrivener Publishing LLC

2 ZINC BATTERIES

1.1 Introduction

The demand of storage energy especially without depending much on fossil fuels has been accelerated recent years with the progress in the battery field technologies [1-7]. The use of lithium undoubtedly makes it the leader in this sector. But, for the sake of electric vehicles (EVs), the use of lithium increase the cost many folds which is one of the reasons of unpopularity of EVs in the consumer vehicle market [8, 9]. In these sense, zinc, the 4th abundant metal in the world, can help to increase the popularity of the EVs by diminishing the cost the vehicles [10]. Theoretically, the zinc battery (ZB) possesses five times the energy density with respect to the lithium batteries. Hence, they are much more superior to that of its lithium counterpart both theoretically as well as economically. Despite of all this the advantages of ZB technology, its development highly hindered due to the problem associated with the suitability of its design especially on the catalyst and electrodes parts [11]. Modified surface of carbon can enhance oxygen reduction reaction significantly for the catalytic performances [12]. Hence, an ultimate design should contain proper synthesis along with a precursor-like nitrogen with carbon-metal support for enhanced performances of ZBs.

1.2 Co₄N (CN) - Carbon Fibers Network (CFN) -Carbon Cloth (CC)

Electrodes formed with N-doped carbon fiber network with Co_4N NPs shown in Figure 1.1 [13]. Meng *et al.* observed enhanced catalytic performances of CN/CFN/CC as an electrode in ZBs [13]. The following design not only provides 1 mA cm⁻² current density but also flexible nature to ZBs in contrast to the conventional metal electrodes. The design can withstand 408 cycles with 1.09-V discharge-charge gap at 50 mA per cm² with 20 h of retention of current density. Moreover, the flexible nature of the ZBs makes it a perfect power source for a wide range of wearable portable devices.

1.3 N-Doping of Carbon Nanofibers

The ORR of ZBs can enhance with the N-doped carbon nanofiber (NCN) as shown in Figure 1.2 [14]. Here, large surface area as well as the exposure of the NCNs increased the ORR activity. The use of NCNs can surpass the peak power density of available platinum/carbon catalyst of magnitude 192 mW cm⁻² to by using NCNs in ZBs with a new magnitude of 194 mW cm⁻² [14].

Figure 1.1 (a) Steps of Synthesis, (b)–(d) SEM images, (e) XRD, (f) TEM images and (g) EDS of CN/CFN/CC electrodes. Reprint with the permission from Reference [13]. Copyright 2016, ACS.

Figure 1.2 (a) ZB, (b) division of air electrode, (c) polarization graph, and (d) power density graph. Reprint with the permission from Reference [14]. Copyright 2013, Elsevier.

Moreover, the superiority of NCNs can also helps to achieve better electron numbers and hydrogen peroxide yields than that of the platinum/carbon catalyst.

1.4 NiCo₂S₄ on Nitrogen-Doped Carbon Nanotubes

The enhancement of OER/ORR activity has been observed by Han *et al.* by coupling $NiCo_2S_4$ nanocrystals with nitrogen-doped carbon nano-tubes (N-CNT/NiCo_2S_4) for electrocatalyst applications in ZBs [15]. The

Figure 1.3 (a) Cyclic and (b) Linear voltammograms, (c) peroxide (solid) and no. of electrons (dotted), (d) K-L graph, (e) Tafel graph, (f) current densities of NiCo₂S₄, CNT/NiCo₂S₄, and N-CNT/NiCo₂S₄. Reprint with the permission from Reference [15]. Copyright 2017, Elsevier.

reversibility, stability, and bifunctional activity as shown in Figure 1.3 were up to the level of well-known metal catalysts performances. More positive cathode potential has been observed for N-CNT/NiCo₂S₄ in compression to its counterpart. Hence, this new design with carbon composites along with chalcogenides enables better performances for the ZBs.

