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Preface

Vladimir Igorevich Arnold is one of the most influential mathematicians of our time.
V.I. Arnold launched several mathematical domains (such as modern geometric mechanics,
symplectic topology, and topological fluid dynamics) and contributed, in a fundamental
way, to the foundations and methods in many subjects, from ordinary differential equations
and celestial mechanics to singularity theory and real algebraic geometry. Even a quick
look at a partial list of notions named after Arnold already gives an overview of the variety
of such theories and domains:

KAM (Kolmogorov—Arnold—Moser) theory,

The Arnold conjectures in symplectic topology,

The Hilbert—Arnold problem for the number of zeros of abelian integrals,
Arnold’s inequality, comparison, and complexification method in real algebraic geometry,
Arnold—Kolmogorov solution of Hilbert’s 13th problem,

Arnold’s spectral sequence in singularity theory,

Arnold diffusion,

The Euler—Poincaré—Arnold equations for geodesics on Lie groups,
Arnold’s stability criterion in hydrodynamics,

ABC (Arnold-Beltrami—Childress) flows in fluid dynamics,

The Arnold—Korkina dynamo,

Arnold’s cat map,

The Arnold-Liouville theorem in integrable systems,

Arnold’s continued fractions,

Arnold’s interpretation of the Maslov index,

Arnold’s relation in cohomology of braid groups,

Arnold tongues in bifurcation theory,

The Jordan—Arnold normal forms for families of matrices,

The Arnold invariants of plane curves.

Arnold wrote some 700 papers, and many books, including 10 university textbooks. He
is known for his lucid writing style, which combines mathematical rigour with physical and
geometric intuition. Arnold’s books on Ordinary differential equations and Mathematical
methods of classical mechanics became mathematical bestsellers and integral parts of the
mathematical education of students throughout the world.
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Some Comments on V.I. Arnold’s Biography and Distinctions

V.1. Arnold was born on June 12, 1937 in Odessa, USSR. In 1954-1959 he was a student at
the Department of Mechanics and Mathematics, Moscow State University. His M.Sc.
Diploma work was entitled “On mappings of a circle to itself.” The degree of a “candidate
of physical-mathematical sciences” was conferred to him in 1961 by the Keldysh Applied
Mathematics Institute, Moscow, and his thesis advisor was A.N. Kolmogorov. The thesis
described the representation of continuous functions of three variables as superpositions of
continuous functions of two variables, thus completing the solution of Hilbert’s 13th prob-
lem. Arnold obtained this result back in 1957, being a third year undergraduate student. By
then A.N. Kolmogorov showed that continuous functions of more variables can be repre-
sented as superpositions of continuous functions of three variables. The degree of a “doctor
of physical-mathematical sciences” was awarded to him in 1963 by the same Institute for
Arnold’s thesis on the stability of Hamiltonian systems, which became a part of what is
now known as KAM theory.

After graduating from Moscow State University in 1959, Arnold worked there until 1986
and then at the Steklov Mathematical Institute and the University of Paris IX.

Arnold became a member of the USSR Academy of Sciences in 1986. He is an Honorary
member of the London Mathematical Society (1976), a member of the French Academy of
Science (1983), the National Academy of Sciences, USA (1984), the American Academy of
Arts and Sciences, USA (1987), the Royal Society of London (1988), Academia Lincei
Roma (1988), the American Philosophical Society (1989), the Russian Academy of Natural
Sciences (1991). Arnold served as a vice-president of the International Union of Mathema-
ticians in 1999-2003.

Arnold has been a recipient of many awards among which are the Lenin Prize (1965,
with Andrey Kolmogorov), the Crafoord Prize (1982, with Louis Nirenberg), the Loba-
chevsky Prize of Russian Academy of Sciences (1992), the Harvey prize (1994), the Dannie
Heineman Prize for Mathematical Physics (2001), the Wolf Prize in Mathematics (2001),
the State Prize of the Russian Federation (2007), and the Shaw Prize in mathematical
sciences (2008).

One of the most unusual distinctions is that there is a small planet Vladarnolda, discov-
ered in 1981 and registered under #1003 1, named after Vladimir Arnold. As of 2006 Arnold
was reported to have the highest citation index among Russian scientists.

In one of his interviews V.I. Arnold said: “The evolution of mathematics resembles the
fast revolution of a wheel, so that drops of water fly off in all directions. Current fashion
resembles the streams that leave the main trajectory in tangential directions. These streams
of works of imitation are the most noticeable since they constitute the main part of the total
volume, but they die out soon after departing the wheel. To stay on the wheel, one must
apply effort in the direction perpendicular to the main flow.”

With this volume Springer starts an ongoing project of putting together Arnold’s work
since his very first papers (not including Arnold’s books.) Arnold continues to do research
and write mathematics at an enviable pace. From an originally planned 8 volume edition of
his Collected Works, we already have to increase this estimate to 10 volumes, and there
may be more. The papers are organized chronologically. One might regard this as an
attempt to trace to some extent the evolution of the interests of V.I. Arnold and cross-
fertilization of his ideas. They are presented using the original English translations, when-
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ever such were available. Although Arnold’s works are very diverse in terms of subjects,
we group each volume around particular topics, mainly occupying Arnold’s attention dur-
ing the corresponding period.

Volume I covers the years 1957 to 1965 and is devoted mostly to the representations of
functions, celestial mechanics, and to what is today known as the KAM theory.

Acknowledgements. The Editors thank the Gottingen State and University Library and the Caltech library
for providing the article originals for this edition. They also thank the Springer office in Heidelberg for its
multilateral help and making this huge project of the Collected Works a reality.

March 2009 Alexander Givental
Boris Khesin

Jerrold Marsden

Alexander Varchenko
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Oleg Viro

Vladimir Zakalyukin



10

Contents

On the representation of functions of two variables in the form y[@x)+ ()]
Uspekhi Mat. Nauk 12, No. 2, 119-121 (1957); translated by Gerald Gould..........

