Alberto Carpinteri

Fracture and Complexity

One Century since Griffith's Milestone

Solid Mechanics and Its Applications

Volume 237

Founding Editor

G. M. L. Gladwell, University of Waterloo, Waterloo, ON, Canada

Series Editors

J. R. Barber, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA

Anders Klarbring, Mechanical Engineering, Linköping University, Linköping, Sweden

The fundamental questions arising in mechanics are: Why?, How?, and How much? The aim of this series is to provide lucid accounts written by authoritative researchers giving vision and insight in answering these questions on the subject of mechanics as it relates to solids. The scope of the series covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; variational formulations; computational mechanics; statics, kinematics and dynamics of rigid and elastic bodies; vibrations of solids and structures; dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and membranes; structural control and stability; soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechanics and machine design. The median level of presentation is the first year graduate student. Some texts are monographs defining the current state of the field; others are accessible to final year undergraduates; but essentially the emphasis is on readability and clarity.

Springer and Professors Barber and Klarbring welcome book ideas from authors. Potential authors who wish to submit a book proposal should contact Dr. Mayra Castro, Senior Editor, Springer Heidelberg, Germany, email: mayra.castro@springer.com

Indexed by SCOPUS, Ei Compendex, EBSCO Discovery Service, OCLC, ProQuest Summon, Google Scholar and SpringerLink.

More information about this series at http://www.springer.com/series/6557

Alberto Carpinteri

Fracture and Complexity

One Century since Griffith's Milestone

Alberto Carpinteri Politecnico di Torino Turin, Italy

ISSN 0925-0042 ISSN 2214-7764 (electronic) Solid Mechanics and Its Applications ISBN 978-94-024-2024-1 ISBN 978-94-024-2026-5 (eBook) https://doi.org/10.1007/978-94-024-2026-5

© Springer Nature B.V. 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature B.V. The registered company address is: Van Godewijckstraat 30, 3311 GX Dordrecht, The Netherlands

Divergence Syndromes

"Almost every case study we perform involves a divergence syndrome. That is, some quantity that is commonly expected to be positive and finite turns out either to be infinite or to vanish. At first blush, such misbehavior looks most bizarre and even terrifying, but a careful re-examination shows it to be quite acceptable (...), as long as one is willing to use new methods of thought"

Benoit B. Mandelbrot (1982), "The Fractal Geometry of Nature", W. H. Freeman & Company, New York, page 19.

Preface

Complexity, as a transversal scientific discipline, generally refers to the study of systems with many interacting components, in which the global behaviour is qualitatively different from (and not encoded in) the behaviour of the single components. Actually, researchers did not come to a univocal definition of Complexity, since it manifests itself in several different ways. Complexity can not represent a homogeneous and autonomous discipline. As a matter of fact, under the label of Complexity Sciences we comprehend a broad variety of phenomena, theories, approaches, and techniques: nonlinear dynamics, deterministic chaos, nonequilibrium thermodynamics, fractal geometry, fractional calculus, intermediate asymptotics (complete and incomplete self-similarity), renormalization group theory, catastrophe theory, self-organized criticality, neural networks, cellular automata, fuzzy logic, etc.

Complex Systems lie somehow in between perfect order and complete randomness—the two extreme conditions that occur only very seldom in nature—and exhibit several common features, such as: sensitivity to initial conditions, pattern formation, spontaneous self-organization, emergence of cooperation, emergence of hierarchical or multi-scale structures, collective properties emerging beyond those contained in the single parts, size-scale effects, etc.

Complexity Sciences are a subject of fast growing interest inside the international scientific community. In particular, the most interesting and even intriguing mechanical behaviours and failure phenomena in solids and structures can be synthetically captured and consistently interpreted through the use of innovative conceptual tools in the framework of Complexity Sciences. Aim of the present book is that of providing an insight into the role of Complexity in the fields of Strength of Materials and Fracture Mechanics. The book is divided into three parts. While the with the traditional concepts of stress-concentration stress-intensification at the tip of a notch or crack (local stress-singularity approach), and with the corresponding total potential energy release rate (global energy-based approach), the remaining two deal with the opposite natural trends in composite systems: catastrophe and chaos arising from simple nonlinear rules, as well as order and structure emerging from heterogeneity and randomness.

viii Preface

Part I (Chaps. 1–5) deals with the most classical concepts of *Linear Elastic* Fracture Mechanics (LEFM), at the same time preparing the ground for more advanced and sophisticated interpretations based on and inspired by Complexity Sciences. After introducing the concept of stress-concentration and its limit case of stress-intensification for curvature radii at the notch root tending to zero (Inglis paradox), the energy criterion by Griffith is recalled, for which a dimensional disparity between surface energy and elastic strain energy density appears. From this fundamental dimensional asymmetry descends the self-similarity loss in collinear crack propagation. On the other hand, an alternative manner to address the problem is that of considering the stress-singularity with its characteristic negative power in the radial distance from the crack tip or re-entrant corner vertex (exponent ranging between -1/2 and zero). The most severe stress-singularity of order -1/2 is achieved only for sharp cracks in linear elastic materials. Its attenuation is predicted for power-law hardening materials and/or for re-entrant corners, up to reach the value zero for rigid-perfectly plastic materials and/or for limit flat angles. Direct consequence of the singular stress field is the strength versus size-scale bi-log linear decreasing diagram with slope equal to the negative value of the exponent. Upper bound to the absolute value of the slope is the limit value 1/2. The stress-intensity factor presents anomalous physical dimensions in order to establish dimensional homogeneity in the formulas representing the singular stress field. Therefore, the stress-intensity factor plays the role of a renormalized stress, making easier to accept the idea of a stress divergence at the crack tip. As Griffith solves the Inglis paradox by considering an energy balance between the differentials of two quantities respectively proportional to the crack length and to its square, so does Irwin by applying a renormalization group transformation to the singular stress field. In both cases, the dimensional disparity between tensile strength and surface energy or fracture toughness represents the fundamental reason for scale effects. In addition, Irwin himself discovers the deep connection between the two alternative approaches to Fracture Mechanics through his well-known theorem and quadratic relationship between stress-intensity factor and strain energy release rate. Also the cases of nonlinear elastic materials (J-integral) and of nonsymmetrical crack loading or noncollinear crack growth (Mixed Mode) are presented in the book. In the case of a statistical population of micro-cracks, the mixed mode locus associated to a frictional criterion can explain the nonconvexity of the resistance loci in the principal stress plane for cementitious materials.

