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VII

Preface

Vladimir Igorevich Arnold is one of the most influential mathematicians of our time. 
V.I. Arnold launched several mathematical domains (such as modern geometric mechanics, 
symplectic topology, and topological fluid dynamics) and contributed, in a fundamental 
way, to the foundations and methods in many subjects, from ordinary differential equations 
and celestial mechanics to singularity theory and real algebraic geometry. Even a quick 
look at a partial list of notions named after Arnold already gives an overview of the variety 
of such theories and domains:  

KAM (Kolmogorov–Arnold–Moser) theory, 
The Arnold conjectures in symplectic topology, 
The Hilbert–Arnold problem for the number of zeros of abelian integrals, 
Arnold’s inequality, comparison, and complexification method in real algebraic geometry, 
Arnold–Kolmogorov solution of Hilbert’s 13th problem, 
Arnold’s spectral sequence in singularity theory, 
Arnold diffusion, 
The Euler–Poincaré–Arnold equations for geodesics on Lie groups, 
Arnold’s stability criterion in hydrodynamics, 
ABC (Arnold–Beltrami–Childress) flows in fluid dynamics, 
The Arnold–Korkina dynamo, 
Arnold’s cat map, 
The Arnold–Liouville theorem in integrable systems, 
Arnold’s continued fractions, 
Arnold’s interpretation of the Maslov index, 
Arnold’s relation in cohomology of braid groups, 
Arnold tong es in bifurcation theory, 
The Jordan–Arnold normal forms for families of matrices, 
The Arnold invariants of plane curves. 

Arnold wrote some 700 papers, and many books, including 10 university textbooks. He 
is known for his lucid writing style, which combines mathematical rigour with physical and 
geometric intuition. Arnold’s books on Ordinary differential equations and Mathematical
methods of classical mechanics became mathematical bestsellers and integral parts of the 
mathematical education of students throughout the world.  
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VIII

Some Comments on V.I. Arnold’s Biography and Distinctions 

V.I. Arnold was born on June 12, 1937 in Odessa, USSR. In 1954–1959 he was a student at 
the Department of Mechanics and Mathematics, Moscow State University. His M.Sc. 
Diploma work was entitled “On mappings of a circle to itself.” The degree of a “candidate 
of physical-mathematical sciences” was conferred to him in 1961 by the Keldysh Applied 
Mathematics Institute, Moscow, and his thesis advisor was A.N. Kolmogorov. The thesis 
described the representation of continuous functions of three variables as superpositions of 
continuous functions of two variables, thus completing the solution of Hilbert’s 13th prob-
lem. Arnold obtained this result back in 1957, being a third year undergraduate student. By 
then A.N. Kolmogorov showed that continuous functions of more variables can be repre-
sented as superpositions of continuous functions of three variables. The degree of a “doctor 
of physical-mathematical sciences” was awarded to him in 1963 by the same Institute for 
Arnold’s thesis on the stability of Hamiltonian systems, which became a part of what is 
now known as KAM theory.  

After graduating from Moscow State University in 1959, Arnold worked there until 1986 
and then at the Steklov Mathematical Institute and the University of Paris IX.  

Arnold became a member of the USSR Academy of Sciences in 1986. He is an Honorary 
member of the London Mathematical Society (1976), a member of the French Academy of 
Science (1983), the National Academy of Sciences, USA (1984), the American Academy of 
Arts and Sciences, USA (1987), the Royal Society of London (1988), Academia Lincei 
Roma (1988), the American Philosophical Society (1989), the Russian Academy of Natural 
Sciences (1991). Arnold served as a vice-president of the International Union of Mathema-
ticians in 1999–2003.  

Arnold has been a recipient of many awards among which are the Lenin Prize (1965, 
with Andrey Kolmogorov), the Crafoord Prize (1982, with Louis Nirenberg), the Loba-
chevsky Prize of Russian Academy of Sciences (1992), the Harvey prize (1994), the Dannie 
Heineman Prize for Mathematical Physics (2001), the Wolf Prize in Mathematics (2001), 
the State Prize of the Russian Federation (2007), and the Shaw Prize in mathematical 
sciences (2008).  

One of the most unusual distinctions is that there is a small planet Vladarnolda, discov-
ered in 1981 and registered under #10031, named after Vladimir Arnold. As of 2006 Arnold 
was reported to have the highest citation index among Russian scientists.  

In one of his interviews V.I. Arnold said: “The evolution of mathematics resembles the 
fast revolution of a wheel, so that drops of water fly off in all directions. Current fashion 
resembles the streams that leave the main trajectory in tangential directions. These streams 
of works of imitation are the most noticeable since they constitute the main part of the total 
volume, but they die out soon after departing the wheel. To stay on the wheel, one must 
apply effort in the direction perpendicular to the main flow.”  