On functions of three variables
Amer. Math. Soc. Transl. (2) 28 (1963), 51-54. Translation of Dokl. Akad.

Nauk SSSR 114:4 (1957), 679—081.......coevuivirieiieeiininiineneeeeeeeeseesiese e

The mathematics workshop for schools at Moscow State University

Mat. Prosveshchenie 2, 241-245 (1957); translated by Gerald Gould ...................

The school mathematics circle at Moscow State University:
harmonic functions (in Russian)

Mat. Prosveshchenie 3 (1958), 241-250 .......ccuuevueeecueeiiieeieeeieeeieeeieeeieesvee e

On the representation of functions of several variables as a superposition
of functions of a smaller number of variables

Mat. Prosveshchenie 3, 41-61 (1958); translated by Gerald Gould........................

Representation of continuous functions of three variables
by the superposition of continuous functions of two variables
Amer. Math. Soc. Transl. (2) 28 (1963), 61-147. Translation of Mat. Sb. (n.S.)

48 (90):1 (1959), 3—74 Corrections in Mat. Sb. (n.S.) 56 (98):3 (1962), 392 .........

Some questions of approximation and representation of functions
Amer. Math. Soc. Transl. (2) 53 (1966), 192-201. Translation of Proc. Internat.
Congress Math. (Edinburgh, 1958), Cambridge Univ. Press, New York, 1960,

DD 3397348 e ettt

Kolmogorov seminar on selected questions of analysis

Uspekhi Mat. Nauk 15, No. 1, 247-250 (1960); translated by Gerald Gould..........

On analytic maps of the circle onto itself
Uspekhi Mat. Nauk 15, No. 2, 212-214 (1960) (Summary of reports announced

to the Moscow Math. Soc.); translated by Gerald Gould .................ccccccveuenencn.e.

Small denominators. I. Mapping of the circumference onto itself
Amer. Math. Soc. Transl. (2) 46 (1965), 213—284. Translation of Izv.
Akad. Nauk SSSR Ser. Mat. 25:1 (1961). Corrections in Izv. Akad. Nauk

SSSR Ser. Mat. 28:2 (1964), 479—480 .....c.ooeminiriniiieiininineeeeeeceneseeee e

XI



11

12

13

14

15

16

17

18

19

20

21

22

The stability of the equilibrium position of a Hamiltonian system

of ordinary differential equations in the general elliptic case

Soviet. Math. Dokl. 2 (1961). Translation of Dokl. Akad. Nauk

SSSR 137:2 (1961), 255257 ceovveieiiiieiiinieieeseee ettt 224

Generation of almost periodic motion from a family of periodic motions
Soviet. Math. Dokl. 2 (1961). Translation of Dokl. Akad. Nauk
SSSR 138:1 (1961) 13—15 .ottt 227

Some remarks on flows of line elements and frames
Soviet. Math. Dokl. 2 (1961). Translation of Dokl. Akad. Nauk
SSSR 138:2 (1961), 255=257 cuveveeeeeeeeeeeieeeeeeie ettt 230

A test for nomographic representability using Decartes’ rectilinear abacus
(in Russian)
Uspekhi Mat. Nauk 16:4 (1961) ......coooeeeeeeieieiieieeeeeieee e 233

Remarks on winding numbers (in Russian)
Sibirsk. Mat. Z. 2:6 (1961), 807-813........ooeoeereeeeereeeeeseeeseseseses s 236

On the behavior of an adiabatic invariant under slow periodic variation

of the Hamiltonian

Soviet. Math. Dokl. 3 (1962). Translation of Dokl. Akad. Nauk

SSSR 142:4 (1962), 758=T701 .....ooviiiiiriieiieieiiiesicsisiteeet ettt 243

Small perturbations of the automorphisms of the torus

Soviet. Math. Dokl. 3 (1962). Translation of Dokl. Akad. Nauk

SSSR 144:2 (1962), 695—698, Corrections in Dokl. Akad. Nauk

SSSR, 1963, 150:5, 958ttt 248

The classical theory of perturbations and the problem of stability

of planetary systems

Soviet. Math. Dokl. 3 (1962). Translation of Dokl. Akad. Nauk

SSSR 145:3 (1962), 487490 .....ceeiriiiiiniiiiniiieeereeesee ettt 253

Letter to the editor (in Russian)
Mat. Sb. (n.S.) 56 (98):3 (1962), 392....c.ccomveoiriiiniiinicineeteeetree e 258

Dynamical systems and group representations at the Stockholm
Mathematics Congress (in Russian)
Uspekhi Mat. Nauk 18:2 (19603) .....ccoueeeeeieieieieeeeeeesieee e 259

Proof of a theorem of A. N. Kolmogorov on the invariance

of quasi-periodic motions under small perturbations of the Hamiltonian

Russian Math. Surveys 18 (1963). Translation of Uspekhi Mat. Nauk

18:5 (1963), 1340 .ottt 267

Small denominators and stability problems in classical

and celestial mechanics (in Russian)

Problems of the motion of artificial satellites. Reports at the conference on general
applied topics in theoretical astronomy (Moscow, 20-25 November 1961), USSR
Academy of Sciences Publishing House, Moscow, 1963, pp. 7—17 ......cccccceeueeueunne. 295

XII



23

24

25

26

27

28

29

30

31

32

Small denominators and problems of stability of motion in classical

and celestial mechanics

Russian Math. Surveys 18 (1963). Translation of Uspekhi Mat. Nauk

18:6 (1963), 91-192, Corrections in Uspekhi Mat. Nauk 22:5 (1968), 216............. 306

Uniform distribution of points on a sphere and some ergodic properties

of solutions of linear ordinary differential equations in a complex region

Soviet Math. Dokl. 4 (1963). Translation of Dokl. Akad. Nauk

SSSR 148:1 (1963), 9—12 ..ottt 413

On a theorem of Liouville concerning integrable problems of dynamics
Amer. Math. Soc. Transl. (2) 61(1967) 292-296. Translation of Sibirsk.
Mat. Z. 4:2 (1963) ..o 418

