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Divergence Syndromes

“Almost every case study we perform
involves a divergence syndrome. That
is, some quantity that is commonly
expected to be positive and finite
turns out either to be infinite or to
vanish. At first blush, such
misbehavior looks most bizarre and
even terrifying, but a careful re-examination
shows it to be quite

acceptable (...), as long as one is
willing to use new methods of
thought”

Benoit B. Mandelbrot (1982),“The Fractal
Geometry of Nature”, W. H. Freeman &
Company, New York, page 19.



Preface

Complexity, as a transversal scientific discipline, generally refers to the study of
systems with many interacting components, in which the global behaviour is
qualitatively different from (and not encoded in) the behaviour of the single com-
ponents. Actually, researchers did not come to a univocal definition of Complexity,
since it manifests itself in several different ways. Complexity can not represent a
homogeneous and autonomous discipline. As a matter of fact, under the label of
Complexity Sciences we comprehend a broad variety of phenomena, theories,
approaches, and techniques: nonlinear dynamics, deterministic chaos, nonequilib-
rium thermodynamics, fractal geometry, fractional calculus, intermediate asymp-
totics (complete and incomplete self-similarity), renormalization group theory,
catastrophe theory, self-organized criticality, neural networks, cellular automata,
fuzzy logic, etc.

Complex Systems lie somehow in between perfect order and complete ran-
domness —the two extreme conditions that occur only very seldom in nature— and
exhibit several common features, such as: sensitivity to initial conditions, pattern
formation, spontaneous self-organization, emergence of cooperation, emergence of
hierarchical or multi-scale structures, collective properties emerging beyond those
contained in the single parts, size-scale effects, etc.

Complexity Sciences are a subject of fast growing interest inside the international
scientific community. In particular, the most interesting and even intriguing
mechanical behaviours and failure phenomena in solids and structures can be
synthetically captured and consistently interpreted through the use of innovative
conceptual tools in the framework of Complexity Sciences. Aim of the present book
is that of providing an insight into the role of Complexity in the fields of Strength of
Materials and Fracture Mechanics. The book is divided into three parts. While the
first deals with the traditional concepts of stress-concentration and
stress-intensification at the tip of a notch or crack (local stress-singularity
approach), and with the corresponding total potential energy release rate (global
energy-based approach), the remaining two deal with the opposite natural trends in
composite systems: catastrophe and chaos arising from simple nonlinear rules, as
well as order and structure emerging from heterogeneity and randomness.

vii
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Part T (Chaps. 1-5) deals with the most classical concepts of Linear Elastic
Fracture Mechanics (LEFM), at the same time preparing the ground for more
advanced and sophisticated interpretations based on and inspired by Complexity
Sciences. After introducing the concept of stress-concentration and its limit case of
stress-intensification for curvature radii at the notch root tending to zero (Inglis
paradox), the energy criterion by Griffith is recalled, for which a dimensional
disparity between surface energy and elastic strain energy density appears. From
this fundamental dimensional asymmetry descends the self-similarity loss in col-
linear crack propagation. On the other hand, an alternative manner to address the
problem is that of considering the stress-singularity with its characteristic negative
power in the radial distance from the crack tip or re-entrant corner vertex (exponent
ranging between —1/2 and zero). The most severe stress-singularity of order —1/2 is
achieved only for sharp cracks in linear elastic materials. Its attenuation is predicted
for power-law hardening materials and/or for re-entrant corners, up to reach the
value zero for rigid-perfectly plastic materials and/or for limit flat angles. Direct
consequence of the singular stress field is the strength versus size-scale bi-log linear
decreasing diagram with slope equal to the negative value of the exponent. Upper
bound to the absolute value of the slope is the limit value 1/2. The stress-intensity
factor presents anomalous physical dimensions in order to establish dimensional
homogeneity in the formulas representing the singular stress field. Therefore, the
stress-intensity factor plays the role of a renormalized stress, making easier to
accept the idea of a stress divergence at the crack tip. As Griffith solves the Inglis
paradox by considering an energy balance between the differentials of two quan-
tities respectively proportional to the crack length and to its square, so does Irwin
by applying a renormalization group transformation to the singular stress field. In
both cases, the dimensional disparity between tensile strength and surface energy or
fracture toughness represents the fundamental reason for scale effects. In addition,
Irwin himself discovers the deep connection between the two alternative approaches
to Fracture Mechanics through his well-known theorem and quadratic relationship
between stress-intensity factor and strain energy release rate. Also the cases of
nonlinear elastic materials (J-infegral) and of nonsymmetical crack loading or
noncollinear crack growth (Mixed Mode) are presented in the book. In the case of a
statistical population of micro-cracks, the mixed mode locus associated to a fric-
tional criterion can explain the nonconvexity of the resistance loci in the principal
stress plane for cementitious materials.