1.5 3D Phosphorous and Sulfur Co-Doped C₃N₄ Sponge With C Nanocrystal

P and S co-doped $C_{3}N_{4}$ sponge with C nanocrystal (P-S-CNS) demonstrated good OER at 10 mA per cm² current density with 1.56 V. The ORR activity also enhanced up to 7 mA cm⁻² with 1-V potential [16]. Figure 1.4 also showed that the power density with the use of P-S-CNS in ZBs can reach up to 200 mW per cm² at 200 mA per cm² current density. Not only that, it can provide emf of 1.5 V at a specific capacitance of around 830 mAh per g¹. The energy density also can reach up to 970 Wh per kg¹ at 5 mA per cm² current density. The reversibility and stability also enhances up to 500 cycles. Hence, the use of P-S-CNS in place of precious metals indeed demonstrates a cleaner and greener way of storage devices with respect to the conventional batteries.

Figure 1.4 (a) ZBs; (b) Power density; (c) Galvanostatic discharge graphs; (d) Specific capacity; (e) Stability; (f) Simple demonstration with P-S-CNS. Reprint with the permission from Reference [16]. Copyright 2016, ACS.

6 ZINC BATTERIES

Figure 1.5 SEM images of 2D carbon nanosheets. Reprint with the permission from Reference [17]. Copyright 2015, RSC.

1.6 2D Carbon Nanosheets

The larger surface area of 1,050 m² per g of the nanosheets of carbon indeed makes it suitable for the application of the ZBs [17]. Figure 1.5 shows the SEM images of the 2D structure of the nanosheets. The OER and ORR performance can be enhanced with the use of carbon nanosheets because of its greater surface area which increase the oxygen absorption and enhance the catalytic activities in many folds. The platinum/carbon galvanic discharge voltage 1.2 V of current density of 5 mA per cm² can be achievable using the carbon nanosheets in ZBs. Hence, the competitive performances with the low cost of production indeed make it a suitable choice to use in the ZBs.

1.7 N-Doped Graphene Oxide With NiCo₂O₄

Graphene oxide with N-doped along with $NiCo_2O_4$ (N-rGO/NC) can be used as another stable cathode electrode for the ZBs applications [18]. The flower-like structure of the N-rGO/NC is shown in Figure 1.6. The flowerlike structure helps to obtain 4-V plateau in the charge profile whereas

Figure 1.6 SEM, TEM, and XRD N-rGO/NC. Reprint with the permission from Reference [18]. Copyright 2017, RSC.

the plateau is situated around 2.6 V for the discharge profile. The capacity of the ZBs with the use of N-rGO/NC cathode can reach up to 7,000 mAh g^{-1} till 35 h. The morphology and the porous structure in the N-rGO/NC cathode surface help better flow of oxygen which enhances the OER and ORR activity.

1.8 Conclusions

In summary, the development of the zinc-ion battery (ZB) hindered due to the problem associated with the suitability of its design especially on

8 ZINC BATTERIES

the catalyst and electrodes parts. Modified surface of carbon can enhance oxygen reduction reaction significantly for the catalytic performances. An ultimate design of ZBs should contain proper synthesis along with a precursor-like nitrogen with carbon-metal support for enhanced performances of ZBs. For example, electrodes formed with N-doped carbon fiber network with Co₄N NPs not only provide 1 mA cm⁻² current density but also flexibility to ZBs. The ORR of ZBs can also increase with N-doped carbon nanofiber (NCN). The enhancement of OER/ORR activity has been observed by coupling NiCo₂S₄ nanocrystals with nitrogen-doped carbon nanotubes $(N-CNT/NiCo_{3}S_{4})$ for electrocatalyst applications in ZBs. P and S co-doped C₂N₄ sponge with C nanocrystal (P-S-CNS) demonstrated good OER 10 mA per cm² current density with 1.56 V. The ORR activity also enhanced up to 7 mA cm⁻² with 1-V potential. The OER and ORR performance can be enhanced with the use of carbon nanosheets because of its greater surface area which increase the oxygen absorption and enhance the catalytic activities in many folds. The morphology and the porous structure in the N-rGO/NC cathode surface help better flow of oxygen which enhances the OER and ORR activity in the ZBs.