With this volume Springer starts an ongoing project of putting together Arnold’s work 
since his very first papers (not including Arnold’s books.) Arnold continues to do research 
and write mathematics at an enviable pace. From an originally planned 8 volume edition of 
his Collected Works, we already have to increase this estimate to 10 volumes, and there 
may be more. The papers are organized chronologically. One might regard this as an 
attempt to trace to some extent the evolution of the interests of V.I. Arnold and cross-
fertilization of his ideas. They are presented using the original English translations, when-



IX

ever such were available. Although Arnold’s works are very diverse in terms of subjects, 
we group each volume around particular topics, mainly occupying Arnold’s attention dur-
ing the corresponding period.  

Volume I covers the years 1957 to 1965 and is devoted mostly to the representations of 
functions, celestial mechanics, and to what is today known as the KAM theory.  

Acknowledgements. The Editors thank the Göttingen State and University Library and the Caltech library 
for providing the article originals for this edition. They also thank the Springer office in Heidelberg for its 
multilateral help and making this huge project of the Collected Works a reality. 

March 2009 Alexander Givental 
 Boris Khesin 
 Jerrold Marsden  
 Alexander Varchenko 
 Victor Vassiliev 
 Oleg Viro  
 Vladimir Zakalyukin 
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ON THE REPRESENTATION OF
FUNCTIONS OF TWO VARIABLES IN THE
FORM χ[φ(x) + ψ(y)]�

V.I. Arnol’d

1. Kolmogorov proved [1] that the set of functions of two variables repre-
sentable as a certain combination of continuous functions of one variable and
addition is everywhere dense in the space C(E2) of continuous functions de-
fined on the square E2. It follows immediately from our result proved below
that this is not true for the simplest combinations: the set of functions of the
form χ[φ(x) + ψ(y)] even turns out to be nowhere dense in C(E2) .

Fig. 1.

We shall indicate a closed subset N of the square |x| � 2, |y| � 2 (Fig. 1)
such that for any continuous function f(x, y) vanishing on (and only on) N
there exists δ(f) > 0 such that |f(x, y) − χ[φ(x) + ψ(y)]| � δ at some point
of this square for any continuous functions χ, φ and ψ; every function having

� 12, No. 2, 119–121 (1957)Uspekhi Math. Nauk
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2 V.I. Arnol’d

N as its level set is ‘with a neighbourhood’ non-representable in the form
χ[φ(x)+ψ(y)] . An example of such a set N is the ellipse (x+y)2+ (x−y)2

4 = 1.
We shall prove this. Since f(x, y) is of constant sign outside the ellipse

we can assume that f(x, y) > 0 there. Then clearly there exists δ > 0 such
that f(x, y) > 2δ at all points in the region G

def= (x + y)2 + (x−y)2

4 > 5
4 , that

is, outside the ellipse M
def= (x + y)2 + (x−y)2

4 = 5
4 . Suppose that there exist

continuous functions φ(x), ψ(y), χ(z) such that |f(x, y)−χ[φ(x)−ψ(y)]| < δ †

for all (x, y), 2 � x, y � 2. Then the inequality χ[φ(x) + ψ(y)] < δ holds on
N and the inequality χ[φ(x) + ψ(y)] > δ holds on M .

The largest open connected sets G− ⊃ N and G+ ⊃ G,� where χ[φ(x) +
ψ(y)] < δ and χ[φ(x) + ψ(y)] > δ, respectively, are separated by the closed
set F where χ[φ(x) + ψ(y)] = δ (that is, each continuum intersecting G− and
G+ also intersects F ), because the continuous function χ[φ(x) + ψ(y)] on a
continuum takes all values between any two given values. By a well-known
theorem (Theorem E in [2]) the boundary of G+ has a component F ′ ⊆ F
already separating G− and G+, and hence M and N . We claim that the
continuous function φ(x) + ψ(y) is constant on F ′. Indeed, suppose that, on
the contrary, z1 = φ(x) + ψ(y)|a < φ(x) + ψ(y)|b = z2, where a, b ∈ F ′. Then
in a sufficiently small neighbourhood of a there is a point a′ ∈ G+ where
φ(x) + ψ(y) < z1 + z2−z1

3 , and in a sufficiently neighbourhood of b there is a
point b′ ∈ G+ where φ(x) + ψ(y) > z2 − z2−z1

3 . Therefore on a polygonal line
joining a′ and b′ in G+ there is a point c where φ(x)+ψ(y) = z1+z2

2 ; also there
is a point c on the continuum F ′ where φ(x) + ψ(y) = z1+z2

2 . Consequently,
χ[φ(x)+ψ(y)]|c′ = χ[φ(x)+ψ(y)]|c, which contradicts the conditions c′ ∈ G+,
c ∈ F ′.