Part II (Chaps. 6-10) deals with Nonlinear Fracture Mechanics models (in
particular, the Cohesive Crack Model to describe strain localization both in tension
and in compression) and their peculiar consequences: fold catastrophes (post-peak
strain-softening and snap-through instabilities) or cusp catastrophes (snap-back
instabilities) in plain or reinforced structural elements. Important applications to
civil structural engineering are shown: evaluation of the minimum and maximum
reinforcement percentages for concrete elements in flexure, in order to avoid brittle
phenomena of cracking (edge in tension) or crushing (edge in compression); plastic
rotation capacity of reinforced concrete beams; brittle debonding or delamination
between concrete and external retro-fitting plates; detachment and slippage between
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matrix and fibre or re-bar. In such a context, superplasticity in micro-crystalline
materials can be interpreted as a snap-back condition. Also dynamic systems
showing fractal attractors as well as transitions to chaos and period doubling are
considered in the book. How can a relatively simple nonlinear constitutive law,
which is scale-independent and does not contain built-in randomness, generate a
size-scale dependent ductile-to-brittle transition, or a completely unpredictable
dynamic behaviour? Constant reference is made to Dimensional Analysis and to the
definition of suitable nondimensional brittleness numbers that govern the transition.
These numbers can be defined in different ways, according to the selected theo-
retical model. The simplest way is that of directly comparing critical LEFM con-
ditions and plastic limit analysis results. This is an equivalent way —although more
effective for finite-sized cracked plates— to describe the ductile-to-brittle size-scale
transition, if compared to the traditional evaluation of the crack tip plastic-zone
extension in an infinite plate. In extremely brittle cases, the plastic zone or process
zone tends to disappear and the cusp catastrophe conditions prevail over the
strain-softening ones and tend to coincide with the LEFM critical conditions in the
case of initially cracked plates.

