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The Impact of Microplastics on Filter-Feeding
Megafauna

Maria Cristina Fossi, Matteo Baini, and Cristina Panti(&)

Department of Physical, Earth and Environmental Sciences, University of Siena,
Via Mattioli 4, 53100 Siena, Italy

panti4@unisi.it

1 Introduction

The Mediterranean basin, a worldwide biodiversity hotspot, as previously underlined, is
one of the world seas most affected by marine litter, including microplastics [1–3].
Recent studies in the different regions of the basin suggest that some areas, including
important MPAs and Specially Protected Areas of Mediterranean Importance (SPAMI)
such as the Pelagos Sanctuary, are affected by important concentrations of microplastics
and plastic additives, representing a potential risk for endangered species (baleen
whales, sea turtles, filter feeder sharks) [4–10] living in this area and for the all
Mediterranean biodiversity [11–14]. In this paper we reconstruct the scientific story of
the invisible war between the charismatic megafauna (baleen whales, filter feeder sharks
and manta rays) against the smallest marine debris (microplastics) and their potential
toxicological effects.

2 The Impact of Microplastics on Filter-Feeding Megafauna

The first warning of this emergent threat in filter-feeding megafauna (baleen whales and
filter feeder sharks) was reported by Fossi and collaborators for Mediterranean baleen
whales (Balaenoptera physalus) in 2012, and few years later (2014 and 2017) con-
firmed also, by the same team, for filter feeder sharks such as basking shark
(Cetorhinus maximus) and whale shark (Rhincodon typus). The authors report that
filter-feeding megafauna are particularly susceptible to high levels of microplastic
ingestion and exposure to associated toxins due to their feeding strategies, target prey,
and for habitat overlap with micro-plastic pollution hot spots. Given the abundance of
microplastics in some hot spot areas, such as the Mediterranean Sea, along with the
high concentrations of Persistent Bioaccumulative and Toxic (PBT) chemicals, plastic
additives and the detection of specific biomarker responses in the skin biopsies of these
endangered species the authors suggest that the exposure to microplastics because of
direct ingestion and consumption of contaminated prey poses a major threat to the
health of this endangered marine species.

© Springer Nature Switzerland AG 2020
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Recent studies suggest that debris, including micro-plastics and chemical additives
(e.g., phthalates), tend to accumulate in pelagic areas in the Mediterranean, indicating a
potential overlap between debris accumulation areas and endangered species’ feeding
grounds (Balaenoptera physalus) (Fig. 1). This fact highlights the potential risks posed
to endangered, threatened and endemic species of Mediterranean biodiversity. In one of
the most biodiverse area of the Mediterranean Sea, the Pelagos Sanctuary, cetaceans
coexist with high human pressure and are subject to a considerable amount of plastic
debris, including microplastics [4–10]. Therefore, filter-feeding megafauna resident in
these area shave a high probability of ingesting microplastics, because they must filter
hundreds to thousands of cubic meters of water daily to obtain adequate nutrition. They
can ingest microplastics directly from polluted water or indirectly through contami-
nated planktonic prey. The high plastic: plankton weight ratios (0.5) in the Mediter-
ranean might lead to a significant reduction in nutritional uptake for filter feeders, with
animals feeding on the same quantities of particulate matter but receiving a lowered
nutritional benefit. The estimated daily plastic ingestion rates for filter-feeding mega-
fauna vary greatly, depending on location and feeding behavior, and range from as low
as 100 pieces for whale sharks in the Gulf of California to as high as thousands of
pieces for fin whales in the Pelagos Sanctuary (Fig. 1).

3 Conclusion

For these findings and because many megafauna species investigated by this research
team are charismatic and iconic indicators that serve as flagship species for marine
conservation, this research field became recently a new “trend topic”. Currently the

Fig. 1. Key Buoyant Microplastic Hotspots Overlap with Habitat Ranges of Filter-Feeding
Marine Megafauna. The habitat ranges for Balaenoptera physalus, as indicated by thatched,
lined, or dotted overlay, respectively, overlap with regions containing high levels of buoyant
microplastic pollution. From Germanov et al. 2018 (Modified).