We denote by z the unique value of φ(x)+ψ(y) at points of F ′. Then on the
intervals x = − 1

2 , y ∈ [1.1, 1.22] and x = −1
2 , y ∈ [−0.62,−0.5] intersecting M

and N there are points (−1
2 , y1) and (− 1

2 , y2) at which φ(x)+ψ(y) = z. There
is such a point (x1, y2) on the interval on which the line y = y2 intersects the
strip between M and N for x > 0.

It follows from the equalities��

φ(−1
2 ) + ψ(y1) = z ,

φ(−1
2 ) + φ(y2) = z ,

φ(x1) + ψ(y2) = z

that φ(x1)+ψ(y1) = z and χ[φ(x1)+ψ(y2)] = δ. However, it is easy to see that
the point (x1, y1) lies in G, therefore χ[φ(x1)+ψ(y2)] > δ. This contradiction
proves the ‘stable’ non-representability of f(x, y) in the form χ[φ(x) + ψ(y)];

† Translator’s note: This should be |f(x, y) − χ[φ(x) + ψ(y)]| < δ .
� Translator’s note: This should be G+ ⊃ M .

�� Translator’s note: The second of these inequalities contains a misprint. It should
read φ(− 1

2
) + ψ(y2) = z .

2



On the representation of functions of two variables 3

in particular, for the function f(x, y) = (x+y)2 + 1
4 (x−y)2−1 we can choose

δ > 1
4 .

2. I.A. Weinstein proved that the class of continuous functions of the form
χ[φ(x)+ψ(y)] that are strictly monotone in each variable is a closed subset of
C(E2). Here the strict monotonicity is essential: we claim that the function xy
is not representable in the form χ[φ(x) + ψ(y)] even though it is the uniform
limit of the sequence of functions exp

(
ln(x+ 1

n )+ln(y+ 1
n )

)
, which do have the

form χ[φ(x) + ψ(y)] (where φn(x) = ψn(x) = ln(x + 1
n ) and χ(z) = exp(z)).

Fig. 2.

In fact, if χ[φ(x) + ψ(y)] = xy everywhere in the square x, y ∈ [0, 1],
then the function φ(x) + ψ(y) would take the same value at the points (0, 0),
(0, 1), and (1, 0). Indeed, any two of these three points can be joined by a
polygonal line having no common points with the set xy = 0 apart from the
end points, and also by a polygonal line lying entirely in this set. If φ(x) +
ψ(y) took different values a and b at these end points (see Fig. 2), then the
intermediate value a+b

2 would be taken both on the set xy = 0 and outside
this set, which would mean that χ(a+b

2 ) = 0 and χ(a+b
2 ) > 0 simultaneously.

This contradiction proves that φ(0)+ψ(0) = φ(0)+ψ(1) = φ(1)+ψ(0); hence
φ(0) + ψ(0) = φ(1) + ψ(1) and therefore

0 = χ[φ(0) + ψ(0)] = χ[φ(1) + ψ(1)] = 1 .

In other words, there do not exist any functions φ(x), ψ(y), χ(z) such that
χ[φ(x) + ψ(y)] = xy.

We also point out that the first example of a continuous function not repre-
sentable in the form χ[φ(x)+ψ(y)] (obtained simultaneously by A.A. Kirillov
and the author), namely, the function f(x, y) = min(x, y) (where x, y ∈ [0, 1])
can also be approximated to arbitrary precision by functions of the form
χ[φ(x) + ψ(y)].

Received 26 December 1956
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5

ON FUNCTIONS OF THREE VARIABLES

V.I. ARNOL'D

In the present paper there is indicated a method of proof of a theorem

which yields a complete solution of the 13th problem of Hilbert (in the sense

of a denial of the hypothesis expressed by Hilbert).

Theorem 1. Every real, continuous function f{%1.x2.%3) of three variables

which is defined on the unit cube E3 can be represented in the form

( 1)

whe re the func t ions h.. and <p.. of two var iab les are rea I and cont inuous.
t} t}

A.N. Kolmogorov [1] obtained recently the representation

3
f (% 1. x 2. %3-) = . I hi [ cP i (% 1. x 2). X:3],

t =1
(2)

where the functions hi and <Pi are continuous, the function hi is real,

and the function <l'i takes on values which belong to some tree S. In the

construction of A.N. Kolmogorov (for the case of functions of three variables),

the tree a can be taken not as a universal tree. but such that all of its

points have a branching index not greater than 3. For this, the functions ukm

of the fundamental lemma [1] (for n = 2) must be chosen so that in addition

to the indicated five properties they must have the following properties.

(6) The boundary of each level set of each function uk. divides the plane

into not more than 3 parts.