Part III (Chaps. 11-15) deals with the occurrence of self-similar and fractal
patterns in the deformation, damage, fracture, and fragmentation of heterogeneous
disordered materials, and with the consequent apparent scaling in the nominal
mechanical properties of the same materials. Such a scaling is negative (lacunar
fractality) for tensile strength and fatigue limit, whereas it is positive (invasive
fractality) for fracture energy, fracture toughness, and fatigue threshold. At the same
time, corresponding fractal (or renormalized) quantities emerge, which are the true
scale-invariant properties of the material. They appear to be the constant factor (the
universal property) in the power-law relating the nominal canonical quantity to the
size-scale of observation. When the reference sets from self-similar become
self-affine, we obtain Multi-fractal Scaling Laws, which are asymptotic and present a
decreasing fractality for increasing structural sizes. They reproduce the experimental
data very consistently. Another relevant aspect of Complexity concerns Criticality in
the acoustic (and, more generally, energy) emissions from damaging structures, as
well as in the seismic activity of the Earth’s Crust. The emergence of scaling and
fractality is emphasized for the crack or fault distributions in both space and time. On
the other hand, Critical Phenomena are always associated to the emergence of
self-similar or self-affine patterns, to fractal (renormalized) or multi-fractal quanti-
ties, and to spontaneous self-organization. Typical examples are represented by:
phase transformations, laminar-to-turbulent fluid flow transitions, avalanches in
granular media, earthquakes, micro-cracking and fracture in structural materials. In
this context, the defect size distribution of self-similarity can be defined, for which
the largest defect is statistically proportional to the characteristic structural size. It
intrinsically represents a critical condition by increasing the structural size-scale. In a
fractal framework, it is then possible to define a scale-invariant constitutive law: the
so-called Fractal Cohesive Crack Model, in which stress and strain are defined over
lacunar fractal sets and the fracture energy in an invasive fractal set, which is the
Cartesian product of the two previous sets. The slopes of the related bi-log scaling
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laws are represented by the difference between the fractal dimension and the entire
canonical dimension of the reference sets. In the case of stress or strength, the upper
bound to the absolute value of the slope is equal to 1/2 again, and represents the
condition of maximum disorder at the smallest scales. It is given by the condition of
self-similarity in the defect size distribution, i.e., by the LEFM stress-singularity, or,
alternatively, by the invasive fractal dimension of the most disordered Brownian
surface (allowing macro-crack kinematics of opening and closure), which is equal to
2.5. It is not difficult to prove that the corresponding most disordered ligament or
resisting cross-section has a lacunar fractal dimension equal to 1.5. This means that
its dimensional decrement with respect to the entire canonical dimension 2 is equal
to 0.5, i.e., the slope is just the same as that deriving from the LEFM application.
Such a convergence of values originating from different assumptions is an evidence
of the validity and consistency of the scientific framework where this subject has
been developed. Another relevant issue, which is tackled in the book, is the evo-
Iution of the fractal dimension of a micro-crack network. Initially, it could be
assumed to be between 2 and 3. Increasing the load, it increases up to reach its
maximum value 3 (criticality condition of smeared volumetric damage), and then
decreases down to the value 2 (localization to a fracture surface). At the maximum,
micro-cracks start to coalesce while a macro-crack starts to form. The b-value of the
Gutenberg-Richter distribution is equal to one-half of the fractal dimension of the
micro-crack network, and therefore it is demonstrated to evolve from 1.5 to 1.0,
going from criticality to final fracture. In the case of a macro-crack propagation, the
critical condition may be preceded by a condition of Sub-critical Crack Growth,
which is generally due to fatigue and/or creep loading conditions. The well-known
fatigue curves of Wohler and Paris can be renormalized in both axes, including the
crack growth rate and excluding the number of cycles, so that a collapse of the
scale-dependent curves occurs onto a single renormalization curve that approximates
the experimental results very satisfactorily. In this context, the fatigue threshold
tends to zero for the crack length tending to zero, so providing a very consistent
solution to the still open short crack problem. Analogously, the fatigue limit tends to
zero for the specimen size tending to infinity.

The book presents also the applications of Fractional Calculus to fractal and
nonlocal media, as well as an insight into the phenomena that might occur artifi-
cially or naturally after and beyond the material compression failure: fragmentation
and comminution. They describe properly what happens in rocks during drilling
perforations or the superficial wear in technological materials (see the well-known
case of MIR space station). The phenomena of impact and explosion are also
contemplated in the book.