2 M. C. Fossi et al.



scientific community and the media are very attracted by this “story” despite this
subject at the beginning has been treated with great suspicion. This scientific topic is
also developed in the Plastic Busters MPAs project, recently financed by EU (Med-
Interreg), focused on the study of the impact of microplastics on cetaceans inhabiting
the Mediterranean SPAMI Pelagos Sanctuary. While umbrella species are useful for
directing intervention strategies, flagship species could provide a global assessment of
microplastics pollution and a mechanism for communicating awareness and stimulating
action to tackle marine plastic pollution in all the marine ecosystems [10].
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1 Introduction

Nowadays, microplastic (MPs) pollution is well documented in marine ecosystems
since the first publication alarming about marine plastic pollution in 1972 [1]. Simi-
larly, continental contamination is more and more investigated. More recently, interest
for estuarine systems is growing. Estuaries are considered as a suspected predominant
pathway for microplastic pollution from continent to oceans. The specific conditions of
estuaries, like salinity gradient, tides and hydrodynamics, could affect the repartition,
settling and transfer of microplastics to marine systems.

This study aims to quantify levels of microplastics in water column and intertidal
sediments in the Seine river estuary to investigate the impact on estuary specific
conditions on microplastic pollution.

2 Materials and Methods

2.1 Study Site

The Seine river watershed is equivalent to 80 000 km2 and accounts of 40% of national
economic activity. The catchment of the estuary represents 11 500 km2 and concentrate
40% of national economic activity [2]. The Seine river is heavily anthropized. It is
under very strong pressure mainly induced by the agglomerations of Paris and Rouen.
The Seine river estuary represents the last 160 km of the river. This estuary is delimited
from the dam of Poses to the mouth of the river at Le Havre. It is characterized by semi-
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diurnal tides, and a strong tidal range reaching 7 m. Current speed can reach 2 m.s−1 at
the mouth of the river. Two petrochemical hubs are present in the estuary.

2.2 Samples Collection

Three sites were selected along the estuary: La Roque, Vieux-Port, and La Bouille
(Fig. 1). Sampling trip was conducted in May 2017, during low flow period with a flow
equal to 256 m3.s−1. Samples were collected during rising tide and ebb tide. At each
location, two nets were towed, collecting surface (first 15 cm) and subsurface (50 cm)
water. Both nets were plankton net 300 µm mesh, 50 cm diameter. The volume col-
lected range from 10 to 90 m3. All samples are transferred into glass bottles with
aluminium cover.

At each location, about 1.5 kg of sediment was sampled using a Van Veen grab.
Sediment samples are also transferred in glass bottles with an aluminium cover.

2.3 Analytical Techniques

In the lab, water samples are subjected to a purification protocol. They are first sieved
through 5 mm mesh sieve to remove all macroplastics and vegetal waste. Then, sodium
dodecyl sulfate (SDS), and biozymes are successively added to denature all proteins,
lipids and carbohydrates in the samples for 24 h at 40 °C each. Next, hydrogen

Fig. 1. Sampling sites location in the Sein river estuary
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peroxide 30% (H2O2) is added to remove remaining organic fraction for 24 h at 40 °C.
After this, sample is transferred in a separating funnel with sodium iodide (NaI,
d = 1.65 g.cm−3), and after a night of settling, MPs are recovered in the supernatant.
Finally, supernatants are filtered through glass fiber filters 47 mm. Each filter is
observed under a stereomicroscope and MPs-like particles are enumerated measured.
MPs-like particles shape is noted as well.

Finally, about 25% of MPs-like particles is characterized using Raman spec-
troscopy to assess polymers proportions in each sample.