Part II (Chaps. 6–10) deals with *Nonlinear Fracture Mechanics* models (in particular, the *Cohesive Crack Model* to describe strain localization both in tension and in compression) and their peculiar consequences: *fold catastrophes* (post-peak strain-softening and snap-through instabilities) or *cusp catastrophes* (snap-back instabilities) in plain or reinforced structural elements. Important applications to civil structural engineering are shown: evaluation of the minimum and maximum reinforcement percentages for concrete elements in flexure, in order to avoid brittle phenomena of cracking (edge in tension) or crushing (edge in compression); plastic rotation capacity of reinforced concrete beams; brittle debonding or delamination between concrete and external retro-fitting plates; detachment and slippage between

matrix and fibre or re-bar. In such a context, superplasticity in micro-crystalline materials can be interpreted as a snap-back condition. Also dynamic systems showing fractal attractors as well as transitions to chaos and period doubling are considered in the book. How can a relatively simple nonlinear constitutive law, which is scale-independent and does not contain built-in randomness, generate a size-scale dependent ductile-to-brittle transition, or a completely unpredictable dynamic behaviour? Constant reference is made to Dimensional Analysis and to the definition of suitable nondimensional brittleness numbers that govern the transition. These numbers can be defined in different ways, according to the selected theoretical model. The simplest way is that of directly comparing critical LEFM conditions and plastic limit analysis results. This is an equivalent way -although more effective for finite-sized cracked plates- to describe the ductile-to-brittle size-scale transition, if compared to the traditional evaluation of the crack tip plastic-zone extension in an infinite plate. In extremely brittle cases, the plastic zone or process zone tends to disappear and the cusp catastrophe conditions prevail over the strain-softening ones and tend to coincide with the LEFM critical conditions in the case of initially cracked plates.

Part III (Chaps. 11-15) deals with the occurrence of self-similar and fractal patterns in the deformation, damage, fracture, and fragmentation of heterogeneous disordered materials, and with the consequent apparent scaling in the nominal mechanical properties of the same materials. Such a scaling is negative (lacunar fractality) for tensile strength and fatigue limit, whereas it is positive (invasive fractality) for fracture energy, fracture toughness, and fatigue threshold. At the same time, corresponding fractal (or renormalized) quantities emerge, which are the true scale-invariant properties of the material. They appear to be the constant factor (the universal property) in the power-law relating the nominal canonical quantity to the size-scale of observation. When the reference sets from self-similar become self-affine, we obtain Multi-fractal Scaling Laws, which are asymptotic and present a decreasing fractality for increasing structural sizes. They reproduce the experimental data very consistently. Another relevant aspect of Complexity concerns Criticality in the acoustic (and, more generally, energy) emissions from damaging structures, as well as in the seismic activity of the Earth's Crust. The emergence of scaling and fractality is emphasized for the crack or fault distributions in both space and time. On the other hand, Critical Phenomena are always associated to the emergence of self-similar or self-affine patterns, to fractal (renormalized) or multi-fractal quantities, and to spontaneous self-organization. Typical examples are represented by: phase transformations, laminar-to-turbulent fluid flow transitions, avalanches in granular media, earthquakes, micro-cracking and fracture in structural materials. In this context, the defect size distribution of self-similarity can be defined, for which the largest defect is statistically proportional to the characteristic structural size. It intrinsically represents a critical condition by increasing the structural size-scale. In a fractal framework, it is then possible to define a scale-invariant constitutive law: the so-called Fractal Cohesive Crack Model, in which stress and strain are defined over lacunar fractal sets and the fracture energy in an invasive fractal set, which is the Cartesian product of the two previous sets. The slopes of the related bi-log scaling x Preface

laws are represented by the difference between the fractal dimension and the entire canonical dimension of the reference sets. In the case of stress or strength, the upper bound to the absolute value of the slope is equal to 1/2 again, and represents the condition of maximum disorder at the smallest scales. It is given by the condition of self-similarity in the defect size distribution, i.e., by the LEFM stress-singularity, or, alternatively, by the invasive fractal dimension of the most disordered Brownian surface (allowing macro-crack kinematics of opening and closure), which is equal to 2.5. It is not difficult to prove that the corresponding most disordered ligament or resisting cross-section has a lacunar fractal dimension equal to 1.5. This means that its dimensional decrement with respect to the entire canonical dimension 2 is equal to 0.5, i.e., the slope is just the same as that deriving from the LEFM application. Such a convergence of values originating from different assumptions is an evidence of the validity and consistency of the scientific framework where this subject has been developed. Another relevant issue, which is tackled in the book, is the evolution of the fractal dimension of a micro-crack network. Initially, it could be assumed to be between 2 and 3. Increasing the load, it increases up to reach its maximum value 3 (criticality condition of smeared volumetric damage), and then decreases down to the value 2 (localization to a fracture surface). At the maximum, micro-cracks start to coalesce while a macro-crack starts to form. The b-value of the Gutenberg-Richter distribution is equal to one-half of the fractal dimension of the micro-crack network, and therefore it is demonstrated to evolve from 1.5 to 1.0, going from criticality to final fracture. In the case of a macro-crack propagation, the critical condition may be preceded by a condition of Sub-critical Crack Growth, which is generally due to fatigue and/or creep loading conditions. The well-known fatigue curves of Wöhler and Paris can be renormalized in both axes, including the crack growth rate and excluding the number of cycles, so that a collapse of the scale-dependent curves occurs onto a single renormalization curve that approximates the experimental results very satisfactorily. In this context, the fatigue threshold tends to zero for the crack length tending to zero, so providing a very consistent solution to the still open short crack problem. Analogously, the fatigue limit tends to zero for the specimen size tending to infinity.

The book presents also the applications of *Fractional Calculus* to fractal and nonlocal media, as well as an insight into the phenomena that might occur artificially or naturally after and beyond the material compression failure: *fragmentation* and *comminution*. They describe properly what happens in rocks during drilling perforations or the superficial wear in technological materials (see the well-known case of MIR space station). The phenomena of impact and explosion are also contemplated in the book.

My personal studies and investigations on the topics considered in the book started in 1975 at the Institute of Structural Mechanics of the University of Bologna in Italy, under the supervision of Professor Angelo Di Tommaso. During the following years, I had the opportunity to collaborate and to have a scientific debate with an increasing number of people and within a very diversified set of contexts. Very important and influential was for me the sabbatical academic year 1982–1983

that I spent at the Institute of Fracture and Solid Mechanics of Lehigh University in Pennsylvania (USA), under the supervision of Professor George Sih. I am deeply indebted to both my mentors, who, with their experience, guided me in my early steps and helped me in the selection of the initial basic research subjects. In 1986, I moved to the Department of Structural Engineering of the Politecnico di Torino in Italy as a Chair Professor of Structural Mechanics. Since that time on, my research work from individual became team-supported and I had the possibility to collaborate with many different people on various subjects and with different methodologies. Most of the subjects were enriched by effective experimental investigations. In particular, the evaluation of the minimum reinforcement in concrete beams, a major subject of research in my new academic context, and, later, the plastic rotation capacity of reinforced concrete beams were studied on the basis of my previous fracture mechanics models. Professor Franco Levi, through his master competence and open-minded attitude, convinced me that my previous studies on the bridging action of reinforcing fibres and bars could be particularly useful. He is the third person who contributed to the formation of my scientific profile during those early years of my career.