Instability of dynamical systems with several degrees of freedom
Soviet Math. Dokl. 5 (1964). Translation of Dokl. Akad. Nauk
SSSR 156:1 (1964), 9—12 ..ottt e 423

On the instability of dynamical systems with several degrees of freedom
(in Russian)
Uspekhi Mat. Nauk 19:5 (1964), 181 .....ccuoeeveeeiieieiiieesieeeeeeeeeeeese e 428

Errata to V.I. Arnol’d’s paper: “Small denominators. 1.”
Izv. Akad. Nauk SSSR Ser. Mat. 28, 479—480 (1964),
translated by Gerald GOUld. ....................coocueevieieesiiiiecieecie et 433

Small denominators and the problem of stability in classical

and celestial mechanics (in Russian)

Proceedings of the Fourth All-Union Mathematics Congress (Leningrad,

3—12 July 1961), vol. 2, Nauka, Leningrad, 1964, pp. 403—409...........coccvevveevennen. 435

Stability and instability in classical mechanics (in Russian)
Second Math. Summer School, Part Il (Russian), Naukova Dumka, Kiev,
T965, PP 8I—119 oottt sttt sttt ene s 442

Conditions for the applicability, and estimate of the error, of an averaging
method for systems which pass through states of resonance in the course

of their evolution

Soviet Math. Dokl. 6 (1965). Translation of Dokl. Akad. Nauk SSSR

TO1:1 (1965), 9—12 ..ottt st 477

On a topological property of globally canonical maps

in classical mechanics

Translation of Sur une propriété topologique des applications globalement
canoniques de la mécanique classique. C. R. Acad. Sci. Paris 261:19

(1965) 3719-3722; translated by Alain Chenciner and Jaques Fejoz...................... 481

XIII



ON THE REPRESENTATION OF
FUNCTIONS OF TWO VARIABLES IN THE

FORM x[¢(x) + ¥ (y)]*

V.I. Arnol’d
translated by Gerald Gould

1. Kolmogorov proved [1] that the set of functions of two variables repre-
sentable as a certain combination of continuous functions of one variable and
addition is everywhere dense in the space C(E?) of continuous functions de-
fined on the square E2. It follows immediately from our result proved below
that this is not true for the simplest combinations: the set of functions of the
form x[¢(x) + 1 (y)] even turns out to be nowhere dense in C'(E?) .

Fig. 1.

We shall indicate a closed subset N of the square |x| < 2, |y| < 2 (Fig. 1)
such that for any continuous function f(x,y) vanishing on (and only on) N
there exists 6(f) > 0 such that |f(z,y) — x[¢(z) + Y (y)]| = 0 at some point
of this square for any continuous functions x, ¢ and ¥; every function having

* Uspekhi Math. Nauk 12, No. 2, 119-121 (1957)



2 V.1. Arnol’d

N as its level set is ‘with a meighbourhood’ non-representable in the form

x[o(x)+¢(y)] . An example of such a set N is the ellipse (x—i—y)z—i—% =1
We shall prove this. Since f(z,y) is of constant sign outside the ellipse
we can assume that f(z,y) > 0 there. Then clearly there exists 6 > 0 such

that f(z,y) > 26 at all points in the region G ef (r+y)?+ (G} 5. that

1
2
is, outside the ellipse M % (z + y)2 + % = 2. Suppose that there exist

continuous functions ¢(z), ¥ (y), x(2) such that | f(z,y) — x[o(z) —(y)]| < 5
for all (z,y), 2 < x, y < 2. Then the inequality x[¢(x) + ¥ (y)] < ¢ holds on
N and the inequality x[¢(z) + ¢ (y)] > 6 holds on M.

The largest open connected sets G~ D N and Gt D G,* where x[¢(z) +
¥(y)] < 6 and x[¢(z) + ¥(y)] > §, respectively, are separated by the closed
set F where x[¢(z) + 1 (y)] = § (that is, each continuum intersecting G~ and
G also intersects F'), because the continuous function x[¢(z) + ¢ (y)] on a
continuum takes all values between any two given values. By a well-known
theorem (Theorem E in [2]) the boundary of G has a component F/ C F
already separating G~ and G, and hence M and N. We claim that the
continuous function ¢(x) + ¥ (y) is constant on F’. Indeed, suppose that, on
the contrary, z1 = ¢(z) + Y (¥)|a < ¢(z) + Y (y)|p = 22, where a,b € F’. Then
in a sufficiently small neighbourhood of a there is a point ' € G where
d(x) +(y) < 21 + 237, and in a sufficiently neighbourhood of b there is a
point b' € G where ¢(x) + 1 (y) > 22 — 2252, Therefore on a polygonal line
joining @’ and ¥’ in G* there is a point ¢ where ¢(x)+v(y) = Z322; also there
is a point ¢ on the continuum F” where ¢(z) + ¢¥(y) = % Consequently,
x[o(x) +v ()]l = x[d(x)+1(y)]|., which contradicts the conditions ¢’ € GT,
ceF.

We denote by z the unique value of ¢(x)+1(y) at points of F’. Then on the
intervals x = —%, y € [1.1,1.22) and & = — 3, y € [—0.62, —0.5] intersecting M
and N there are points (—3, 1) and (—31,y») at which ¢(z)+¢(y) = 2. There
is such a point (z1,y2) on the interval on which the line y = ys intersects the
strip between M and N for z > 0.

It follows from the equalities™

P(—3) + o(y2) = =,
(1) +P(y2) = 2

that ¢(z1)+v¥(y1) = z and x[@(z1)+9(y2)] = §. However, it is easy to see that
the point (z1,y1) lies in G, therefore x[¢(z1) 4+ 9 (y2)] > §. This contradiction
proves the ‘stable’ non-representability of f(z,y) in the form x[¢(z) + ¥ (y)];

¥ Translator’s note: This should be |f(z,y) — x[¢(z) + ¥ (y)]| < §.
* Translator’s note: This should be GT > M.
** Translator’s note: The second of these inequalities contains a misprint. It should

read ¢(—3) +9(y2) = 2.