Sediment samples are also subjected to a purification protocol. First, 4 � 25 g of
the samples are transferred in four separation funnels with NaI (d = 1.65 g.cm−3). After
a night of settling, supernatant is recovered and SDS is added for 24 h at 40 °C. Next,
H2O2 30% is added also for 24 h at 40 °C. Between each step, samples are filtered on
metallic filters (10 µm pore size) to remove all the solutions. As well as for water
samples, filters are observed under stereomicroscope. Thanks to an image processing
software, MPs-like particles were defined by length and shape.

Characterization FTIR micro spectroscopy is the final step to assess polymer
proportions in each sample. As for column water samples, only 25% of MPs-like
particle by sample will be analysed in the interest of time and efficiency.

3 Results and Discussion

3.1 Water Column

First results show that concentrations in MPs-like particles in the water column range
from 1.7 particles.m−3 to 7.1 particles.m−3 (Fig. 2.). The lower concentrations are
found at the upstream location, La Bouille. Levels of contamination in the Seine river
estuary are higher than other concentrations found in France, 0.24 ± 0.35 particle.m−3

in the Bay of Brest [3]. Compared to the literature, these levels are higher than levels
reported for other estuaries in the world, like Goiana river, Brazil, with 0.26 particle.
m−3 [4] or for the Tamar river estuary with 0.74 particles.m−3 [5] Europe. There is a hot
spot contamination at Vieux-Port, with 37.7 particles.m−3 and 8.6 particles.m−3 due to
a point-source pollution of translucent microbeads. Indeed, these microbeads repre-
sented half of both samples.

Considering the samples in La Roque, most particles are lower than 1 mm; they
represent respectively 81% and 87% of surface and subsurface water. A small part of
particles was between 1 mm and 2 mm, and there were almost none between 2 mm
and 5 mm. At La Bouille, most of particles were also smaller than 1 mm. They rep-
resent respectively 87% and 71% of surface and subsurface water.

During observation, particles were divided into four categories: fragment, sphere,
film and foam. Particles were mostly fragment in shape. There were no differences in
shape distribution between surface and subsurface water whatever the sample. Frag-
ment shapes represent between 59% and 73% percent of the distribution, and films
represent between 16% and 29%. However, the largest proportion of fragments were
found in surface water.
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Characterization step using Raman spectroscopy of 25% of MPs-like particles in
each sample showed a majority of polyethylene representing 28% of analyzed particles,
then polystyrene with 22%, and polypropylene with 13%. After this, polyamide and
polyethylene terephthalate represented 4% of analyzed particles. However, 51% of
particles did not respond of spectrum was impossible to identify. Consequently,
transformed Fourier infrared microspectroscopy (µFTIR) will be used in addition of
Raman spectroscopy to identify the rest of refractory particles.

3.2 Sediments

First results on sediment samples show MPs-like particle contamination about 300
particles.kg−1 of dry sediment in Vieux-Port. Fiber contamination was about 360 fibers.
kg−1 of dry sediment. Most of the particles were films. Particles size range from 38 to 1
200 µm (Fig. 3). Some particles are found in both sediment and water column. This
result involves the settling of particles from the water column to the river bed. Fibers
size range from 126 to 4 260 µm (Fig. 4). Globally, most of fibers are longer than
particles. Compared to the literature, concentrations in the Seine river are higher than
concentrations found in South Africa, 20.0 ± 7.5 particles.m−3 to 46 particles.m−3 [6].
These high concentrations suggest that the Seine river estuary could be a sink for
microplastics, but more results are required to go further. Analysis in the sediment are
still ongoing.