Besides the three above-mentioned Universities and my three Senior Colleagues, I feel extremely grateful also to the Research Institutions and Industrial Companies that have contributed, sharing their expertise and/or with their financial support, to increase my knowledge in the field. They are gratefully acknowledged together with the respective scientific responsible persons: Montedison (Aurelio Savadori) for the size effects on polypropylene; Italcementi (Gianpietro Tognon) for the brittle behaviour of high-strength concrete; ENEL-CRIS (Michele Fanelli and Gerardo Ferrara) for the fracture mechanics analysis of gravity dams; HILTI (Werner Sack and Klaus-Peter Bohn) for drilling perforation of rocks and tool wear; Metal-Work (Erminio Bonatti and Fausto Rodella) for the fracto-emissions as seismic precursors.

More in particular, I am mostly grateful to the co-authors of the single chapters of this book, for their deep knowledge of the related subjects and for their remarkable patience in the realization of the manuscript: Giuseppe Lacidogna (Chaps. 10, 14, 15), Pietro Cornetti (Chaps. 3, 11, 12), Alberto Sapora (Chaps. 1, 4, 5), Mauro Corrado (Chaps. 6, 7, 8).

In addition, I wish to thank two of my best former co-workers very sincerely, for their outstanding contributions to the papers on which some parts of the book are based: Nicola Pugno (Chaps. 10 and 15) and Marco Paggi (Chaps. 9 and 13). A significant support in the final writing of some sections of the book has come from junior scholars working presently in my research group: Federico Accornero, Gianni Niccolini, Oscar Borla, Francesco Montagnoli, Alessio Rubino.

Going through the references of the different chapters, it is possible to observe the impressive number of collaborations, each one relevant for the final success of the research project. First of all, I would like to recall Erasmo Viola, my colleague at the University of Bologna, who, together with Professor Angelo Di Tommaso, introduced me to Structural Mechanics. Then, I am pleased to recall all the fruitful collaborations that I have had since my early years in Torino: Giovanni

xii Preface

Alpa, Pietro Bocca, Silvio Valente, Enrico Ballatore, Crescentino Bosco, Pier Giorgio Debernardi, Vincenzo Ilario Carbone, Giuseppe Mancini, Alessandro De Stefano, Rosario Ceravolo, Francesco Maradei, Antonino Quattrone, Claudio Scavia, Mauro Borri-Brunetto, Giorgio Zavarise, Laura De Lorenzis, Giulio Ventura, Francesco Mainardi, Michele Ciavarella, Pier Paolo Delsanto, Renato Orta, Riccardo Sandrone, Umberto Lucia, Massimo Zucchetti, Orazio Baglieri, Ezio Santagata, Giuseppe Surace, Anna Anzani, Luigia Binda, Massimiliano Zingales, Mario Di Paola, Roberto Ballarini, David Taylor, Elias Aifantis, George Frantziskonis, Panagouli Panagiotopoulos, Tulio Bittencourt, Olek Naimark, Carlos Brebbia, Ferri Aliabadi, Victor Panin.

Several important collaborations were then originated from Ph.D. Dissertations and from the contribution of visiting scientists. I wish to acknowledge the relevant and pertinent contributions by: Roberta Massabò, Giuseppe Ferro, Bernardino Chiaia, Fabrizio Barpi, Stefano Invernizzi, Antonio Brencich, Ilaria Monetto, Francesco Ciola, Moh'd El-Khatieb, Luciano Dimastrogiovanni, Simone Puzzi, Amedeo Manuello, Davide Masera, Alessandro Grazzini, Erica Cadamuro, Diego Veneziano, Jie Xu, Baoming Gong, Guo Ping Yang, Fan Ping Zhou, Kamran Nemati, Kiran Kolwankar, Jacinto Ruiz Carmona, Ignacio Iturrioz, Olek Plekhov.

Another crucial moment for my scientific growth is represented by my interactions with the International Scientific Societies on Fracture Mechanics. Since the early 1990s, I have been very active inside the International Association of Fracture Mechanics for Concrete and Concrete Structures (IA-FraMCoS), founded by Zdenek Bazant in 1992. That scientific community had already started its informal activities even earlier, at the beginning of the 1980s. At that time, I co-edited two books on the subject, one with Anthony Ingraffea, and the other with Surendra Shah. Other colleagues, with whom I had scientific and human interactions, were: Hubert Hilsdorf, Bhushan Karihaloo, Folker Wittmann, Hans-Wolf Reinhardt, Manuel Elices, Jan Rots, Jan van Mier, René de Borst, Jacky Mazars, Gonzalo Ruiz, Victor Li, Hirozo Mihashi, Keitetsu Rokugo, Buyang Oh.

Since the mid 1990s, my activity inside the European Structural Integrity Society (ESIS) became very intense. In that context, I had the opportunity to work with several outstanding European Colleagues, among whom: Keith Miller, Karl-Heinz Schwalbe, André Pineau, Dominique Francois, Gordon Williams, Nikita Morozov, Volodymyr Panasiuk, Dragoslav Sumarac, Andrzej Neimitz, Jaroslav Pokluda, Liviu Marsavina, Donato Firrao, Francesco Iacoviello.

Since 1981, I have attended the quadrennial conferences of the International Congress on Fracture (ICF), founded by Takeo Yokobori in 1965. I had the great pleasure and privilege of organizing ICF11 in Torino in 2005. That has been and still is a community of significant and harmonious collaboration under different viewpoints. I have herein the possibility to report a list of very good friends and esteemed colleagues: David Taplin, Emmanuel Gdoutos, Ashok Saxena, Robert Goldstein, Ludmila Botvina, Palle Rama Rao, Shouwen Yu, Robert Ritchie, Krishnaswamy Ravi-Chandar, You-Wing Mai, Toshimitsu Yokobori, Mimoun El-Boujdaini, Yukitaka Murakami, Rhys Jones, Ares Rosakis, Guruswamy Ravichandran, John Hutchinson, James Rice.

Preface xiii

As a last tribute, I like to recall the names of those great scientists who mostly inspired the project of this book with their seminal contributions. I have had the venture to personally meet and be acquainted with some of them: George Irwin, Paul Paris, Arne Hillerborg, Benoit Mandelbrot, Grigory Barenblatt. Eminent scientists who deserve to be recalled and honoured are also: Alan Griffith, Nikoloz Muskhelishvili, Alan Cottrell, René Thom, Mitchell Feigenbaum, Kenneth Wilson, Claude Shannon, Andrej Kolmogorov, Per Bak, Donald Turcotte.

Sincere thanks are eventually due to the Publisher Springer for inviting me, already in 2009, to write such an encyclopedic book, and for the great care and ability in realizing it.