(7) For every r, G~1) E2
•

On the basis of this remark, Theorem 1 is a consequence of the existence of

the representation (2) and of the next theorem.

Theorem 2. Let F be any family of real equicontinuous functions fee)

defined on a tree =all of whose points have a branching index < 3. One can

realize the tree as a subset X of the three-dimens ional cube E3 in such a

way t hat any Junct ion of the fami ly F can be represented in the form.

3

fee> = ~ fk(%k)'
k= 1

where x = (Xi' x2. X3) is the image of e€ a in t he tree X; the f k (xk)

are continuous real functions of one variable. while the fk depend continuously

51*

*

Translation of V.I. Arnol’d: On functions of three variables Dokl. Akad. Nauk SSSR 114:4 (1957),

 Editor’s note: translation into English published in Amer. Math. Soc. Transl. (2) 28 (1963), 51–54. 

 679–681
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on f (in the sense of uniform convergence).

We will introduce certain auxiliary concepts. Let K be a finite complex

of segments contained in E3 and consisting of segments which are not parallel

to any coordinate plane.

Definition 1. A system of points

ao =! a 1 =F ••• =F an _ 1 =F an

belonging to K will be called a zigzag (lightning) if the segments (Ji_1(Ji

are perpendicular to the axes Xa ., respectively, and
t

a1 =F a 2 =I ••• =F an- 1 =I <X n •

The finite system of the pairwise distinct points a·· . tagged by
1.11.2··· t n

the corteges of indices i1i2." in' will be called a branching scheme if

(1) there exists only one point ao tagged with one index; (2) the presence

of (J. i . . in the system implies the presence of a· . in the
t12··· t n-1 t n 1.1··· t n_1

system.

Definition 2. A branching system of points at' 1.' contained in K will
1'" n

be called a generating scheme if for a given cortege i 1••• i n the set of points

of the form a i1 ••• i i +1 lies on the plane passing through a· . andn n t1 ••• tn
perpendicular to some coordinate axis xa,. ., and contains all points of

t l' •• t n
intersection of this plane with K, that are dist inct from a . '.

t 1 ••• t n
The tree a can be represented in the form

00

== U Dn , Dn C Dn+1'
n= 1

where Dn is a finite tree, D1 is a simple arc, and Dn+1 is obtained from

Dn by attaching segments Sn at certain points Pn that are not branch points

or endpoints of dn [2].
We will denote by (Un the upper boundary of the oscillations of the

functions f € F on the components of the difference E\Dn • It is easy to

see that

CU n -+ 0 when n -+ 00.

Therefore, one can select a sequence

n1 < n2 < ... < nr < ""

so that

1
cu n (: - when n) nr •

r 2
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ON FUNCTIONS OF THREE VARIABLES

The realization X of the tree a in E3 is constructed in the form

m

X = U D~,
n-l

53

where D~ is a complex of segments which realize Dn in such a way that the

images S~ of the arcs Sn are segments that are not perpendicular to the

coordinate axes.
to

The inductive construction of D~ is performed so that U D~ is a tree
n= 1

[2], and that the following conditions are satisfied.

(1) Every function f € F can be represented on Dn in the form

(3)

where the f'k(xk) depend continuously on f.

(2) The tree D~ has for every point aD a generating system issuing

from a l , and whose initial direction <X O can be chosen arbitrarily.

(3) Let An be the set of points D~ which Is the image of the branch

points of S. There exists a denumerable set Bn C D~, Bn n An = 0 such that

the zigzag ao ••• am' which begins at ao € D~"Bn' has no points in common

with An and no coincident points ai = aj' i =I j.

(4) If nr < n ~ nr+l , then

(4)

This proof of the possibility of the inductive construction of the trees

D~, and of the functions f'k with properties (1) to (4), is too complicated

to be given here. Roughly speaking, at each step the attached segment 8~+1 is

chosen of very short length; its direction, and the way of mapping of 8n+1 on

S~+1 are selected so as to guarantee the fulfillment of properties (2) and (3)

by D~+1. The preservation of equality (3), in the transition from n to

n + 1, on the newly attached segment 8n+1, requires the introduction of a

correction f'k+ 1
- f'k, for at least one of the functions fk' on the pro­

Jection S~+1 on the axis xk. For the preservation of equality (3) on the

earlier constructed tree D~, it is necessary to compensate for this correction

by means of new corrections for the functions fk on a number of other segments.
The exact method of the introduction of these corrections, we will not present

here. We only note the following: these corrections must be such that inequality

(4) will be preserved for n' = n + 1; if S~+1 1s chosen small enough, and if
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its direction is chosen appropriately, it must be possible to produce it for

every function fk on a finite system of non-intersecting segments of the axis

%k. In the proof of this possibility one makes use of the fact that the tree

D~ has properties (2) and (3).