Fig. 2. MPs-like particles concentrations in the Seine river estuary
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Fig. 3. Size distribution of MPs-like particles in sediment at Vieux-Port

Fig. 4. Size distribution of fibers in sediment at Vieux-Port
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4 Conclusions

Concentrations in MPs are high in the Seine river estuary water column, ranging from
1.7 particles.m−3 to 37.7 particles.m−3. Same trend is found for sediment with 300
particles.m−3 and 360 fibers.m−3. These concentrations show important contamination
of the seine river estuary in MPs. These strong concentrations are not surprising as the
estuary is subjected to a very strong anthropic pressure and important accumulation of
plastic litter. Predominance of fragments indicates fragmentation of larger plastics as
the major source of MPs in the estuary. Considering sizes of MPs, results showing most
of MPs lower than 1 mm is consistent with the literature. Besides, since some results
highlight the sink of particles from the water column to the sediment, consequently, this
estuary is suspected to be a sink area for microplastics.

Nevertheless, because estuaries are not well documented, it is difficult to compare
levels of contamination in MPs with other studies. Moreover, the lack of standardised
protocols makes difficult the comparison of levels of contamination in MPs.

Moreover, characterization step is planned to identify polymer types in the sedi-
ment. Both Raman spectroscopy and µFTIR will be used to achieve this goal.
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Since 2014, several research projects were launched or in progress on plastic debris
issue at the scale of the Seine Bassin catchment, combining a high population density
and a strong anthropogenic pressure. These projects, illustrated in Fig. 1, are investi-
gating both macro- and micro-plastics (<5 µm) in urban water and in freshwater
upstream and downstream of Paris Megacity (France). The keynote will provide a
global overview on the knowledge gained from these projects and draw the major
learned lessons.

Fig. 1. Research projects launched and in progress on plastic debris issue at the scale of the
Seine Bassin catchment
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A first part of this keynote was dedicated to macroplastic pollution and will present
first levels found in urban water (Micro-Plast project). Based on tagged plastic litters
and GPS-trackers, the fluxes of plastic litter in the Seine River were estimated
(MACRO-Plast project). Our results suggest that for countries having a high GDP per
capita as France, the assumption of 2% of mismanaged waste proposed by Jambeck
et al. should be revisited.

The second part was focused on the microplastic contamination, by reviewing the
levels of microplastics in urban water, in total atmospheric fallout, as well as in
freshwater from Paris megacity to the Seine River estuary. Both water column and
sediments will be considered. To give perspective, the main scientific barriers and
issues related to microplastics in freshwater will be also discussed.
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1 Introduction

The Ephemare project was supported in the period 2015–2018 by JPI Oceans, as one of
4 sister projects in the joint action on ecological aspects of microplastics. Ephemare
investigated several issues concerning the ecotoxicological effects of microplastics
(MPs) in marine organisms. Ephemare included 16 European Institutions from 10
Countries and was organized into seven, highly complementary Work Packages
(WPs) with the aim to elucidate adsorption and release of chemicals to/from MPs,
coupled with MP ingestion rates, translocation in different tissues, trophic transfer and
egestion, potential toxicological effects and mechanisms of action, as well as real
distributions of MPs in marine organisms from several European areas. The project was
also designed to raise public awareness through scientifically-sound and research dri-
ven results.

Ephemare tested several biological model organisms in laboratory experiments
grouped according to their contact/ingestion pathway, comprising no feeders (algae,
isolated cells, haemocytes or cell cultures), small and large filter feeders, and predators;
these organisms were exposed under laboratory conditions to MPs of different sizes,
shapes, polymer type, origins (commercially available vs field micronized) and con-
taminated with chemical pollutants. Likewise, a wide array of biological species was
also collected in the field at coastal locations throughout Europe and analyzed for their
content of MPs; as far as feasible, the sampled organisms included representatives from
different trophic positions, feeding strategies and habitat preferences.

A suite of biological effects was evaluated at the individual, cellular, and molecular
level to elucidate the potential toxicity of MPs and their mechanisms of action. At the
individual organism level, the toxicity endpoints ranged from survival, growth rate,
behavior, reproduction success, embryo and larval development to energetic physiol-
ogy and performance. At the cellular and molecular levels, the main investigated
pathways included immune responses, oxidative stress, neurotoxicity, biotransforma-
tion (particularly for MP-bound chemicals), genotoxicity and endocrine effects. The
experimental conditions were designed to evaluate the direct effects of MPs, as well as
their capability to modulate bioavailability and toxicity of sorbed chemical pollutants,
in comparison with other particles in marine ecosystems.