Turin, Italy June 2021 Alberto Carpinteri

Contents

From Stress Singularity to Strain Energy Release Rate: **Local Versus Global Approach to Fracture Mechanics** 1 3 Alberto Carpinteri and Alberto Sapora 1.1 3 1.2 5 1.3 8 1.4 10 1.5 Circular Hole in a Plate Subjected to Tension 14 1.6 18 1.7 Kolosoff-Muskhelishvili Method 22 1.8 Elliptical Hole in a Plate Subjected to Tension 27 1.9 35 1.10 38 References 44 2 Stress Intensification at the Crack Tip 47 Alberto Carpinteri 2.1 47 2.2 48 2.3 57 Stability of Crack Propagation 2.4 62 2.5 66 2.6 73 2.7 Quarter Point Element 79 2.8 84 Estimation of Error in the Numerical Evaluation 2.9 89

xvi Contents

	2.10	Experin	nental Determination of the Critical Stress-Intensity	
		Factor	K _{IC} for Metallic Materials (ASTM E399 Standard)	93
		2.10.1	Characteristics and size of Test Specimens	93
		2.10.2	Test procedure	96
		2.10.3	Testing Apparatus	98
		2.10.4	Analysis of the Load–Displacement Diagrams	98
	2.11	Determ	ination of the Fracture Toughness of Rocks	101
		2.11.1	Calculation of the Fracture Toughness K_{CB}	104
		2.11.2	Correction of Fracture Toughness	
			for Nonlinearity	104
	Refere	nces		104
3	Stress	Intensifi	ication at the Vertex of a Re-entrant Corner	107
			teri and Pietro Cornetti	107
	3.1	-	nary Remarks	107
	3.2		r Stress Field in the Case of Linear Elastic	107
	0.2		1	108
	3.3		r Stress Field in the Case of Strain-Hardening	100
			1	114
	3.4		on of the Plastic Zone Around a Re-entrant Corner	117
	3.5		lized Fracture Toughness	118
	3.6		Amplitude of a Re-entrant Corner	125
	3.7	Size-sca	ale Effects in Structural Elements with Re-entrant	
		Corners	3	129
	3.8	The No	tch Blunting Effect	134
	Refere	nces		140
4	Energ	v Appro	ach to Fracture Mechanics	143
			teri and Alberto Sapora	1.0
	4.1		nary Remarks	143
	4.2	Relation	n Between Energy and Stress-Singularity Treatments:	
			Theorem	144
	4.3		Compliance of a Cracked Structural Element	151
	4.4		ral	154
		4.4.1	Independence of the J-Integral from the Integration	
			Curve	155
		4.4.2	Variations of Energy	157
		4.4.3	Identity of the J-Integral with the Strain Energy	
			Release Rate \mathcal{G}_{I}	161
	4.5	Experin	nental Investigations	163
		4.5.1	Experimental Determination of Fracture Toughness	
			Parameters	164
		4.5.2	Comparison Between the Fracture Parameters	
			Obtained	170

Contents xvii

	4.6		nental Determination of Fracture Energy for Mortar	4.50
			ncrete (Rilem Recommendation)	
		4.6.1	The Proposed Testing Method	171
		4.6.2	Testing Procedure and Characteristics	
			of the Test Specimens	173
	Refere	ences		175
5	Mixed	l-Mode C	Crack Propagation	179
	Albert	to Carpint	eri and Alberto Sapora	
	5.1	Prelimi	nary Remarks	179
	5.2		n of Maximum Hoop Stress	180
	5.3		n of Minimum Strain Energy Density	184
	5.4	Criterio	n of Maximum Released Energy	188
	5.5	<i>J</i> -Vecto	r Criterion	193
	5.6	Experin	nental Tests and Empirical Criteria	201
	5.7	Scale E	ffects in Relation to Crack Size	205
	5.8	Effect o	of Stress Parallel to the Crack	208
	5.9	Plastic 1	Effects at the Crack Tip	217
	5.10	Directio	onal Stability in Crack Propagation	220
	5.11	Loci of	Resistance in the Principal Stress Plane	221
		5.11.1	Mohr–Coulomb Criterion	221
		5.11.2	Griffith's Macroscopic Criterion	225
		5.11.3	Friction on Griffith Cracks	228
		5.11.4	Microcrack Population Model	230
	Refere	ences		235
Par			ple Nonlinear Constitutive Laws to Complex	
	N	Aechanica	al Behaviour: Catastrophe and Chaos	
6	Nonli	near Cra	ck Models	239
			eri and Mauro Corrado	
	6.1		nary Remarks	239
	6.2		Zone at the Crack Tip	
	6.3		Energy Density Criterion—Strain-Hardening	
			ls	244
		6.3.1	Material Behaviour	246
		6.3.2		249
		6.3.3	Effect of Loading Step	
	6.4		Energy Density Criterion—Strain-Softening	
	0	Materia	•	250
		6.4.1	Material Behaviour	250
		6.4.2	Variation in the σ - ε Softening Slope	254
		6.4.3	Effect of Loading Step	256
		6.4.4		
			Size Effects on Strength and Diretility	- /. 1A
		6.4.5	Size Effects on Strength and Ductility	258263

xviii Contents

		6.4.6	Three-Point Bending of a Reinforced Beam	
			with Edge Crack	266
		6.4.7	Eccentric Compression of Wall with Edge Crack	266
	6.5	Cohesiv	ve Crack Model—Mode I	267
		6.5.1	Localized Strain	269
		6.5.2	Three-Point Bending Test	272
		6.5.3	Numerical Procedure	274
	6.6	Ductile-	-Brittle Transition and Snap-Back Instability	277
		6.6.1	Influence of Initial Crack Depth and Beam	
			Slenderness	280
	6.7	Cohesiv	ve Crack Model—Mixed Mode	295
		6.7.1	Experimental Program	300
		6.7.2	Directional Stability of the Crack Trajectory	304
	6.8	Loss of	Symmetry and Bifurcations	314
		6.8.1	Crack Length Control Scheme	314
		6.8.2	Solution of the Single Crack Growth Step	316
	6.9	Nonline	ear Crack Concepts Applied to Compression:	
		The Ov	erlapping Crack Model	322
	6.10	Overlap	ping Crack Model for Eccentric Compression	330
		6.10.1	Numerical Algorithm	330
		6.10.2	Comparison Between Model Predictions	
			and Experimental Results	333
		6.10.3	Size-Scale and Slenderness Effects in Eccentric	
			Compression Tests	335
	Refere	nces	***************************************	337
7	Cina C	aala Tuor	usidian from Dusdile de Duidde Feilune	343
/			nsition from Ductile to Brittle Failure	343
			eri and Mauro Corrado	343
	7.1 7.2		nary Remarks	343 344
	1.2	7.2.1	ional Analysis	344 347
	7.3		Buckingham's Theorem	347 349
			at Structural Geometries	
	7.4		ale Effects on Apparent Fracture Toughness	358
		7.4.1	Metals	358
		7.4.2	Concrete and Rocks	360
		7.4.3	Cohesive Crack Model	367
		7.4.4	Influence of the Shape of the Cohesive	265
		7.45	Diagram σ – w	367
	5 .5	7.4.5	Damage Model Versus Cohesive Model	370
	7.5		e Plastic Zone Correction	370
	7.6		rack Model	373
	7.7	Virtual	Crack Propagation Model	377