On the representation of functions of two variables 3

in particular, for the function f(z,y) = (z+y)?+ (2 —y)? — 1 we can choose
§> 1

2A.1 I.A. Weinstein proved that the class of continuous functions of the form
X[op(z)+1(y)] that are strictly monotone in each variable is a closed subset of
C(E?). Here the strict monotonicity is essential: we claim that the function xy
is not representable in the form x[d(x) + ¥ (y)] even though it is the uniform
limit of the sequence of functions exp(ln(x—i— %)—Hn(y—l— %)), which do have the
form x[¢(x) + 1 (y)] (where ¢,(z) = ¢p(z) = In(z + ;) and x(2) = exp(2)).

Y
a
a+b
2
a+b
2
0 b X
Fig. 2.

In fact, if x[¢(x) + ¥(y)] = zy everywhere in the square z,y € [0,1],
then the function ¢(z) 4+ ¥(y) would take the same value at the points (0, 0),
(0,1), and (1,0). Indeed, any two of these three points can be joined by a
polygonal line having no common points with the set xy = 0 apart from the
end points, and also by a polygonal line lying entirely in this set. If ¢(x) +
¥ (y) took different values a and b at these end points (see Fig. 2), then the

intermediate value “7“’ would be taken both on the set zy = 0 and outside

this set, which would mean that x(%t2) = 0 and x(%%) > 0 simultaneously.
This contradiction proves that ¢(0)+1(0) = ¢(0) 4+ (1) = ¢(1)+1(0); hence

#(0) +¢(0) = ¢(1) + (1) and therefore

0 =x[0(0) +¢(0)] = x[o(1) + (1) = 1.

In other words, there do not exist any functions ¢(x), ¥(y), x(z) such that
x[¢(@) +¥(y)] = zy.

We also point out that the first example of a continuous function not repre-
sentable in the form x[¢(x) + 1 (y)] (obtained simultaneously by A.A. Kirillov
and the author), namely, the function f(z,y) = min(z,y) (where z,y € [0, 1])
can also be approximated to arbitrary precision by functions of the form

x[o(z) + ¥ (y)].
Received 26 December 1956
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ON FUNCTIONS OF THREE VARIABLES*®
V.I. ARNOL'D

In the present paper there is indicated a method of proof of a theorem
which yields a complete solution of the 13th problem of Hilbert (in the sense
of a denial of the hypothesis expressed by Hilbert).

Theorem 1. Every real, continuous function f(x4,%2,%x3) of three variables

which is defined on the unit cube E® can be represented in the form

Il Meo

flx1,x2,23) =
12

l][q)ij(x:..x'z). 13}' (1)

3
3 h,.
1j=1

where the functions h and q’ij of two variables are real and continuous.

ij
A.N. Kolmogorov [1] obtained recently the representation

3
fGarzz) = 2 hl0Gara), 5], (2)
1=

where the functions hi and (pi are continuous, the function hi is real,
and the function P; takes on values which belong to some tree E. 1In the
construction of A.N. Kolmogorov (for the case of functions of three variables),
the tree = can be taken not as a universal tree, but such that all of its
points have a branching index not greater than 3. For this, the functions u;m
of the fundamental lemma [1] (for n = 2) must be chosen so that in addition
to the indicated five properties they must have the following properties.

(8) The boundary of each level set of each function u,';’l divides the plane

into not more than 3 parts.
(1) For every r, G142 E2,

On the basis of this remark, Theorem 1 is a consequence of the existence of

the representation (2) and of the next theorem.

Theorem 2. Let F be any family of real equicontinuous functions (&)
defined on a tree E all of whose points have a branching index < 3. One can
realize the tree as a subset X of the three-dimensional cube E® in such a

way that any function of the family F can be represented in the form

&) = fr(xp),

1

a
I Mew

where x = (x1,%2,%23) 1is the image of E€B in the tree X; the f(xp)

are continuous real functions of one variable, while the fr depend continuously

* Editor’s note: translation into English published in Amer. Math. Soc. Transl. (2) 28 (1963), 51-54.

Translation of V.I. Arnol’d: On functions of three variables Dokl. Akad. Nauk SSSR 114:4 (1957),
679-681



52 V.1. ARNOL'D

on f (in the sense of uniform convergence).

We will introduce certain auxiliary concepts. Let K be a finite complex
of segments contained in E® and consisting of segments which are not parallel
to any coordinate plane.

Definition 1. A system of points

apwFa# . Fa Fa

belonging to K will be called a zigzag (lightning) if the segments a. _a.

1-171¢
are perpendicular to the axes Xa. , respectively, and
A
a1 # a, £ ... # an_1¥ an.
The finite system of the pairwise distinct points a tagged by

i1i9...1p
the corteges of indices 1ijiz...i,, Wwill be called a branching scheme 1if
(1) there exists only one point a, tagged with one index; (2) the presence

of 8iyin . in.qin in the system implies the presence of % enina in the
system.
Definition 2. A branching system of points %ianip contained in K will

be called a generating scheme if for a given cortege 1i3...i, the set of points

of the form @i4...ipip+y lles on the plane passing through a;

l4...1p
, and contains all points of

and

perpendicular to some coordinate axis x“i ;
1eeslp
intersection of this plane with K, that are distinct from Ceiip
ceelp

The tree & can be represented in the form

=

n

s

IDno Dp C Dp+q,

where D, 1is a finite tree, D, 1is a simple arc, and D,+; 1s obtained from
D, by attaching segments S, at certain points p, that arenot branch points
or endpoints of d, [2].

We will denote by 0, the upper boundary of the oscillations of the
functions f € F on the components of the difference E\Dn. It is easy to
see that

@, 0 when n — .

Therefore, one can select a sequence

ng <na<...<np<...

»

so that

1
mngr-; when n > n..
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The realization X of the tree EF in E® is constructed in the form

where D, 1is a complex of segments which realize Dp  in such a way that the

images S; of the arcs S, are segments that are not perpendicular to the
coordinate axes.

