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Preface

A new generation of r eactors will start producing power in the next few years. They 
are comparatively tiny—and may be key to hitting our climate goals for the better, 
free of carbon  emissions and free from greenhouse effects.

For the last 20 years, the future of nuclear power has stood in a high bay labora-
tory tucked away on the Oregon State University campus in the western part of the 
state. Operated by NuScale Power in the form of Small Modular Reactors (SMR), an 
Oregon-based energy startup, this prototype reactor represents a new chapter in the 
conflict-ridden, politically bedeviled saga of nuclear power plants. Or even old com-
panies such as Westinghouse with many years of experience in nuclear power plant 
in the form of Generation III and now with introduction of transportable Nuclear 
Micro Reactor eVinci, which has both space exploration into terrestrial domain and 
military application for a mobile brigade for a rapid deployment process.

NuScale’s reactor will not need massive cooling towers or sprawling emergency 
zones. It can be built in a factory and shipped to any location, no matter how remote 
due to its modulization technical approach, and it is built around old and traditional 
knowledge of Light Water Reactor technique. Extensive simulations suggest that it 
can handle almost any emergency without a meltdown. One reason for that is it 
barely uses any nuclear fuel—at least compared with existing reactors.

eVinci Micro Reactor cooling system is designed and its cooling system is based 
on Advanced Heat Pipe technology which is a very dynamic yet as passive cooling 
system with most safe way without any meltdown disasters either manmade or 
 natural threats.

NASA’s approach with heat pipe cooled of kilopower reactor for space explora-
tion and Mars mission in near future is another application of these small reactors 
yet big energy source for such application that allows to travel beyond terres-
trial space.

This is good news for a planet in the grips of a climate crisis. Nuclear energy 
gets a bad rap in some environmentalist circles, but many energy experts and 
 policymakers agree that splitting atoms is going to be an indispensable part of 
decarbonizing the world’s electricity. In the United States, nuclear power accounts 
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for about two- thirds of all clean electricity, but the existing reactors are rapidly 
approaching the end of their regulatory lifetimes. Only two new reactors are under 
construction in the United States, but they are billions of dollars over budget and 
years behind schedule.

Enter the small modular reactor designed to allow several reactors to be  combined 
into one unit. Need a modest amount of energy? Install just a few modules. Want to 
fuel a sprawling city? Tack on several more. Coming up with a suitable power plant 
for a wide range of situations becomes that much easier. As they are small, these 
reactors can be mass-produced and shipped to any location in a handful of pieces. 
Perhaps most importantly, small modular reactors can take advantage of several 
cooling and safety mechanisms unavailable to their big brothers, which all but guar-
antee they will not become the next Chernobyl or Fukushima.

Nuclear reactors are getting smaller and this is opening up some big opportuni-
ties for the industry. A handful of micro reactor designs are under development in 
the United States, and they could be ready to roll out within the next decade.

These plug-and-play reactors will be small enough to transport by truck and 
could help solve energy challenges in a number of areas, ranging from remote 
 commercial or residential locations to military bases.

The devastating impacts of climate change caused by burning fossil fuels are 
forcing countries around the world to look for zero-emissions alternatives for gen-
erating electricity.

One such alternative is nuclear energy, and the International Energy Agency—a 
group focused on energy security, development, and environmental sustainability 
for 30-member countries—says the transition to a cleaner energy system will be 
drastically harder without it.

Canada’s government appears to be on board, saying nuclear innovation plays a 
“critical role” in reducing greenhouse gas emissions as Canada moves toward a low- 
carbon future.

While Canada Deuterium Uranium (CANDU) reactors, a Canadian design, have 
powered some Canadian communities for decades, the government is now eyeing 
technology of a different scale. The federal government describes small modular 
reactors (SMR), as the “next wave of innovation” in nuclear energy technology and 
an “important technology opportunity for Canada.”

In this book, we cover a summary and overall aspect of Generation IV (GEN-IV), 
or they are also known as Small Modular Reactors (SMRs) as well. In this book, we 
also cover Nuclear Micro Reactor and its need and implementation within 
Department of Defense (DOD) military organizations.

Here is what you need to know about them.
What is a small modular reactor?
Traditional nuclear reactors used in Canada can typically generate about 800 MW 

of electricity, or about enough to power about 600,000 homes at once (assuming 
that 1 MW can power about 750 homes).

Preface
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The International Atomic Energy Agency (IAEA), the UN organization for 
nuclear cooperation, considers a nuclear reactor to be “small” if it generates 
under 300 MW.

Albuquerque, NM  Bahman Zohuri 
 2016  
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Chapter 1
Nuclear Micro Reactors: The Next Wave 
of Innovation

1.1  Introduction

Growth of population globally has direct impact on demand for energy. Almost 18% 
growth in population and their required daily life on energy and electricity demand 
presents a different dimension for production of electricity not only from renewable 
perspective, but also puts nuclear energy resource in different category. New gen-
eration of nuclear reactors in the form of Small Modular Reactors (SMRs) or 
GEN-IV. With new safety factors built into these reactors, with better thermal effi-
ciency output with innovative approach to Combined Cycle (CC) makes them more 
cost-effective from Return On Investment (ROI) point of view [1–3].

Furthermore, the presence of new renewable technology and suggested solutions 
by expert in the field for source of energy and energy storage does not eliminate a 
demand and need for both present and near-term Nuclear Fission Reactors in the 
form of GEN-III (i.e., present) to GEN-IV (i.e., next generation of SMRs) to Nuclear 
Fusion Reactors in far term.

The rule of thumb for generating electricity is falling into the following category. 
The requirement for production of electricity is that the electricity generation rate at 
all times equals the demand for electricity. Economically achieving this goal is easy 
with fossil fuels because the primary cost of producing electricity is the cost of the 
fuel, not the cost of the power plant. It is economically viable to operate a fossil 
plant at part load. As a consequence, in the USA and much of the world the pre-
ferred fossil-fuel generating technology is the Gas Turbine Combined Cycle 
(GTCC)—a low cost machine with rapid response to variable electricity demand 
with heat-to-electricity efficiencies above 60% [1, 2].

The major growth in the electricity production industry in the last 30 years has 
centered on the expansion of natural gas power plants based on gas turbine cycles. 
The most popular extension of the simple Brayton gas turbine has been the com-
bined cycle power plant with the air-Brayton cycle serving as the topping cycle and 
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