Contents xix

	7.8	Cohesiv	ve Limit Analysis	382
		7.8.1	Uniaxial Tensile Loading of Slabs	382
		7.8.2	Three-Point Bending of Beams [34, 35]	386
		7.8.3	Three-Point Bending of Deep Beams	390
	7.9	Size-Sca	ale Effects on Apparent Bending Strength	391
	7.10		ess Limit for Infinite Size-Scale	392
	7.11		ral Response Versus Crack Growth Resistance	
			*	395
		7.11.1	Scale Effect on the Structural Response	395
		7.11.2	Strain-Hardening Material	395
		7.11.3	Linear-Elastic Material	398
		7.11.4	Three-Point Bending Geometry	399
		7.11.5	Scale Effect on the J-Resistance Curve	400
	Refere	ences		402
8	Mooh	onical Da	haviour of Reinforced Structural Elements	407
0			eri and Mauro Corrado	407
	8.1		nary Remarks	407
	8.2	Crack C	Growth Stability in Steel-Bar Reinforced Concrete	407
	0.2		ts: Rotation Compatibility Condition	408
		8.2.1	Statically Indeterminate Reaction	700
		0.2.1	of Reinforcement	408
		8.2.2	Bending Moment of Reinforcement Plastic Flow	412
		8.2.3	Rigid-Hardening Behaviour of the Cracked Beam	712
		0.2.3	Section	413
		8.2.4	Bending Moment of Matrix Fracture	414
		8.2.5	Stability of the Process of Matrix Fracture and Steel	717
		0.2.3	Plastic Flow	417
		8.2.6	Summary	419
	8.3		Growth Stability in Steel-Bar Reinforced Concrete	.17
	0.0		ts: Crack Opening Displacement Compatibility	
		Condition		422
		8.3.1	Displacement Compatibility Condition	
			and Statically Indeterminate Reaction	
			of Reinforcement	423
		8.3.2	Combined Stress-Intensity Factor	427
		8.3.3	Crack Propagation	428
		8.3.4	Moment Versus Rotation Response	430
		8.3.5	Comparison with Experimental Results	433
		8.3.6	Experimental Confirmation of Snap-Back	
			Behaviour	435
		8.3.7	Concluding Remarks	

xx Contents

8.4	Crack C	Growth Stability in Fibrous Composites:	
		e Model	436
	8.4.1	Theoretical Model	437
	8.4.2	Displacement Compatibility Conditions	439
	8.4.3	Crack Propagation	441
	8.4.4	Structural Response of the Cracked Element	442
	8.4.5	Two Fibres	442
	8.4.6	Large Number of Fibres	446
	8.4.7	Concluding Remarks	449
8.5	Crack C	Growth Stability in Fibrous Composites:	
		ious Model	449
	8.5.1	Continuous Model	450
	8.5.2	Discrete Model Versus Continuous Model	456
	8.5.3	Continuous Model Versus Experimental Results	458
	8.5.4	Bridging Option Versus Cohesive Option	460
	8.5.5	Concluding Remarks	461
8.6	Hystere	tic Behaviour of Steel-Bar Reinforced Concrete	
	Element	ts: Rotation Compatibility Condition	462
	8.6.1	Elastic-Plastic Shake-Down Under Repeated	
		Loadings	462
	8.6.2	Critical Crack Depth and Bending Moment	465
	8.6.3	Fatigue Crack Growth and Energy Dissipation	467
8.7	Hystere	tic Behaviour of Steel-Bar Reinforced Concrete	
	Element	ts: Crack Opening Displacement Compatibility	
	Condition	on	471
	8.7.1	Moment Versus Rotation Diagrams	472
	8.7.2	Beam A	474
	8.7.3	Beam B	474
	8.7.4	Beam C	474
	8.7.5	Experimental Comparisons	475
	8.7.6	Concluding Remarks	479
8.8	Hystere	tic Behaviour of Fibrous Composites	480
	8.8.1	Concluding Remarks	485
8.9	Transiti	ons of Reinforced Concrete Beams in Flexure:	
	Tensile,	Shearing, Crushing Failures	490
	8.9.1	Modelling Flexural and Shear Cracks	491
	8.9.2	Modelling Concrete Crushing	494
	8.9.3	Transition Between Different Failure Modes	496
	8.9.4	Experimental Evidences	499
8.10	Cohesiv	ve/Overlapping Crack Model for Nonlinear Analysis	
	of Rein	forced Concrete Beams	502
	8.10.1	Mathematical Formulation	502
	8.10.2	Numerical Algorithm	504
	8.10.3	Computation of the Elastic Coefficients	506

Contents xxi

		8.10.4	Parametric Analysis and Experimental	
			Comparisons	508
		8.10.5	Size-Scale Effects	508
		8.10.6	Effect of the Tensile Steel Reinforcement	
			Percentage	509
		8.10.7	Effect of the Steel Reinforcement	
			in Compression	511
		8.10.8	Effect of the Concrete Compressive Strength	512
		8.10.9	Effect of the Stirrups Confinement	513
	8.11	Lower a	and Upper Reinforcement Limits to the Ductile	
		Behavio	our of Concrete Members: Minimum Reinforcement	
		and Rot	ational Capacity	515
		8.11.1	Minimum Reinforcement	515
		8.11.2	Models for Computing Minimum Reinforcement	516
		8.11.3	Application of Dimensional Analysis to Lightly	
			RC Members	517
		8.11.4	Comparison of Predictions and Experimental	
			Results	519
		8.11.5	Parametric Analysis and Discussion	521
		8.11.6	Plastic Rotation Capacity	527
		8.11.7	Concluding Remarks	529
	Refere	nces		532
9	Debon	ding and	Decohesion at the Interface Between Dissimilar	
		_	Deconesion at the interface between Dissimilar	537
		o Carpinte		331
	9.1		nary Remarks	537
	9.2		ingularities at Multi-material Interfaces	538
	9.3		ized Stress-Intensity Factors and Computational	550
	7.5		S	546
	9.4		e Crack Propagation Criteria	551
	9.5		ar Interface Constitutive Laws and Interface-Contact	001
			SS	554
	9.6		nation of Plated Beams	560
	9.7		atrix Debonding in Microstructured Composites	570
	Refere			576
10			Chart's Debaggary to the Wheet's a of Conded	
10	Nonlin Bodies		Chaotic Behaviour in the Vibration of Cracked	502
	200200			583
			eri and Giuseppe Lacidogna	502
	10.1		nary Remarks	583 585
	10.2 10.3		ical Continuum Approach	
			ical Discrete Approach	
	10.4	renod I	Doubling Cascade	590