©
The inductive construction of D; is performed so that |J D} is a tree
n=1

[2], and that the following conditions are satisfied.
(1) Every function f € F can be represented on D, in the form

3
f&€) = T filzm), (3)

where the f:(xk) depend continuously on f.

(2) The tree D, has for every point a, & generating system issuing
from a,, and whose initial direction ao can be chosen arbitrarily.

(3) Let A, be the set of points Dé which is the image of the branch
points of F. There exists a denumerable set B, C Dn, BpN Ap =0 such that
the zigzag a, ... a,, which begins at a, € D;\\Bn. has no points in common
with A, and no coincident points a, = aj, i F g,

(49) If n.<n<n_,,, then

| fatep) = fprepl < (3+ -2 12 @
Nr+4 = Np r

This proof of the possibility of the inductive construction of the trees
D,, and of the functions fg with properties (1) to (4), is too complicated
to be given here. Roughly speaking, at each step the attached segment Sp+; 18
chosen of very short length; its direction, and the way of mapping of Sp+; on
Sp+1 are selected so as to guarantee the fulfillment of properties (2) and (3)
by DL+1. The preservation of equality (3), in the transition from n to
n+ 1, on the newly attached segment Sp+;, requires the introduction of a
correction fz+1 - fp+ for at least ome of the functions fj, on the pro-
Jection S;+1 on the axis xp . For the preservation of equality (3) on the
earlier constructed tree D;, it is necessary to compensate for this correction
by means of new corrections for the functions fg on a number of other segments.
The exact method of the introduction of these corrections, we will not present
here. We only note the following: these corrections must be such that inequality

(4) will be preserved for n'=n+1; if SA+1 is chosen small enough, and if
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its direction is chosen appropriately, it must be possible to produce it for
every function fz on a finite system of non-intersecting segments of the axis

xp . In the proof of this possibility one makes use of the fact that the tree
D, has properties (2) and (3).

The proof of the existence of the continuous function
frxp) = lm fi(xy)
n-o

and of the validity of the equation

3
f&) = k§1 flxp)

on the entire X, 1is not complicated.

I express my sincere thanks to A.N. Kolmogorov for the aid and advice I
have received from him in the preparation of this work.
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THE MATHEMATICS WORKSHOP FOR
SCHOOLS AT MOSCOW STATE
UNIVERSITY™

V.I. Arnol’d
Moscow

translated by Gerald Gould

The mathematics workshop for schools at Moscow State University in the
name of Lomonosov came into existence in 1935. The organizers of the work-
shop were: the now-deceased Corresponding Member of the Academy of Sci-
ences of the USSR L.G. Shnirel’'man, Professor L.A. Lyusternik (now Cor-
responding Member of the Academy of Sciences of the USSR), and Doctor
L.M. Gel'fand (now Corresponding Member of the Academy of Sciences of the
USSR).

The activities of the workshop proceed in two streams: twice a month (on
Sundays) lectures on mathematics are given by professors and instructors at
Moscow State University and other institutes (separately for the pupils of the
7-8 class and for pupils of the 9-10 class) and sections of the mathematics
workshop meet weekly under the guidance of students and (more rarely) post-
graduate students of the university.! The annual Mathematical Olympiad is, in
a certain sense, the culmination of the activities of the circle; here the directors
of the mathematics workshop traditionally play a large role in bringing this
about.

General information on the activities of the mathematics workshop in the
1955/56 academic year is given in the preceding issue of “Matematicheskil
Prosveshchenie”; there one can find the list of lectures given in that year.?
The series “Popular lectures on mathematics” published by Gostekhizdat will
give an idea of the character of these lectures.®> The main part of this series of
books by Moscow authors consists in expositions of the lectures given in the
mathematical circle for schools at Moscow State University. Here we wish to
shed light on the activities of the sections of the circle (the early part of these

* Mat. Prosveshchenie 2, 241-245 (1957)

L It was only at the very beginning of the activities of the workshop that professors
of Moscow State University were also involved in the work of the sections.

2 Dynkin, E.B., Girsanov, LV.: The nineteenth School Mathematical Olympiad in
Moscow. Mat. Prosveshch. 2, No. 1, 187 (1957).

3 Editor’s note: See the paper by N.B. Beskin on pp. 275-290 of this issue.
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activities is well reflected in the series of books“Library of the mathematical
circle”, also published by Gostekhizdat).

The ‘lessons’ of a section take place in the form of a discussion: the super-
visor of the section introduces the topic of study to the participants; 5-10
minutes is set aside for each problem; then the solution is explained and
the supervisor continues his talk on the topic being studied. Each individual
problem is not difficult (most of the pupils manage it in 5-10 minutes). At the
end of the lesson the pupils are given (usually more difficult and sometimes
very difficult) homework problems, which are collected at the beginning of the
next lesson.

Below we give a summary account of two lessons of the workshop (a section
for 10 pupils) on the themes “Variation of a curve” and “Harmonic functions”.

Variation of a curve

We are given a line segment AB of length 1. If this line segment is illu-
minated by parallel rays, then the length of the shadow thrown onto various
lines will vary from 0 to 1. More precisely, the length of the projection of the
segment onto lines lying in the same plane will, in general be different for
different lines; however in all cases it will be between 0 and 1. The length of
the projection of AB onto a line [ is called the variation of the segment AB
in the direction  (Fig. 1); we shall denote it by V;(AB) or simply by V} if it
is clear which segment we are referring to.

Fig. 1. Fig. 2.

It is intuitively obvious that the mean value of the ‘shadow’ over all direc-
tions exists and that it is between 0 and 1. More precisely, this means that if
we divide the 360° angle into n equal parts, and take the arithmetic mean

_ VAV, £,

n

Va

10
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of the variations of the segment AB in the directions Iy,ls,...,l, (Fig. 2),
then the limit
lim V,, = K

n—oo

exists and K lies between 0 and 1.

This number K is called the mean variation or simply the variation of the
unit segment AB.

