PROCESS ENGINEERING FACTS, FICTION AND FABLES

Norman P. Lieberman

Process Engineering: Facts, Fiction, and Fables

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Process Engineering: Facts, Fiction, and Fables

Norman P. Lieberman

This edition first published 2017 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2017 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-37027-7

Cover image: Norman P. Lieberman Cover design by Kris Hackerott and Roy Williams

Set in size of 11pt and Minion Pro and 12pt Comic Sans MS by Exeter Premedia Services Private Ltd., Chennai, India

Printed in

 $10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1$

To Allen and Irene Hebert, whose dedication and determination have been tirelessly applied to assemble this text. And who jointly originated the concept for assembling my cast of cartoon characters into book format.

Contents

Introduction		
1	Process Operations & Design	3
	Carl & Clare	
	Increasing Cooling Water Flow Thru an Elevated Condenser	
	or Cooler	4
	Hot Vapor By-Pass Pressure Control	7
	Stalling A Thermosyphon Reboiler	10
	Optimizing Fractionator Pressure	13
	Adjusting Steam Turbine Speed to Minimize	
	Steam Consumption	16
	Steam Condensate Drainage from Reboilers Blowing	
	Condensate Seal	19
	Effect of Reflux on Fractionator Top Temperature	22
	Centrifugal Pump Head Vs. Flow Performance Curves	25
	Condensate Back-Up in Condensers-the Effect of Sub-Cooling	27
	Distillation Tray Downcomer Back-Up and Liquid Flooding	29
	Effect of Foam on Level Indication in Distillation Towers	32
	Split Liquid Levels in Vertical Vapor - Liquid Separators	35
	Optimizing Excess Air in A Fired Heater to Minimize Fuel	
	Consumption	37
	Distillation Tray Dumping or Weeping with Valve Cap	
	Tray Decks	41
	Fired Heater - Tube Failures	44
	Low Air Flow in A Fin Fan Forced Draft Air Cooler	47
	Measuring Air Flow for an Aerial Fin Fan Aerial Cooler	50
	Measuring Cooling Tower Efficiency Approach to Wet Bulb	
	Temperature	53
	Adjusting Heater Stack Damper for Optimum Energy Efficiency	56
	Preventing Tray Dumping by Use of Bubble Cap Trays	59
	Demister Fouling in Vapor-Liquid Separator Vessels	62

viii Contents

	Effect of Temperature on Liquid Level Indication	65
	Draw-off Nozzle Capacity Limits	68
	On-Stream Repair of Tube Leaks in Surface Condenser	70
	When are Vortex Breakers Required?	73
	Naphtha Injection to Centrifugal Compressor	76
	Internal Overflow from Total Trap-Out Chimney Tray	80
	Vacuum Ejector – Loose Steam Nozzle	83
	Effect of Tramp Air Leaks on Heater Efficiency	86
	Effect of A Single Fouled Tray	89
	Steam Turbine – Surface Condenser Outlet Temperature	92
	Water Accumulation in Turbine Case	96
2	Crude Distillation	99
	Professor Pot & Kumar	
	How to Adjust Pumparound Flows	100
	How Top Reflux Rate Affects Flooding on Top Trays	103
	Desalter - Adjusting Mix Valve Pressure Drop	107
	Causes of Tray Deck Fouling	110
	Minimizing Flash Zone Pressure	113
	How to Adjust Bottoms Stripping Steam Rate	117
	Overhead Condenser Corrosion	120
	On-Line Spalling of Crude Pre-Heat Exchangers	123
	Effect of Reflux on Overhead Accumulator Temperature	127
	Removing Trays from Pre-Flash Towers	130
	Total Trap-Out Chimney Tray	133
	Side Draw-Off Limitations	136
	Packed Towers	139
	Rules of Thumb for Packed Towers	141
	Controlling Ago Draw-Off Rate	143
	Filming Amine Plugs Overhead Vapor Line	146
	Stripping Tray Pressure Drop Profile	150
	Protecting Crude Tower Stripping Trays from Damage Due	
	to Water in Steam	153
3	Engineering Basics	157
	Irene & Norm	
	Draft in Fired Heaters	158
	Turbine Exhaust Surface Condenser Outlet Temperature	162
	Adjusting Steam Turbine to Save Steam	166
	Distillation Tray Downcomer Seal	170
	Bernoulli's Equation	173
	Properties of Steam	176