The proof of the existence of the continuous function

and of the validity of the equation

on the entire X, is not complicated.

I express my sincere thanks to A.N. Kolmogorov for the aid and advice I
have received from him in the preparation of this work.
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THE MATHEMATICS WORKSHOP FOR
SCHOOLS AT MOSCOW STATE
UNIVERSITY�

V.I. Arnol’d
Moscow

The mathematics workshop for schools at Moscow State University in the
name of Lomonosov came into existence in 1935. The organizers of the work-
shop were: the now-deceased Corresponding Member of the Academy of Sci-
ences of the USSR L.G. Shnirel’man, Professor L.A. Lyusternik (now Cor-
responding Member of the Academy of Sciences of the USSR), and Doctor
I.M. Gel’fand (now Corresponding Member of the Academy of Sciences of the
USSR).

The activities of the workshop proceed in two streams: twice a month (on
Sundays) lectures on mathematics are given by professors and instructors at
Moscow State University and other institutes (separately for the pupils of the
7–8 class and for pupils of the 9–10 class) and sections of the mathematics
workshop meet weekly under the guidance of students and (more rarely) post-
graduate students of the university.1 The annual Mathematical Olympiad is, in
a certain sense, the culmination of the activities of the circle; here the directors
of the mathematics workshop traditionally play a large role in bringing this
about.

General information on the activities of the mathematics workshop in the
1955/56 academic year is given in the preceding issue of “Matematicheskĭı
Prosveshchenie”; there one can find the list of lectures given in that year.2

The series “Popular lectures on mathematics” published by Gostekhizdat will
give an idea of the character of these lectures.3 The main part of this series of
books by Moscow authors consists in expositions of the lectures given in the
mathematical circle for schools at Moscow State University. Here we wish to
shed light on the activities of the sections of the circle (the early part of these

� Mat. Prosveshchenie 2, 241–245 (1957)
1 It was only at the very beginning of the activities of the workshop that professors

of Moscow State University were also involved in the work of the sections.
2 Dynkin, E.B., Girsanov, I.V.: The nineteenth School Mathematical Olympiad in

Moscow. Mat. Prosveshch. 2, No. 1, 187 (1957).
3 Editor’s note: See the paper by N.B. Beskin on pp. 275–290 of this issue.
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activities is well reflected in the series of books“Library of the mathematical
circle”, also published by Gostekhizdat).

The ‘lessons’ of a section take place in the form of a discussion: the super-
visor of the section introduces the topic of study to the participants; 5–10
minutes is set aside for each problem; then the solution is explained and
the supervisor continues his talk on the topic being studied. Each individual
problem is not difficult (most of the pupils manage it in 5–10 minutes). At the
end of the lesson the pupils are given (usually more difficult and sometimes
very difficult) homework problems, which are collected at the beginning of the
next lesson.

Below we give a summary account of two lessons of the workshop (a section
for 10 pupils) on the themes “Variation of a curve” and “Harmonic functions”.

Variation of a curve

We are given a line segment AB of length 1. If this line segment is illu-
minated by parallel rays, then the length of the shadow thrown onto various
lines will vary from 0 to 1. More precisely, the length of the projection of the
segment onto lines lying in the same plane will, in general be different for
different lines; however in all cases it will be between 0 and 1. The length of
the projection of AB onto a line l is called the variation of the segment AB
in the direction l (Fig. 1); we shall denote it by Vl(AB) or simply by Vl if it
is clear which segment we are referring to.

Fig. 1. Fig. 2.

It is intuitively obvious that the mean value of the ‘shadow’ over all direc-
tions exists and that it is between 0 and 1. More precisely, this means that if
we divide the 360◦ angle into n equal parts, and take the arithmetic mean

Vn =
Vl1 + Vl2 + · · ·Vln

n

A

B

l

A

B

10
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of the variations of the segment AB in the directions l1, l2, . . . , ln (Fig. 2),
then the limit

lim
n→∞Vn = K

exists and K lies between 0 and 1.
This number K is called the mean variation or simply the variation of the

unit segment AB.
This number is not very difficult to find;4 it is equal to 2

π ≈ 0.637. However,
we shall not find it now, but calculate it later via an indirect route (Problem 7)
Nevertheless, we shall use the fact that this limit exists from the very outset.

Problem 1. What is the variation of a segment of length a?

Solution. Since, clearly, the variation of such a segment in any given
direction is a times as large as that of a unit segment parallel to it, and the
limit of this quantity, that is, the mean variation of the segment of length a,
is equal to Ka.

We define the variation of a polygonal line in some direction to be the
sum of the lengths of the projections of its component line-segments (‘links’)
in this direction (Fig. 3).

Fig. 3.

Problem 2. Determine the variation of a square of side 1 in the directions of
its sides and its diagonals.