This number is not very difficult to find;* it is equal to % ~ 0.637. However,
we shall not find it now, but calculate it later via an indirect route (Problem 7)
Nevertheless, we shall use the fact that this limit exists from the very outset.

Problem 1. What is the variation of a segment of length a?

Solution. Since, clearly, the variation of such a segment in any given
direction is a times as large as that of a unit segment parallel to it, and the
limit of this quantity, that is, the mean variation of the segment of length a,
is equal to Ka.

We define the wariation of a polygonal line in some direction to be the
sum of the lengths of the projections of its component line-segments (‘links’)

in this direction (Fig. 3).
4_\
|
|
|

= I

Fig. 3.

Problem 2. Determine the variation of a square of side 1 in the directions of
its sides and its diagonals.

Solution. Clearly, the variation of the square in the direction of each side
is equal to 2, and in the direction of a diagonal is equal to 2v/2.

The mean variation of a polygonal line over all directions, or simply the
variation of the polygonal line over all directions is defined, as above, via the
passage to the limit: V = lim,_. o, V},, where V,, is the arithmetic mean of the
variations of the polygonal line along the n directions of the sides of a regular
n-gon.

4 See, for example, the book Yaglom, A.M., Yaglom, I.M.: Elementary problems in
a non-elementary setting. Gostekhizdat, Moscow (1954), Problem 147b.

11
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Problem 3. Determine the variation of a polygonal line of length a.

Solution. Clearly the variation of a polygonal line in each direction is
the sum of the variations of the projections of its links in this direction, and
since the mean value of a sum is equal to the sum of its mean values,® the
variation of the polygonal line is the sum of the variations of its links. Since,
by Problem 1 the variation of each link is equal to the product of the length
of this link by K, the variation of the polygonal line is Ka.

Fig. 4. Fig. 5.

In order to transfer the definition of variation to curves we need to make
precise the notion of a curve. This is difficult to do in the general case. How-
ever, we shall assume that the curve is either convex or can be divided into
finitely many convex pieces. Then when one projects the curve in any given
direction one can divide it into finitely many pieces each of which is inter-
sected just once by each of the projecting lines.® Then the variation of the
curve in the chosen direction is, by definition, the sum of the lengths of the
projections of its pieces in this direction (Fig. 4). It can be shown that there
exists a mean value of this quantity over all directions. We call this the mean
variation or simply wvariation of the curved line.

It is clear that if the curve is a polygonal line, then we arrive at the previous
definition.

5 The precise meaning of this phrase is as follows: the arithmetic mean of the
variations of a polygonal line over n directions is equal to the sum of the arithmetic
means of the variations of its links over these directions. Therefore the limit as
n — oo of arithmetic means of the variations of the polygonal line over the
different directions is equal to the sum of the limits of the arithmetic means of
the variations of the individual links.

Here we do not rule out the case when such a piece is a straight-line segment,
so that when projecting in one of the directions the straight-line segment lies
entirely in the projecting line.

12
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Problem 4. Find the variation of a circle of diameter D.

Solution. First we choose some direction. The diameter having this di-
rection divides the circle into two pieces, namely, into two arcs each of which
is intersected by any line perpendicular to the chosen direction in at most one
point. Hence the variation of the circle in the chosen direction is equal to 2D.
Clearly the variation in any other direction is the same, therefore the mean
variation of the circle is equal to 2D.

We now select several points on the curve and join them successively by
straight lines (Fig. 5). Then we obtain a polygonal line. It can be shown that
for sufficiently good curves (for example, for all convex curves) the limit of
the lengths of these polygonal lines exists, provided that as these polygonal
lines vary the length of the largest link of the lines tends to zero. This limit
is called the length of the curve.

It can also be proved that for curves that can be divided into finitely many
convex pieces the limit of the variations of these polygonal lines exists as the
length of the largest link tends to zero.

Problem 5. Find the limit which the variation of a polygonal line inscribed
in a “sufficiently good” curve of length a tends to when the polygonal line
varies so that the length of its largest link tends to zero.

Solution. Since for each polygonal line of length a,, the variation is equal
to Ka, and a,, — a for “sufficiently good” curves, the limit of the variations
of the polygonal lines is equal to Ka.

Problem 6. Prove that the variation of a (‘sufficiently good’) curve of length
a is equal to Ka.

Solution. It suffices to observe that one can inscribe in such a curve a
polygonal line with arbitrarily small links whose variation along each of the
n given directions coincides with the variation of the curve. Therefore, once
the limit in Problem b5 exists it is equal to the variation of the curve.

Problem 7. Find the numerical value of K, that is, the variation of a segment
of length 1.

Solution. Since, on the one hand, a circle of diameter D has length D
and hence variation K7D (Problems 5 and 6) while, on the other hand (Prob-
lem 4), the variation of this circle is equal to 2D, it follows that K = %

By the width of a curve with respect to a given direction we mean the
smallest distance between two lines of this direction that enclose the curve.

A curve has constant width if its width with respect to all directions is the
same. Examples of a curve of constant width are the circle and the so-called
Rello triangle consisting of three equal arcs of a circle (Fig. 6).” With the help

7 There is a lot of information about curves of constant width in the book: Yaglom,
I.M., Boltyanskii, V.G.: Convex figures. Gostekhizdat, Moscow (1951).

13
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of variation one can obtain a very elegant proof of the following Barbier’s
Theorem:

Problem 8. Prove that all curves of constant width h have the same length
mh.

Solution. This follows from the fact that the variation of each such curve
in any direction is equal to 2h; see the reults of Problems 6 and 7.

Fig. 6.

Here is another problem which at first glance appears to be rather com-
plicated:

Problem 9. A curve L of length 22 is contained in a circle C' of radius 1.
Prove that there is a line intersecting L in at least 8 points.

Solution. The variation of L is equal to 2 - 22 > 14 (Problems 6 and 7).
On the other hand, the length of the projection of L in any direction does not
exceed 2 (L is contained in C!). Hence for some directions certain parts of the
projection of L will be covered by the projections of separate arcs of L more
than 7 times (that is, at least 8 times). This completes the proof.