	Measuring Flows Head Loss in Pipelines Irene Explains Horsepower Refrigeration Packed Towers Vs. Trayed Towers Condensing Steam Turbine Exhaust Maximizing Lmtd in Heat Exchangers	179 182 185 186 190 194 198
4	Routine Refinery Operating Problems	203
	Dr. Petry & Pat	
	Pump Bearings Lubrication	204
	Pressure Measurement Problems in Vapor Lines	207
	Negative Pressure Drops	210
	Coked-Up Thermowells	213
	Centrifugal Compressor Surging	216
	Commisioning Steam Turbine	219
	Refrigeration Systems	222
	Seal Pan Drain Hole	225
	Measuring Steam Flow Without A Steam Meter	228
	Air Leak on Suction of Cooling Water Pump	231
5	Refinery Safety	235
	Dangerous Dan & Safety Sally	
	Auto-Ignition of Hydrocarbons	236
	Failure of Mechanical Pump Seals	239
	Sampling Tar Safely	242
	Dangers of Iron Sulfides	244
	H ₂ S Fatalities	247
	Fired Heater – Positive Pressure	250
	Refinery Explosions & Fires	253
	Flooding Fire Box with Fuel	256
	Routing Relief Valves to the Flare	259
	Isolating Equipment with Gate Valves	262
	Explosive Limit of Hydrogen	265
	Climate Change	268
	Danger of Carbon Steel Piping Spool Pieces	271
	Screwed Connections	274
	Dangers of Steam Deaerators	277
	Connecting Steam Hose to Hydrocarbon System	281
	Process Vessel Collapse Under Vacuum During Start-Up	284
	Acid Gas K.O. Drum	287
	Safety Note	290

x Contents

6	Pitfalls in Computer Modeling	293
	Basis for Process Engineering Calculations	294
	Underlying Assumptions in Distillation Technology	295
	Tray Fractionation Efficiency	296
	Heat Exchanger Train Performance	297
	Heat Exchanger Pressure Drop	298
	Packed Towers	299
	Air Coolers	300
	Fired Equipment	301
	Piping Systems	302
	Centrifugal Pumps – NPSH	303
	Rotating Equipment	304
	Summary	305
	References	306
Va	lue of a Chemical Engineering Degree to the Process	
En	ngineer in a Refinery	307
7	Latent Heat Transfer	309
	Propane-Butane Splitter Reboiler	311
	Heat Flux Limitations	312
8	Hydraulics	315
	Fluids other than Water	317
	Rotational Energy	318
	Pressure Drop Through an Orifice	319
	Effect of Fluid Density on Orifice Pressure Drop	320
	Head Loss in Piping	321
	Factor Affecting Orifice Coefficients	323
	Compressible Fluids	324
9	Air Coolers	325
	Measuring Air Flow	326
	Air Recirculation	327
	Vane Tip Clearance Problems	329
	Cleaning Tube Bundle	330
	Effect of Fouling on Reverse Air Flow	331
	Effect of Adding Rows of Tubes	332
	Changing Fan Blade Tips & Speed	333
	Slipping Belts	334
	Air Humidification	335
	Induced Draft Fans	336

10 Extracting Work from Steam	337
An Isentropic Expansion	338
Steam Turbines	339
The Potential Energy of Steam	340
Condensing Steam at Low Pressure	342
The Meaning of Entropy	343
Index	345

Introduction

I started work as a process engineer for the American Oil Company in 1965. Now, after 52 years, I'm still a process engineer. Still working in the same way, on the same problems:

- Distillation Tray Efficiency
- Shell & Tube Heat Exchangers
- Thermosyphon Reboilers
- Draft in Fired Heaters
- Steam Turbine Operation
- Vacuum Steam Ejectors
- Centrifugal Pump Seals
- Surge in Centrifugal Compressors
- Reciprocating Compressor Failures
- Process Safety
- Fluid Flow

Most of what I need to know to do my job, I have still to learn. And I'm running out of time! So, with the help of my little friends in this book, I've recorded what I have learned so far. I hope this will help you in solving process problems.

The difficulty of being a process engineer is that our job is to solve problems. Not with people, but with equipment. Within minutes, or hours, or days, the validity of our efforts are apparent. More like plumbing, less like other branches of technology.

Most things I've tried as a process engineer haven't worked. But those that have been successful I remember, and use again. And it's insights from these successful plant trials and projects that I have shared with you in my book.

One thing's for certain. The money paid for this book is nonrefundable. But should you have process questions, I'll try to help.

Norm Lieberman 1-504-887-7714 norm@lieberman-eng.com

PART I

CHAPTER ONE

PROCESS OPERATIONS & DESIGN

CARL & CLARE

Hello! I'm Clare! I work for Carl. We troubleshoot refinery process equipment! We're a team!