Solution. Clearly, the variation of the square in the direction of each side
is equal to 2, and in the direction of a diagonal is equal to 2

√
2.

The mean variation of a polygonal line over all directions, or simply the
variation of the polygonal line over all directions is defined, as above, via the
passage to the limit: V = limn→∞ Vn, where Vn is the arithmetic mean of the
variations of the polygonal line along the n directions of the sides of a regular
n-gon.

4 See, for example, the book Yaglom, A.M., Yaglom, I.M.: Elementary problems in
a non-elementary setting. Gostekhizdat, Moscow (1954), Problem 147b.

l
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Problem 3. Determine the variation of a polygonal line of length a.

Solution. Clearly the variation of a polygonal line in each direction is
the sum of the variations of the projections of its links in this direction, and
since the mean value of a sum is equal to the sum of its mean values,5 the
variation of the polygonal line is the sum of the variations of its links. Since,
by Problem 1 the variation of each link is equal to the product of the length
of this link by K, the variation of the polygonal line is Ka.

Fig. 4. Fig. 5.

In order to transfer the definition of variation to curves we need to make
precise the notion of a curve. This is difficult to do in the general case. How-
ever, we shall assume that the curve is either convex or can be divided into
finitely many convex pieces. Then when one projects the curve in any given
direction one can divide it into finitely many pieces each of which is inter-
sected just once by each of the projecting lines.6 Then the variation of the
curve in the chosen direction is, by definition, the sum of the lengths of the
projections of its pieces in this direction (Fig. 4). It can be shown that there
exists a mean value of this quantity over all directions. We call this the mean
variation or simply variation of the curved line.

It is clear that if the curve is a polygonal line, then we arrive at the previous
definition.

5 The precise meaning of this phrase is as follows: the arithmetic mean of the
variations of a polygonal line over n directions is equal to the sum of the arithmetic
means of the variations of its links over these directions. Therefore the limit as
n → ∞ of arithmetic means of the variations of the polygonal line over the
different directions is equal to the sum of the limits of the arithmetic means of
the variations of the individual links.

6 Here we do not rule out the case when such a piece is a straight-line segment,
so that when projecting in one of the directions the straight-line segment lies
entirely in the projecting line.

l
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Problem 4. Find the variation of a circle of diameter D.

Solution. First we choose some direction. The diameter having this di-
rection divides the circle into two pieces, namely, into two arcs each of which
is intersected by any line perpendicular to the chosen direction in at most one
point. Hence the variation of the circle in the chosen direction is equal to 2D.
Clearly the variation in any other direction is the same, therefore the mean
variation of the circle is equal to 2D.

We now select several points on the curve and join them successively by
straight lines (Fig. 5). Then we obtain a polygonal line. It can be shown that
for sufficiently good curves (for example, for all convex curves) the limit of
the lengths of these polygonal lines exists, provided that as these polygonal
lines vary the length of the largest link of the lines tends to zero. This limit
is called the length of the curve.

It can also be proved that for curves that can be divided into finitely many
convex pieces the limit of the variations of these polygonal lines exists as the
length of the largest link tends to zero.

Problem 5. Find the limit which the variation of a polygonal line inscribed
in a “sufficiently good” curve of length a tends to when the polygonal line
varies so that the length of its largest link tends to zero.

Solution. Since for each polygonal line of length an the variation is equal
to Kan and an → a for “sufficiently good” curves, the limit of the variations
of the polygonal lines is equal to Ka.

Problem 6. Prove that the variation of a (‘sufficiently good’) curve of length
a is equal to Ka.

Solution. It suffices to observe that one can inscribe in such a curve a
polygonal line with arbitrarily small links whose variation along each of the
n given directions coincides with the variation of the curve. Therefore, once
the limit in Problem 5 exists it is equal to the variation of the curve.

Problem 7. Find the numerical value of K, that is, the variation of a segment
of length 1.

Solution. Since, on the one hand, a circle of diameter D has length D
and hence variation KπD (Problems 5 and 6) while, on the other hand (Prob-
lem 4), the variation of this circle is equal to 2D, it follows that K = 2

π .
By the width of a curve with respect to a given direction we mean the

smallest distance between two lines of this direction that enclose the curve.
A curve has constant width if its width with respect to all directions is the

same. Examples of a curve of constant width are the circle and the so-called
Rello triangle consisting of three equal arcs of a circle (Fig. 6).7 With the help
7 There is a lot of information about curves of constant width in the book: Yaglom,

I.M., Boltyanskii, V.G.: Convex figures. Gostekhizdat, Moscow (1951).

13
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of variation one can obtain a very elegant proof of the following Barbier’s
Theorem:

Problem 8. Prove that all curves of constant width h have the same length
πh.