We now turn to an account of the lesson devoted to the topic “Harmonic
functions”.

The conclusion of this article will appear in the next issue

14



B IIKOJbHOM MATEMATHYECKOM KPYXKE IIPU MI'Y*
B. H. Aproasd

(Mockaa)

(OxonuaHnue)

Fapmonnyeckue yHKUNM

Ise mepBble 3agaun He HMeJH OTHOLIEHHS K OCHOBHOH Teme. [lna
fIOJIHOTH OCBELEHHA 3aHATHS KPYMXKa MB TPHRORMM HX; O/H3Kasg K HuUM
N0 METOLy penieHms TPeThsi 3ajaya sBas- 4,
Jachb TOATOTOBHTENBHOH K 4eTBEpPTOH, C KO-
TOPOH, 1O CyulecTBY, U HAaYHHAJach TeMa.

3anayva 1. Halitn nauoapmee u HaHMeHb-
giee 3HAYEHUs BBHIP QKESHHS

asing 4-bcos¢ (@ 1 b NONOKHTENLHDL).

Pewenne, TlposeneM npa B3anMuoO-mep- 0
NEHMHKYAAPHBIX Jyda OM u ON u 1nocTpouM
OpsiMoyroJbHbIH Tpeyrodabuuk OAB ¢ kaTeramn
OA=a n AB=10, pacuojoxup X TaK, Kak Ha .
puc. 1 (upampie yram MON u OAB opuentuposaubl IPOTHB 4acOBOH CTpeJKH).
O6oznaunm yroa AON vuepes ¢, Torza, npoektupys JoManylo OAB wa oce OM
(npoeKkuud HanpasiaeHHple!), moayuaeM *):

(0B’) =np. OB=rnp. OA + np. AB==a sin ¢ -\~ b cos ¢.

Ecan Bpamats Tpeyroasuuk OAB Bokpyr sepumubnl O, TO yrol ¢ W3MeHs-
ercs; HaubObllee M HauMMeHburee 3Hauenns npoexuun (OB') IOCTHTaioTCs, KOria

a T8
orpesox OB goamuueapen OM, 1. e. koria tg ¢ == OHH pasHH V& -+ u

~ Va0
3apgava 2. [lokasath, 4TO ecau
@, COS 9, - ay COS ©y = oo @y €OS @ =0 )
‘ @, €08 (¢; 4= 1) +a, cos (9, + 1) + . cos (¢ + 1) =0 2
(Bce KO3(OHUUUEHTH @; NONOKHUTEIbHL), TO H NpH HOOOM @
@, 08 (¢ + @) + @, 08 (9, + @) + . 4~ Ay €08 (¢ + ) =00 @

') (OB') — penunHa HampapleHHOR NPOEKUUH.

* Editor’s note: V.I. Arnol’d: The school mathematical circle at Moscow State University:
harmonic functions. Published in Mat. Prosveshchenie 3 (1958), 241-250
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Peuwmexne BoiGepem B maockoctd ayy OM M NOCTPOHM JOMAHYIO JMHHIQ
0AA;... Ay (wa puc. 2 m==3), rac OA,=a,, AA,=a, .., Ap_An=ay,,
npuyem sextopst OA,, A4, ..., Ap_ Ay, o6pasyor ¢ ayyom OM cOOTBETCTBEHHO
YIABL Gy, @ay e Gppe JIETKO BHMZETb, uTO yCioBHe (1) o3mavaer, uto OA, | OM,
a yoosue (2) —uto OA, | OM, rye O4, noayusaercs us OA, BpauleHnuey

Puc. 2.

MPOTHB 4acOBOH CTPeakH (MPH OCBIYHOM HANPABAEHHM OTCYETa YriaOB) HA yroa

1 (paguan), OGa ycnoBuA BMECTE 03HAYalT NO3TOMY, 410 OA, =0, 1. e. A, co-

puagaer ¢ O. Ho B TakoM ciyuae npoexuust sektopa OA,,, TOBEPHYTOTO Ha yroa a
m

[1. e. BpIpaxenue Zai oS (¢; + @)], TOxe paBHa HYJIO, YTO M AOKa3blBaeT (3).
i=
3agaua 3. BoluMcauth CYMMY m BEKTOPOB C OGHMIMM HaualoM B LEHTpe
PaBWIBLHOIO m-YroJAbHAKAa H C KOHUAMH B €ro BepuldHax (pHc. 3, a).
Bbiio mpeAnoMeHo TPH PelleHus.
Pemenue 1. [lyctb cymma sTux BekTOpoB — BekTop OA- IloBEepHEM MHOro-

2n o
YFOJAbHHK BOKPY TOUKH O na yrox P Kawpgplit  BexTOp-Claraemoe NoBepHETCK

2w ——
Ha =; toraa u cymma OA nosepHeTca Ha TOT M€ Yrod, OPHHAB [OJONe-
m
nue OA’. BmecTe ¢ TeM KaX/Iblli BEKTOp nepeHneT npH TakOM IOBOPOTE B Cle-
AyWOWHH, Tak 4TO CyMMa He WaMeHHMTCs, cienoBarenpno, OA’=OA. Ho sTu Bek-
2n -
TOpyl 00pa3yioT yroa —-. 10 MOXKeT GbThb Juilb npyu ycaosun OA=0.

Pemenue 2. CxiagpiBas BEKTOPH IO NPaBHAY TPEYTOAbHHKA» B NOpSAKe
Cle0BaHHS BEPIIKH, MONYYHM, QUEBMJHO, mM-3BEHHYIO JOMAHYI, BCE 3BEHbS KO-
TOpOit paBHBL (OHH PaBHHI PAAMyCy OKPYXHOCTH, ONHCAHHOH OKOJO MHOTOYIOAb-

27
HHKa) ¥ BCE BHEMIHHE YI/ibl paBHB (OHM PaBHBI W puc. 3, 6). Orciona cieayer
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4TO JIOMaHas 06pa3yeT MpaBUIbHBIR m-YrOAbHHK, TaK KaK OH 3aMKHYT, TO MCKO-
Masg CyMMa paBHa HYJIO.