Acknowledgements

The author acknowledges UGC, India, for the start-up financial grant no. 30-457/2018(BSR). We also acknowledge the support provided to A. Franco Jr. by CNPq, Brazil, with grant no. 307557/2015-4.

References

- Skyllas-Kazacos, M., Chakrabarti, M.H., Hajimolana, S.A., Mjalli, F.S., Saleem, M., Progress in flow battery research and development. *J. Electrochem. Soc.*, 158, 8, R55–R79, 2011.
- Park, M., Ryu, J., Wang, W., Cho, J., Material design and engineering of next-generation flow-battery technologies. *Nat. Rev. Mater.*, 2, 1, 16080, 2017.
- 3. Gaikwad, A.M., Arias, A.C., Steingart, D.A., Recent progress on printed flexible batteries: Mechanical challenges, printing technologies, and future prospects. *Energy Technol.*, 3, 4, 305–328, 2015.
- 4. Yuan, X., Liu, H., Zhang, J. (Eds.), *Lithium-ion batteries: Advanced materials and technologies*, CRC Press, 2011.
- Wang, W., Luo, Q., Li, B., Wei, X., Li, L., Yang, Z., Recent progress in redox flow battery research and development. *Adv. Funct. Mater.*, 23, 8, 970–986, 2013.

- 6. Yoo, H.D., Markevich, E., Salitra, G., Sharon, D., Aurbach, D., On the challenge of developing advanced technologies for electrochemical energy storage and conversion. *Mater. Today*, 17, 3, 110–121, 2014.
- Benson, C.L. and Magee, C.L., On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries. *Renewable Energy*, 68, 745–751, 2014.
- 8. Gaines, L. and Cuenca, R., *Costs of lithium-ion batteries for vehicles (No. ANL/ ESD-42)*, Argonne National Lab., IL (US), 2000.
- Nelson, P.A., Gallagher, K.G., Bloom, I.D., Dees, D.W., Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles (No. ANL-12/55), Argonne National Lab.(ANL), Argonne, IL (United States), 2012.
- Li, Y., Gong, M., Liang, Y., Feng, J., Kim, J.E., Wang, H., Dai, H., Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. *Nat. Commun.*, 4, 1805, 2013.
- 11. Rahmanifar, M.S., Mousavi, M.F., Shamsipur, M., Heli, H., A study on open circuit voltage reduction as a main drawback of Zn–polyaniline rechargeable batteries. *Synth. Met.*, 155, 3, 480–484, 2005.
- Li, B., Chen, Y., Ge, X., Chai, J., Zhang, X., Hor, T.A., Zong, Y., Musselinspired one-pot synthesis of transition metal and nitrogen co-doped carbon (M/N-C) as efficient oxygen catalysts for Zn-air batteries. *Nanoscale*, 8, 9, 5067–5075, 2016.
- Meng, F., Zhong, H., Bao, D., Yan, J., Zhang, X., In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. *J. Am. Chem. Soc.*, 138, 32, 10226–10231, 2016.
- Park, G.S., Lee, J.S., Kim, S.T., Park, S., Cho, J., Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn–air batteries. *J. Power Sources*, 243, 267–273, 2013.
- Han, X., Wu, X., Zhong, C., Deng, Y., Zhao, N., Hu, W., NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. *Nano Energy*, 31, 541–550, 2017.
- Shinde, S.S., Lee, C.H., Sami, A., Kim, D.H., Lee, S.U., Lee, J.H., Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. ACS Nano, 11, 1, 347–357, 2016.
- Li, B., Geng, D., Lee, X.S., Ge, X., Chai, J., Wang, Z., Zong, Y., Eggplantderived microporous carbon sheets: Towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn-air batteries. *Chem. Commun.*, 51, 42, 8841–8844, 2015.
- Moni, P., Hyun, S., Vignesh, A., Shanmugam, S., Chrysanthemum flower-like NiCo 2 O 4–nitrogen doped graphene oxide composite: An efficient electrocatalyst for lithium–oxygen and zinc–air batteries. *Chem. Commun.*, 53, 55, 7836–7839, 2017.