Solution. This follows from the fact that the variation of each such curve
in any direction is equal to 2h; see the reults of Problems 6 and 7.

Fig. 6.

Here is another problem which at first glance appears to be rather com-
plicated:

Problem 9. A curve L of length 22 is contained in a circle C of radius 1.
Prove that there is a line intersecting L in at least 8 points.

Solution. The variation of L is equal to 2
π · 22 > 14 (Problems 6 and 7).

On the other hand, the length of the projection of L in any direction does not
exceed 2 (L is contained in C!). Hence for some directions certain parts of the
projection of L will be covered by the projections of separate arcs of L more
than 7 times (that is, at least 8 times). This completes the proof.

We now turn to an account of the lesson devoted to the topic “Harmonic
functions”.

The conclusion of this article will appear in the next issue

14
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в ШI{()ЛЬНОМ МАТЕМАТИЧЕСКОМ КРУЖКЕ ПРИ МГУ

В. И. Арнольд

(Москва)

(Окончание)

(З)

(1)

(2)

м8'11'

Рис. 1.

о

Гармонические функции

две первые задачи не имели отношения к основной теме. для

полноты освещения занятия кружка мы ПРИВОДIIМ их; близкая 1{ ним

по методу решения третья задача явля" N
лась подготовительной J{ четвертой, с ко­

торой, по существу, и начиналась тема.

3 а д а ч а 1. Найти наибольшее и наимень­

шее значения выр ажения

а sin ~ + ь cos ~ (а и Ь положительны).

Реш е н и е'. Проведем два взаимно-пер­

пендикулярных луча ОМ и ON и построим

прямоугольный треугольник ОАВ с катетами

ОА == а и АВ === Ь, расположив их так, как на
рис. 1 (прямые углы MON и ОАВ ориентированы против часовой стрелки).
Обозначим угол AON через ер, тогда, проектируя ломаную ОАВ на ось ОМ
(проекции направленные!), получаем 1):

(аВ') ==пр. ЙВ==пр. ОА + пр. АВ:::::: а sin ~ + ь cos~.

Если вращать треугольник ОАВ вокруг вершины О) то угол ер изменя­
ется; наибольшее и наименьшее значения проекции (ОВ') достигаются, когда

а ,r 2 + Ь2
отрезок ОВ коллинеарен ОМ, т. е. когда tg" ~ :::= ь; они равны у а и

- Уа2 +Ь2•

3 а д а ч а 2. доказать, что если

а. cos CPl + а2 cos СР2 +... + аn cos С?N == О
и

a1cos (qJl + 1) + a2 cos (92 + 1) + ... + аm cos (~т + 1) =0

(все коэффициентыai положительны), то и при любом cl

а 1 cos (~ + а) + а2 cos (92 + а) +.,. + аm cos (ерт + а) = О.

1) (аВ') - величина направленной проекции~

* The school mathematical circle at Moscow State University: 
Mat. Prosveshchenie 3 (1958), 241–250

*

Editor’s note: V.I. Arnol’d: 
harmonic functions. Published in 
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Реш е н и е. Выберем в плоскuсти JIУЧ ОМ И построим JI0маную линию

ОА1А2 ••• Аnz (на рис. ~m=3), ГД~ OAt=a!) А1А2 ==а2 , ... , Аm_]Ат=аm,

причем BeKfopbI ОАl' А1А,2, ..•, Ат _1Аrn образуют с лучом ОМ соответственно

уг.пы tfl' ер2' •••, <Рт· Легко видеть, что условие (1) означает, что ОАm L ОМ,

а условие (2) - что ОАm -.l ОМ, гле ОАт ПО"ТJучается из ОАm вращением

Gз==Gm
t

~ М
а ----~--------------- ---- .....

Рис. 2,.

против часовой стрелки (при обычном направлении отсчета,УГ ЛОВ) на угол

1 (радиан). Оба условия вместе означают поэтому, что ОАт = О, Т. е. Аm со..
впадает с. О. Но в таком случае проекция вектора ОАm, повернутого на угол а

т

[Т. е. выражение ~ ai cos (~i + а)], тоже равна нулю, что и ДQкаэывает (3).
i=l

3 а Д а ч а 3. Вычислить сумму т векторов с общим началом в центре

правильного т-угольника и с концами в его вершинах (рис. 3, а).