xxii Contents

	10.5	Parametrical Simulations	594
	10.6	General Discussion	615
	Refe	rences	618
Dor	t III	From Complex Morphological Patterns to Simple	
ı aı	. 111	Mechanical Models: Fractality and Critical Phenomena	
11	Frac	tality of Scale-Invariant Cohesive Constitutive Laws	623
	Albe	rto Carpinteri and Pietro Cornetti	
	11.1	Preliminary Remarks	623
	11.2	Weibull's Theory	624
		11.2.1 The Weakest-Link Concept	624
		11.2.2 Safety Factor	629
	11.3	Defect Size Distribution of Self-similarity	630
		11.3.1 Weibull Parameters	636
		11.3.2 Experimental Results	637
	11.4	Fractal Geometry	638
		11.4.1 Hausdorff Dimension	643
		11.4.2 Box-Counting Dimension	650
		11.4.3 Random Fractals	651
	11.5	The Fractal (Scale-invariant) Cohesive Crack Model	654
		11.5.1 The Effect of Microstructural Disorder	656
		11.5.2 Scale-Invariant Cohesive Crack Model	659
		11.5.3 Comparison with Experimental Data	664
	11.6	Dimensional Transition from Order to Disorder: Multi-fractal	
		Scaling Laws	668
		11.6.1 Multi-fractal Scaling Laws	669
		11.6.2 Comparison with Experimental Data	673
	11.7	Fractal Overlapping Crack Model	676
	11.8	Rotation Versus Curvature Fractal Scaling in Bending	
		Failure	678
	11.9	New Tools for New Challenges	682
	Refe	rences	683
12	Frac	tional Calculus Applied to Fractal Media and Nonlocal	
		tinua	689
		rto Carpinteri and Pietro Cornetti	
	12.1	Preliminary Remarks	689
	12.2	Fractional Calculus: A Brief Review	690
	12.3	Fractional Calculus and Fractal Functions:	
		The Local Fractional Derivative	694
	12.4	Kinematic and Static Equations for Fractal Media	698
	12.5	The Fractal Bar	702
	12.6	Eringen's Approach and Nonlocal Fractional Elasticity	703
	10	======================================	. 00

Contents xxiii

	12.7	The Nonlocal Fractional Elastic Bar	713
	12.8	Numerical Simulations	719
	Refere	nces	726
13	Scalin	g and Fractality in Sub-critical Fatigue and Creep Crack	
	Growt	th	729
	Alberto	o Carpinteri	
	13.1	Preliminary Remarks	729
	13.2	Analytical Correlations Between the Fatigue Properties	
		of Engineering Materials	736
	13.3	Generalized Cumulative Fatigue Damage Formulation	741
	13.4	Generalized Fatigue Crack Propagation Formulation	743
	13.5	Interpretation of Specimen-Size Effects on Paris' Law	
		According to Incomplete Self-similarity	745
	13.6	Interpretation of Crack-Size Effects on Paris' Law According	
		to Fractal Geometry	747
	13.7	Interpretation of Specimen-Size Effects on Wöhler's Curve	
		According to Fractal Geometry	758
	13.8	Fatigue Propagation of Cracks Subjected to Mixed-Mode	
		Loading	765
	13.9	Scaling Laws for Creep Deformation and Rupture Time	771
	13.10	Specimen-Size Effects on Creep Rupture Time	778
	13.11	Crack-Size Effects on Creep Crack Growth	783
	Refere	nces	790
14	Critica	al Phenomena and Acoustic Emission in Structural	
	Eleme	nts and the Earth's Crust	797
		o Carpinteri and Giuseppe Lacidogna	
	14.1	Preliminary Remarks	797
	14.2	Critical Phenomena in Disordered Materials	798
	14.3	Scaling Laws in Geophysics and Mechanics	801
	14.4	Acoustic Emission and Detection of Crack Evolution	
		in Damaging Structures	803
		14.4.1 Dissipated and Emitted Energies	804
	14.5	AE Waves and Signal Waves	806
		14.5.1 Measuring System	808
		14.5.2 Signal Processing	809
		14.5.3 Event Counting	809
		14.5.4 Ring-Down Counting	810
		14.5.5 Parameter-Based AE Techniques	810
		14.5.6 Signal-Based AE Techniques	811
		14.5.7 Spectral Analysis	812
		14.5.8 Source Localization	812
		14.5.9 Amplitude Distribution Analysis	812

xxiv Contents

	14.5.10	Moment Tensor Analysis	812
	14.5.11	Cracking Modes and Typical AE Signals	813
	14.5.12	AE Localization Procedures	813
14.6	Size-scal	e Effects in AE Monitoring	819
	14.6.1	Experimental Assessment	820
14.7	Time-sca	ale Effects in AE Monitoring	822
	14.7.1	Experimental Assessment	823
14.8	AE Freq	uency–Magnitude Statistics and b-Value Analysis	826
14.9	Fractal I	Dimension Evolution of Microcrack Networks	
	in Disord	dered Materials	828
	14.9.1	Self-similar and Self-affine Crack-Size	
		Distributions	830
14.10		ental Observations on AE	834
	14.10.1	In-situ Retrofitted RC Beam Test	834
	14.10.2	Three-Point Bending Test	837
	14.10.3		838
14.11	From Cr	iticality to Final Collapse: Evolution of the Fractal	
	Dimension	on D and of the b-Value	840
	14.11.1	Different Approaches for Damage Domain	
		Characterization in Disordered Materials: Fractal	
		Energy Density and b-Value Statistics	842
14.12	Acoustic	and Electromagnetic Emissions from Quasi-brittle	
		8	844
	14.12.1	Models for EME	844
14.13	Experim	ental Observations on AE and EME	846
	14.13.1	AE and EME Measurements	847
	14.13.2	Test Results	849
14.14	Regional	Seismicity and AE Structural Monitoring	852
	14.14.1	From Acoustic Emission to Earthquakes	853
14.15	<i>b</i> -Value	Analysis on Medieval Towers as a Seismic	
	Precurso	r	856
	14.15.1	Damage Detection in the Towers	856
	14.15.2	The b-Value Analysis	859
	14.15.3	Correlation Between AE Activity in the Towers	
		and Regional Seismicity	860
	14.15.4	Fractal Dimensions from Space-Time Correlation	
		Integral	861
14.16	Universa	dity in Fracture Systems	865
	14.16.1	Gutenberg-Richter Law and Scale Invariance	
		in the Timing of Ruptures	866
	14.16.2	Scaling Laws for Waiting-Time Distributions	
		of Italian Seismicity	867