My personal studies and investigations on the topics considered in the book
started in 1975 at the Institute of Structural Mechanics of the University of Bologna
in Italy, under the supervision of Professor Angelo Di Tommaso. During the fol-
lowing years, I had the opportunity to collaborate and to have a scientific debate
with an increasing number of people and within a very diversified set of contexts.
Very important and influential was for me the sabbatical academic year 1982—1983
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that I spent at the Institute of Fracture and Solid Mechanics of Lehigh University in
Pennsylvania (USA), under the supervision of Professor George Sih. I am deeply
indebted to both my mentors, who, with their experience, guided me in my early
steps and helped me in the selection of the initial basic research subjects. In 1986, I
moved to the Department of Structural Engineering of the Politecnico di Torino in
Italy as a Chair Professor of Structural Mechanics. Since that time on, my research
work from individual became team-supported and I had the possibility to collab-
orate with many different people on various subjects and with different method-
ologies. Most of the subjects were enriched by effective experimental
investigations. In particular, the evaluation of the minimum reinforcement in con-
crete beams, a major subject of research in my new academic context, and, later, the
plastic rotation capacity of reinforced concrete beams were studied on the basis of
my previous fracture mechanics models. Professor Franco Levi, through his master
competence and open-minded attitude, convinced me that my previous studies on
the bridging action of reinforcing fibres and bars could be particularly useful. He is
the third person who contributed to the formation of my scientific profile during
those early years of my career.

Besides the three above-mentioned Universities and my three Senior Colleagues,
I feel extremely grateful also to the Research Institutions and Industrial Companies
that have contributed, sharing their expertise and/or with their financial support, to
increase my knowledge in the field. They are gratefully acknowledged together
with the respective scientific responsible persons: Montedison (Aurelio Savadori)
for the size effects on polypropylene; Italcementi (Gianpietro Tognon) for the brittle
behaviour of high-strength concrete; ENEL-CRIS (Michele Fanelli and Gerardo
Ferrara) for the fracture mechanics analysis of gravity dams; HILTI (Werner Sack
and Klaus-Peter Bohn) for drilling perforation of rocks and tool wear; Metal-Work
(Erminio Bonatti and Fausto Rodella) for the fracto-emissions as seismic
precursors.

More in particular, I am mostly grateful to the co-authors of the single chapters
of this book, for their deep knowledge of the related subjects and for their
remarkable patience in the realization of the manuscript: Giuseppe Lacidogna
(Chaps. 10, 14, 15), Pietro Cornetti (Chaps. 3, 11, 12), Alberto Sapora (Chaps. 1, 4,
5), Mauro Corrado (Chaps. 6, 7, 8).

In addition, I wish to thank two of my best former co-workers very sincerely, for
their outstanding contributions to the papers on which some parts of the book are
based: Nicola Pugno (Chaps. 10 and 15) and Marco Paggi (Chaps. 9 and 13).
A significant support in the final writing of some sections of the book has come
from junior scholars working presently in my research group: Federico Accornero,
Gianni Niccolini, Oscar Borla, Francesco Montagnoli, Alessio Rubino.

Going through the references of the different chapters, it is possible to observe
the impressive number of collaborations, each one relevant for the final success
of the research project. First of all, I would like to recall Erasmo Viola, my col-
league at the University of Bologna, who, together with Professor Angelo Di
Tommaso, introduced me to Structural Mechanics. Then, I am pleased to recall all
the fruitful collaborations that I have had since my early years in Torino: Giovanni
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Alpa, Pietro Bocca, Silvio Valente, Enrico Ballatore, Crescentino Bosco, Pier
Giorgio Debernardi, Vincenzo Ilario Carbone, Giuseppe Mancini, Alessandro De
Stefano, Rosario Ceravolo, Francesco Maradei, Antonino Quattrone, Claudio
Scavia, Mauro Borri-Brunetto, Giorgio Zavarise, Laura De Lorenzis, Giulio
Ventura, Francesco Mainardi, Michele Ciavarella, Pier Paolo Delsanto, Renato
Orta, Riccardo Sandrone, Umberto Lucia, Massimo Zucchetti, Orazio Baglieri,
Ezio Santagata, Giuseppe Surace, Anna Anzani, Luigia Binda, Massimiliano
Zingales, Mario Di Paola, Roberto Ballarini, David Taylor, Elias Aifantis, George
Frantziskonis, Panagouli Panagiotopoulos, Tulio Bittencourt, Olek Naimark, Carlos
Brebbia, Ferri Aliabadi, Victor Panin.