Hi! I'm Carl! I know everything, because I'm really, extremely, smart! Clare is my associate! 4 PROCESS ENGINEERING: FACTS, FICTION, AND FABLES

INCREASING COOLING WATER FLOW THRU AN ELEVATED CONDENSER OR COOLER

Clare! Let's open the cooling water outlet valve to get more water flow.

No, Carl! The Condenser is 60 feet above grade. The pressure at P_1 , is under vacuum! Opening that valve will give us less cooling water flow!

NO! Opening a valve will always increase flow!

Sorry, Carl! Opening that valve reduces the pressure at P_1 , further below the atmospheric pressure. This causes the air to flash-out of the cooling water, which chokes back water flow!

Clare! WRONG! I'm really smart! Anyway, where's the test to prove you're right?

OK. I'll close the valve and you'll see the temperature at T_1 will go down. But don't close it too much! Otherwise, you will throttle the water flow. Then, T_1 will get hotter!

But Clare! How do I know how to adjust that stupid valve?

Carl, dear! Set the valve to hold a backpressure of about 3" Hg. That's minus 0.10 atmosphere. At 100 °F, that will stop air evolution from the water, but not throttle the water flow too much!

6 PROCESS ENGINEERING: FACTS, FICTION, AND FABLES

HOT VAPOR BY-PASS PRESSURE CONTROL

Clare! Close the hot vapor by-pass valve! We need to lower the tower pressure. Do it now!

Sorry, Carl! When I closed the valve the tower pressure went up ... not down!

No, Clare! Closing the valve will cool off the reflux drum! The pressure at P2 will drop, and draw down the pressure at P1. Understand?

But Carl! How about the pressure drop across the air cooler? It increases as more flow is forced through it. True, the pressure at P2 will always fall! But the pressure at P1 may go up or down—depending on the air cooler DP!

But, but...? Closing the hot vapor by-pass is supposed to lower the tower pressure, according to my design manual!

But suppose the tubes get full of salts and scale? Then what? Also, Carl, we now have a vacuum in the reflux drum, which can be quite dangerous! Air could be sucked into the drum and an explosive mixture could form! Don't forget there's pyrophoric iron sulfide deposits $(Fe(HS)_2)$ in the drum! They'll auto-ignite at ambient temperatures!

PROCESS OPERATIONS & DESIGN 9

STALLING A THERMOSYPHON REBOILER

Clare! Open the steam supply valve! Quick! We need more reboiler heat. The reflux drum is going empty!

Sorry, Boss! That won't help! The Once-Thru Thermosyphon Reboiler is STALLED OUT!

Clare! More steam flow will have to give us more heat to the reboiler! Open that valve!

Opening the steam valve will not increase steam flow when the reboiler is STALLED-OUT!

STALLED-OUT? What does that mean?

Stalled-out means heat duty is limited by the process flow to the tube-side of the reboiler! The process flow rate to the reboiler is real low now and limiting the steam condensation rate!

How do you know that, Clare? Do you have X-ray vision?

12 PROCESS ENGINEERING: FACTS, FICTION, AND FABLES

Carl! Look at the reboiler outlet. It's 450°F! The tower bottoms are only 330°F. Most of the 300°F liquid from tray #1 is leaking past the draw pan, and dumping into the bottoms' product!

OK, Clare, OK! But still, the steam inlet valve is only 50% open! Won't opening it 100% help some?

No, Sir! The pressure at P1 on the steam inlet line is 500 PSIG! The same as the steam supply pressure. There is zero DP across the steam supply valve. The valve position, with no DP, is IRRELEVANT!

I guess we should have used a total trapout chimney tray for tray #1! I remember you suggested that last year, Clare. Perhaps you'd like a transfer to the Process Design Division? They would probably love to have you! I remember that in the old days we had bubble cap trays, which could never leak and cause this loss in thermosyphon circulation, or stalling-out.

OPTIMIZING FRACTIONATOR PRESSURE

Clare! The best way to optimize tower pressure is to target for the lowest pressure!

Why is that, Carl?

14 PROCESS ENGINEERING: FACTS, FICTION, AND FABLES

Because, Clare, as we learned at university, the lower the pressure, the greater the RELATIVE VOLITILITY between propane and butane!

But Carl! Suppose the lower tower pressure causes entrainment? Then, a lower pressure will reduce tray separation efficiency and make fractionation worse!

Well! What do you suggest? It takes too long to wait for lab sample results.

Carl, I suggest:

- At a constant reflux rate, start lowering the fractionator pressure.
- 2. Now, watch the delta T (T1 T2).
- That tower pressure, that maximizes delta
 T, will give the best split between butane
 and propane. But make the moves slowly!