Contents xxv

		14.16.3 Scaling Laws for Waiting-Time Distributions	
		in Concrete Fracture	870
		14.16.4 Discussion on the Results	872
	14.17	Statistical Seismic Precursors and Preparation Time	
		for the Latest Earthquakes in Italy	873
		14.17.1 Methods and Data Set	873
		14.17.2 The L'Aquila Earthquake	874
		14.17.3 The Emilia Earthquake	875
		14.17.4 The Amatrice–Norcia Earthquake	875
	14.18	Fracto-Emissions as Seismic Precursors	881
		14.18.1 Acoustic, Electromagnetic and Neutron Emissions:	
		The Crack-Size Evolution in the Earthquake	
			882
		14.18.2 The Case Study of "San Pietro–Prato Nuovo"	
			885
	Referen	**	890
	G II		
15		and Fractality in Fragmentation and Comminution:	000
		8	899
		Carpinteri and Giuseppe Lacidogna	000
	15.1		899
	15.2	Fractal Fragmentation Theory of Quasi-Brittle Materials	000
	15.0		900
	15.3	<i>C</i> , 1	901
	15.4	$oldsymbol{arepsilon}$	903
		±	903
			904
			909
	15.5	One-, Two-, and Three-Dimensional Universal Laws	010
			913
		•	913
			915
		•	916
	15.6	1 11	916
	15.7	Fractal Comminution Approach to Evaluate the Drilling	
			917
		15.7.1 Experimental Fractal Assessment:	0.4.0
		$oldsymbol{arphi}$	918
			919
	15.8		922
	15.9	1	926
			928
		15.9.2 Fractal Coupled Law of Wear and Drilling	
		Velocities	932

xxvi Contents

15.10	Evolutionary Fractal Theory of Erosion and Experimental				
	Assessm	ent on MIR Space Station	937		
	15.10.1	Classical Erosion	938		
	15.10.2	Classical Coupled Erosion	939		
	15.10.3	Fractal Erosion	940		
	15.10.4	Fractal Coupled Erosion	942		
	15.10.5	Experimental Comparison with In-Flight Erosion			
		Due to Space Debris Impacts on MIR Orbital			
		Space Station	942		
Refere	nces		945		

Author and Contributors

About the Author

Alberto Carpinteri received his Doctoral Degrees in Nuclear Engineering cum Laude (1976) and in Mathematics cum Laude (1981) from the University of Bologna (Italy). After two years at the Consiglio Nazionale delle Ricerche, he was appointed as an Assistant Professor at the University of Bologna in 1980.

He moved to the Politecnico di Torino in 1986 as a full professor, and there became the Chair of Solid and Structural Mechanics, as well as the Director of the "A. Castigliano" Fracture Mechanics Laboratory. During his career, he has held different positions of responsibility, among which: Head of the Department of Structural Engineering (1989–1995), and Founder Director of the Post-graduate School of Structural Engineering (1990–2014).

Prof. Carpinteri was a Visiting Scientist at Lehigh University, Pennsylvania (USA) during the academic year 1982–1983, and was appointed as a Fellow of several Scientific Academies and Professional Societies, such as: the European Academy of Sciences (2009–), the International Academy of Engineering (2010–), the Turin Academy of Sciences (2005–), the American Society of Civil Engineers (1996–). He is presently the Head of the Engineering Division in the European Academy of Sciences (2016–).

Prof. Carpinteri was the President of different Scientific Associations and Research Institutions: the International Congress on Fracture, ICF (2009–2013), the European Structural Integrity Society, ESIS (2002–2006), the International Association of Fracture Mechanics for Concrete and Concrete Structures, IA-FraMCoS (2004–2007), the Italian Group of Fracture, IGF (1998–2005), the National Research Institute of Metrology, INRIM (2011–2013). He was appointed as a Member of the Congress Committee of the International Union of Theoretical and Applied Mechanics, IUTAM (2004–2012), a Member of the Executive Board of the Society for Experimental Mechanics, SEM (2012–2014), a Member of the

xxviii Author and Contributors

Editorial Board of fifteen international journals, and the Editor-in-Chief of the journal *Meccanica* (Springer). He is the author or editor of over 900 publications, of which more than 400 are papers in refereed international journals and 55 are books or journal special issues.

Prof. Carpinteri received numerous Honours and Recognitions: the Robert L'Hermite Medal from RILEM (1982), the Griffith Medal from ESIS (2008), the Swedlow Memorial Lecture Award from ASTM (2011), the Inaugural Paul Paris Gold Medal from ICF (2013), the Marconi Prize from the Academy of Sciences of the Republic of San Marino (2014), the Doctorate Honoris Causa in Engineering from the Russian Academy of Sciences (2016), the Frocht Award from SEM (2017), the Honorary Professorship from Tianjin University, China (2017), the Founding Fellowship from the Indian Structural Integrity Society (2018), and the Zhujiang (Pearl River) Professoship from Guangdong Province, at Shantou University, China (2019), among others.

Previous Authored or Edited Books

- 1. A. Carpinteri, A.R. Ingraffea (Editors): Fracture Mechanics of Concrete: Material Characterization and Testing, Martinus Nijhoff Publishers, The Hague (1984), XII + 202.
- 2. A. Carpinteri: *Mechanical Damage and Crack Growth in Concrete: Plastic Collapse to Brittle Fracture*, Martinus Nijhoff Publishers, Dordrecht (1986), XIII + 234.
- 3. S.P. Shah, A. Carpinteri (Editors): Fracture Mechanics Test Methods for Concrete, Chapman & Hall, London (1991), XII + 287.
- 4. A. Carpinteri (Editor): *Applications of Fracture Mechanics to Reinforced Concrete*, Elsevier Applied Science, London (1992), XIV + 616.
- 5. A. Carpinteri et al. (Editors): *Localized Damage: Computer-Aided Assessment and Control*, Computational Mechanics Publications, Southampton (1994), XIV + 736.
- 6. G.C. Sih, A. Carpinteri, G. Surace (Editors): *Advanced Technology for Design and Fabrication of Composite Materials and Structures*, Kluwer Academic Publishers, Dordrecht (1995), XX + 438.
- 7. A. Carpinteri (Editor): Size-Scale Effects in the Failure Mechanisms of Materials and Structures, Chapman & Hall, London (1996), XIII + 593.
- 8. A. Carpinteri: *Structural Mechanics: A Unified Approach*, Chapman & Hall, London (1997), XV + 761.
- 9. A. Carpinteri, F. Mainardi (Editors): *Fractals and Fractional Calculus in Continuum Mechanics*, Springer-Verlag, Vienna (1997), VII + 348.

Author and Contributors xxix

10. A. Carpinteri, C.A. Brebbia (Editors): *Damage and Fracture Mechanics*, Computational Mechanics Publications, Southampton (1998), XIV + 670.