Было предложено 'Три решения ..
Реш е н и е 1. ПУСТЬ сумма этих векторов - вектор ОА· Повернем много-

О 21t К ~.
угольник вокруг точки на угол т. .аждыи вектор-слагаемое повернется

2~ --
на -; тогда и сумма ОА повернется на тот же угол, приняв положе·

ln

ине ОА' .. BMec:re с тем каждый вектор перейдет при таком повороте В" СЛе­

ДУЮЩИЙ, так что сумма не изменится-, следовательно, ОА' ОА. Но эти век ..
2~ --

торы образуют угол -. Это может быть лишь при условии ОА= о.
m

Реш е н и е 2. Складывая векторы по «правилу треугольника» в порядке

следования вершин, получим, очевидно, т-звениую ломаную,. все звенья ко ...
торой равны (они равн·ы радиусу окружности,: описанной около МНОГОУГОЛЬ­

21t
ника) и все внешние углы равны (они равны -, рис. 3, б). Отсюда следует

т



17

В школьном МАТЕМАТИЧЕСКОМ КРУЖКЕ ПРИ МГУ 243

ЧТО ломаная образует правильный т-угольник; так как он замкнут, то иско­

мая сумма равна нулю.

Реш е н и е 3. Достаточно доказать 9ТО дЛЯ правильного т-угольника,

расположенного в комплексной плоскости так, что его вершины изобра ..

-J----+---~--:r

а}

Рис. 3.

жают все корни т-й степени из 1: 1, €, Е2, ••• , еm - 1 (рис. 3, в). Такой правиль­
вый 1n-УГОЛЬНИК мы в дальнейшем будем называть основным т-угольником.

UeHTp основного т-угольника изображает чис­

ло О, а одна из веРlllИН - число 1.
Как известно, вершины основного т-уголь­

н ка изображают все решения уравнения

zm - 1 == О. По теореме Виета, сумма этих ре­

шений равна нулю, ибо коэффициент при zm-1
В этом уравнении равен нулю. Но комплекс­

ные числа складываются по правилу сложения

изображающих их векторов. Следовательно,

сумма векторов, о которых говорится в условии

задачи, равна нулю.

3 а д а ч а 4. Вычислить предел К

n-l

L sinC~)
К == Вт 1r_,="'_-_1 _

n

~ среднее значение функции у == sin х на ОТ- д7

резке О::::;; х ~ 1t.

Реш е н и е. Рассмотрим снова правильныfi tJис. 4.
т-угольник, о котором говорилось в предыду~

щей задаче; на этот раз будем считать радиус описанной окружности рав­
ным 1, а число его сторон q е т н ы м: т = 2n (на рис. 4 т == 8). Сложим теперь

только «правую· половину» векторов: ОА1 + АО2 + ... + ОАn == OL.
Замыкающая OL рассматриваемой суммы будет совпадать с диаметром Dn
окружности, описанной около нового т-угольника. Легко видеть, что если век-

тор ОА} направить горизонтально, то эта замыкающая при большом т близка
к ее проекции OL' на вертикальную прямую Ot. А так как проекции
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единичных векторов ОА1 , ОА2, ••• , ОАn на эту верТI1каль равны как раз

sin 0=0.,
. 2тс . 7t • 4п . 21t

SlП ln'= Sln N' Sln т ::::: SlП N' ... , . (n -1)11:
Sln---,

n

D
то среднее значение К равно пределу, i( которому с.тремится частное -..!!. Но

II

б 4 Ьn Dn
из подобия т-угольников, изо раженнЬJХ на рис. ,ЯСНО, что - = -2 (радиус.

аn

ОА1 = 1), где аn == 2 sin 2:.., а Ьn = 1. Следовательно,
n

n-l

~ sin (k1C)
k~ n jOL, D 2

Вт == Нт --== Нт ~ == Вт _
n~ 00 n n -:"00 n n-:;ОО n n-+ОО n.2 sin~

2n

(

. 71:) . 1t. 2 Sln 2n 2 . Sln 2n 2 2 1).
=== 11т -:-- ==-: 11т --==-:1=-

n....:;.оо 1t 1t 7t n....:;.оо те 1t 1t

. 2n 2п

3 а м е ч а н и е. Полученный результат имеет следующий геометрический

смысл: предел, к которому стремится площадь ступенчатом фигуры, изображен­

иой на рис. 5) между полуволной синусоиды и осыо абсцисс, равен 2.

Рис. 5.

3 а Д а ч а 5. ДокззаiЬ, что среднее значение произвольного многочлена

с комплексиыми коэффициентами

Pk (Z)==zk+a1z
k- 1 + ... +ak (1)

в n вершинах правильиого n-угольника на комплексной ПЛОСКОСiИ, при n > k)
равно значению многочлена в центре этого многоугольника.

Решение производится в три этапа.

t) Таким образо~) этот предел оказался равным тому значению К, КО1'ОрЫЙ

мы раньше (см. «Математическое проевещение», вып. 2, СТр. 242) назвали

средней вариацией единичного отрезка. Это не случайно; решение всего цикла

задач о вариациях кривых может рассматриваться как косвенное вычисление

указанного в этой эадаче предела.