Several important collaborations were then originated from Ph.D. Dissertations
and from the contribution of visiting scientists. I wish to acknowledge the relevant
and pertinent contributions by: Roberta Massabo, Giuseppe Ferro, Bernardino
Chiaia, Fabrizio Barpi, Stefano Invernizzi, Antonio Brencich, Ilaria Monetto,
Francesco Ciola, Moh’d El-Khatieb, Luciano Dimastrogiovanni, Simone Puzzi,
Amedeo Manuello, Davide Masera, Alessandro Grazzini, Erica Cadamuro, Diego
Veneziano, Jie Xu, Baoming Gong, Guo Ping Yang, Fan Ping Zhou, Kamran
Nemati, Kiran Kolwankar, Jacinto Ruiz Carmona, Ignacio Iturrioz, Olek Plekhov.

Another crucial moment for my scientific growth is represented by my inter-
actions with the International Scientific Societies on Fracture Mechanics. Since the
early 1990s, I have been very active inside the International Association of Fracture
Mechanics for Concrete and Concrete Structures (IA-FraMCoS), founded by
Zdenek Bazant in 1992. That scientific community had already started its informal
activities even earlier, at the beginning of the 1980s. At that time, I co-edited two
books on the subject, one with Anthony Ingraffea, and the other with Surendra
Shah. Other colleagues, with whom I had scientific and human interactions, were:
Hubert Hilsdorf, Bhushan Karihaloo, Folker Wittmann, Hans-Wolf Reinhardt,
Manuel Elices, Jan Rots, Jan van Mier, René de Borst, Jacky Mazars, Gonzalo
Ruiz, Victor Li, Hirozo Mihashi, Keitetsu Rokugo, Buyang Oh.

Since the mid 1990s, my activity inside the European Structural Integrity Society
(ESIS) became very intense. In that context, I had the opportunity to work with
several outstanding European Colleagues, among whom: Keith Miller, Karl-Heinz
Schwalbe, André Pineau, Dominique Francois, Gordon Williams, Nikita Morozov,
Volodymyr Panasiuk, Dragoslav Sumarac, Andrzej Neimitz, Jaroslav Pokluda,
Liviu Marsavina, Donato Firrao, Francesco Iacoviello.

Since 1981, I have attended the quadrennial conferences of the International
Congress on Fracture (ICF), founded by Takeo Yokobori in 1965. I had the great
pleasure and privilege of organizing ICF11 in Torino in 2005. That has been and
still is a community of significant and harmonious collaboration under different
viewpoints. I have herein the possibility to report a list of very good friends and
esteemed colleagues: David Taplin, Emmanuel Gdoutos, Ashok Saxena, Robert
Goldstein, Ludmila Botvina, Palle Rama Rao, Shouwen Yu, Robert Ritchie,
Krishnaswamy Ravi-Chandar, You-Wing Mai, Toshimitsu Yokobori, Mimoun
El-Boujdaini, Yukitaka Murakami, Rhys Jones, Ares Rosakis, Guruswamy
Ravichandran, John Hutchinson, James Rice.
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As a last tribute, I like to recall the names of those great scientists who mostly
inspired the project of this book with their seminal contributions. I have had the
venture to personally meet and be acquainted with some of them: George Irwin,
Paul Paris, Arne Hillerborg, Benoit Mandelbrot, Grigory Barenblatt. Eminent sci-
entists who deserve to be recalled and honoured are also: Alan Griffith, Nikoloz
Muskhelishvili, Alan Cottrell, René Thom, Mitchell Feigenbaum, Kenneth Wilson,
Claude Shannon, Andrej Kolmogorov, Per Bak, Donald Turcotte.

Sincere thanks are eventually due to the Publisher Springer for inviting me,
already in 2009, to write such an encyclopedic book, and for the great care and
ability in realizing it.

Turin, Italy Alberto Carpinteri
June 2021
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