- 11. A. Carpinteri, M.H. Aliabadi (Editors): *Computational Fracture Mechanics in Concrete Technology*, WIT Press, Southampton (1999), XII + 223.
- 12. A. Carpinteri (Editor): *Minimum Reinforcement in Concrete Members*, Elsevier Science, Oxford (1999), VIII + 203.
- 13. A. Carpinteri (Editor): *Nonlinear Crack Models for Nonmetallic Materials*, Kluwer Academic Publishers, Dordrecht (1999), XI + 309.
- 14. A. Carpinteri, B.L. Karihaloo (Guest Editors): *Size-Scale Effects* Special Issue of the International Journal *Engineering Fracture Mechanics*, Pergamon Press, Oxford (2003), Vol. 70, N. 16, 2255–2350.
- 15. A. Carpinteri (Editor): 11th International Conference on Fracture, Turin (Italy) March 20–25, 2005, Abstract Book, Trading, Torino (2005), 1–1248.
- 16. A. Carpinteri (Editor): 11th International Conference on Fracture, Turin (Italy) March 20–25, 2005, Proceedings CD-ROM, Trading, Torino (2005); Website www.ICF11.com.
- 17. A. Carpinteri (Guest Editor): 11th International Conference on Fracture (ICF11), Torino, Italy, 20–25 March 2005. Mini-Symposium "Complexity, Scaling and Non-Linearity in the Mechanics of Advanced Materials" Special Issue of the International Journal Strength, Fracture and Complexity, IOS Press, Amsterdam (2005), Vol. 3, N. 2–4, 49–225.
- 18. A. Carpinteri, Y.-W. Mai, R.O. Ritchie (Guest Editors): *Honour and Plenary Lectures presented at the 11th International Conference on Fracture (ICF11), held in Turin, Italy, on March* 20–25, 2005 Special Issue of the *International Journal of Fracture*, Springer, Dordrecht (2006), Vol. 138, N. 1–4, 1–262.
- 19. A. Carpinteri, Y.-W. Mai, R.O. Ritchie (Editors): *Advances in Fracture Research*, Springer, Dordrecht (2006), 1–262.
- A. Carpinteri, M. Kitagawa, A. Saxena, B. Wilshire, T. Yokobori Jr. (Guest Editors): Selected papers presented at ICF11 – Mini-Symposium on "High Temperature and Creep" – Part I – Special Issue of the International Journal Strength, Fracture and Complexity, IOS Press, Amsterdam (2006), Vol. 4, N. 1, 1–61.
- 21. A. Carpinteri, M. Kitagawa, A. Saxena, B. Wilshire, T. Yokobori Jr. (Guest Editors): *Selected papers presented at ICF11 Mini-Symposium on "High Temperature and Creep" Part II –* Special Issue of the International Journal *Strength, Fracture and Complexity*, IOS Press, Amsterdam (2006), Vol. 4, N. 2, 63–139.
- 22. A. Carpinteri et al. (Editors): *New Trends in Fracture Mechanics of Concrete*, Taylor & Francis, London (2007), 1–640.
- 23. A. Carpinteri et al. (Editors): *Design, Assessment and Retrofitting of RC Structures*, Taylor & Francis, London (2007), 641–1262.

xxx Author and Contributors

24. A. Carpinteri et al. (Editors): *High-Performance Concrete, Brick-Masonry and Environmental Aspects*, Taylor & Francis, London (2007), 1263-1886.

- 25. A. Carpinteri, G. Lacidogna (Editors): *Earthquakes and Acoustic Emission*, Taylor & Francis, London (2007), X + 199.
- 26. A. Carpinteri, G. Lacidogna (Editors): *Acoustic Emission and Critical Phenomena: From Structural Mechanics to Geophysics*, CRC Press, Boca Raton (2008), X + 271.
- 27. A. Carpinteri: 11th International Conference on Fracture, Turin (Italy) March 20–25, 2005, Final Report, Trading, Torino (2008), 1–128.
- 28. A. Carpinteri (Editor): 11th International Conference on Fracture 2005 (ICF11), Currant Asspcoates Inc., New York (2010), Vol. 1–8, 1–6318.
- M. Paggi, A. Carpinteri, P. Wriggers (Guest Editors): Fracture and Contact Mechanics for Interface Problems – Special Issue of the International Journal Engineering Fracture Mechanics, Elsevier, Amsterdam (2012), Vol. 80, 1–113.
- 30. M. Paggi, A. Carpinteri, P. Wriggers (Guest Editors): *Computational Methods for Interface Mechanical Problems* Special Issue of the International Journal *Computational Mechanics*, Springer Verlag, Heidelberg (2012), Vol. 50 (3), 269–381.
- 31. A. Carpinteri (Editor-in-Chief): *Meccanica*, Springer Verlag, Heidelberg (2012), Vol. 47 (8 issues), 1–2082.
- 32. A. Carpinteri (Editor-in-Chief): *Meccanica*, Springer Verlag, Heidelberg (2013), Vol. 48 (10 issues), 1–2594.
- 33. A. Carpinteri (Editor-in-Chief): *Meccanica*, Springer Verlag, Heidelberg (2014), Vol. 49 (10 issues), 1–2547.
- 34. A. Carpinteri: *Structural Mechanics Fundamentals*, CRC Press, Taylor & Francis Group, Boca Raton (2014), XIV + 498.
- 35. A. Carpinteri, D.M.R. Taplin, S.W. Yu, T. Yokobori Jr. (Guest Editors): *Sir Alan Cottrell Memorial Issue*, Special Issue of the International Journal *Strength, Fracture and Complexity*, IOS Press, Amsterdam (2014), Vol. 8, N. 2, 57–133.
- 36. A. Carpinteri, G. Lacidogna, A. Manuello (Editors): *Acoustic, Electromagnetic, Neutron Emissions from Fracture and Earthquakes*, Springer International Publishing Switzerland (2015), VIII + 264.
- 37. S. Bossuyt, G. Schajer, A. Carpinteri (Editors): *Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems*, Proceedings of the 2015 Annual Conference on Experimental and Applied Mechanics, Springer (2016), Vol. 9, IX + 380.
- 38. A. Carpinteri: *Advanced Structural Mechanics*, CRC Press, Taylor & Francis Group, Boca Raton (2017), XIV + 531.
- 39. T. Kishi, A. Carpinteri, S.W. Yu (Guest Editors): *Professor Takeo Yokobori Memorial Issue*, Special Issue of the International Journal *Strength, Fracture and Complexity*, IOS Press, Amsterdam (2020), Vol. 12, N. 2–4, 59–197.

Author and Contributors xxxi

Contributors

```
Alberto Carpinteri (All Chapters)
Pietro Cornetti (Chaps. 3, 11, 12)
Mauro Corrado (Chaps. 6, 7, 8)
Giuseppe Lacidogna (Chaps. 10, 14, 15)
Alberto Sapora (Chaps. 1, 4, 5)
```