Pemenue 3. JocTaTouno foka3aTb 3TO Ui MPABUABHOTO M-YTOAbHHKa,
pACIONOKEHHOTO B KOMIVIEKCHOH IMIOCKOCTH Tak, 4YTO €ro BepuluHbl u30€pas

| o ¥
/77,/£J IX3
rd \ 8
P &4
f
! r
g
-1
i
g g )
Puc. 3.
HaloT Bee Kopuu m-F cremenn m3 1: 1, ¢, €%, .., €™7Y (puc. 3, 6). Taxoii npasuib-

HBIl M-yroJbHUK MBI B flafbHeHmieM ©yAeM Ha3biBaTbh OCHOBHBIM M-YTONbHUKOM,
LlenTp OCHOBHOrO M-yroAbHHKA HM300pakaeT Yuc-
10 0, aonua U3 BepIUHH — 9UCIO 1.

Kak M3BeCTHO, BEPIIMHBI OCHOBHOIO #1-YIoO/b-
H Ka M306pawaloT BCE PEWeHHA  YpaBHEeHHs
2™ — 1=0. [lo Teopeme Buera, cymMmma stux pe-
weHkA pasHa Hyno, #00 Kosdduumuent npu z™ !
B 9TOM VpaBHerMH paseH HyJ0. Ho kommaexc-
Hble YMCIA CKIaABIBAIOTCA MO INPABHIY CIOMEHHd
u3obpakaomux ux Bektopo. ClexoBaTenbHo,
CyMMa BEKTOPOB, O KOTOPWX TOBOPUTCS B YCJIOBHH
3ajaudl, PaBHa HYJIO.

3anaua 4. Beruncaurs npezea K

n—1

E sin <E7_‘>
n
. r=1

K =1lim Y

— cpedHee 3Hauerlle PYHKUUH. y==sin X Ha OT-
peske O=Sx=w.
Pemenue PaccMorpuMm crOBa mpasunbHbli Puc. 4.

M-YroJdbHUK, O KOTOPOM TOBOPHAOCH B NPeIblAy-

uiedl 3azave; Ha 9TOT pas OyaeM CYHTATb PalHyC ONHCAHHOH OKPYMHOCTH pas-
HBIM 1, 4 YHCIO €r0 CTOPOH Y€ TH bl M: e ==2n (Ha puc. 4 m =8). C10xuM Telepb
TOJbKO  «IPaBYK) [OMTOBHHY» Bektopos. QA4, -+ A0, + ... + OA, = OL.
3amnikaromas OL paccmarpusaeMoil CyMMBI ByaeT copnagaTth ¢ auamerpoMm D,
OKPYXHOCTH, ONMCAHHOH OKOJO HOBOTO /M-yrojbHuxa. JIerko BHAETb, UTO €CAH BeK-
T0p OA, Hanpasuth FOPH3OHTANBLHO, TO 3Ta 3aMBIKAIONLAs NP OOJAbWOM m GiM3Ka
K ee npoexuun OL’ na BepTuKalbHyl npamywo Of A Tak Kak DIPOEKUUH
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exuHnubbIX Bektopos OA,, OA4, ..., OA, #Ha 5Ty BepTHKalb PaBHB! KaK pas
i . 2n K . 4=m L 2n . (n—1)=w
sin 0 =90, sin —=sin —, sin—=sin—, ..., sin —
m n m n n

D
TO cpepuee 3HaueHHe K PABHO Npemeny, ¥ KOTOPOMY CTPEMHTCH dactHoe —2, Ho
n
P b, D,
U3 1000HSI m-yrOJBEHHKOB, H300pPaXEeHHBIX Ha pHc. 4, fcHO, 4TO == (Pajyc
n

k1
0A,=1), rpe a,=2sin - a b, = 1. CregosareabHo,

n—1
Z sin (fl‘)
k=0

n
. . 1OL| . Dy . 2
lim - = lim 5= lim — = lim ————=
n-»w n->o n->w ”"’°°lz-28m—n—
2n
sin T si ~
in — i1 -

. 2 2 2 2,
= lim PR 4 n Z 0 lim 2”:3‘_1:_ )
ns>oco| T 01 T n->oo T K 0
2n 2n

3amevanue. [TonyueHnpii pesyabTaT uUMeeT CACAYIOIIUMHA TeoMeTpHYeCcKHi}
CMBICA: Tpejel, K KOTOPOMY CTPEMHTCH IVIOWAib CTYNeHYaToH QUryphl, H300pamen-
HOI HA pHC. O, MEXJY NOAYBONHOH CHHYCOUAB H OCblO afcuuce, pased 2.

y

Puc. 5.

3apgaua 3. Jloxasath, YTO Cpejsee 3HAYEHHUe IPOM3BOABHOTO MHOTOYIEHa
¢ KOMOVIEKCHBIMH KO3 @HUHEHTaMH

Po@y=zftazt '+ ... 4o ()

B 7 BCPUIMHAX OPABMILHOIO A-YTOJbHHKA Ha KOMIJEKCHOH MIOCKOCTH, npu n >k,
PAaBHO 3HAYEHHIO MHOrOYIEHA B LEHTPE 3TOrO MHOrOYroAbHHUKA.
Pelense npousBoIuTCs B TPH STama.

") TakuM 06pasoM, 9TOT mMpefen OKazaacd PasHHM TOMY sHauenuo K, KoTopoilt
MBI panbile (cM. «MaTemaTHueckOe npocBellleHHe», BHIN. 2, crp. 242) HasBanu
cpednell sapuayneil eIMHUYHOTO OTpPe3ka. IJTO He CIAy4aiiHO] pelieHHe BCEro LuKJa
341aY O BapHAUMAX KPHBLIX MOMKET PacCMaTpHBaTbCAd KAaK KOCBEHHOE BblYMCIEHHE
yKasaHHOrO B 3TOH 3ajave mnpeneJa.