A detailed description of the experimental set-ups and the obtained results have
been published in a series of papers [1]. Herein we summarize the most relevant
scientific “take home messages”. Among these, the first is that all the investigated
species, from plankton to top predators, did ingest MPs both under laboratory and field
conditions. Dynamic modeling confirmed the experimental observations that rate of
MP uptake in different tissues, as well as the potential translocation between different
tissues, and the egestion kinetics cannot be generalized in terms of “MPs” alone. Rather
the involved processes are strongly influenced by the MPs’ size and shape, as well as
composition.

Ingestion of MP is not only a direct phenomenon, since these particles can also be
easily transferred through trophic chains. In this respect, the uptake of MPs in the
jellyfish Aurelia can occur directly from water but also via feeding on nauplii of the
copepod Tigriopus fulvus previously loaded with polyethylene fluorescent MPs (1–

Insights on Ecotoxicological Effects of Microplastics in Marine Ecosystems 13



4 µm in diameter, 10 mg/L) [2]. Other examples of simple artificial food chains
confirmed that crustaceans and protozoa can efficiently transfer very small MPs (1–
20 lm) to both adults and larvae of fish [3, 4]. In many cases, egestion of ingested MPs
is rapid (4–6 h), although some particles can be retained within the mucus of intestinal
villi and be taken up by epithelial gut cells. The uptake of chemical contaminants,
however, is not necessarily increased by adsorption to MPs [5].

Moving the analysis of MPs from the laboratory scale to the field conditions places
different demands on the protocols for the extraction and characterization of MPs in
marine organisms from natural habitats. Two practical international training courses
were held in Ancona to share different experiences among participants of both the
Ephemare and Baseman consortia, resulting in a common JPI-Oceans deliverable on a
harmonized protocol for monitoring MP in biota, including all the methodological
details [6, 7].

The distribution of MPs in marine food webs was investigated in more than 1,200
specimens representative of almost 50 biological species, with different ecological and
biological characteristics, sampled in different European areas, from the Mediterranean,
the Atlantic Ocean and the North Sea [8, 9]. Just to give a snapshot on the Adriatic food
webs, almost 500 organisms from 26 commercial species were sampled from the 3
main sectors, Northern, Central and Southern Adriatic. The overall results did not
reveal marked differences in the number of particles extracted in different species and
areas; however, the frequency of ingestion was significantly higher in organisms from
Central and Southern compared to Northern Adriatic. This work also provided the first
extensive characterization of textile microfibers (MFs) which documented more ele-
vated numbers compared to MPs and confirmed the higher percentage of organisms
ingesting MPs in Central and Southern Adriatic. Geographical differences were also
observed in terms of size, shape and chemical typology of ingested MPs. Specifically,
on the basis of frequency and characteristics of particles extracted in marine organisms,
principal component analysis distinguished between the 3 Adriatic regions (North,
Central, South) which correspond to 3 sectors of the Adriatic basin highly differentiated
in terms of bathymetry, morphology and main currents circulation [9].

These field studies enabled several overall conclusions to be drawn. MPs ingestion
is a widespread phenomenon, and the frequency of ingestion is a more appropriate
index to highlight differences in exposure, rather than the number of particles. Textile
MFs are more abundant than MPs, both in terms of numbers and frequency of
ingestion. Frequency of ingestion typically ranged between 15 and 35% for MPs and
between 50 and 90% for textile MFs. More than 32% of ingested MPs were smaller
than 100 µm, 55% smaller than 300 µm, and 70% smaller than 500 µm. In contrast,
widely used sampling methods for MPs in seawater typically only collect particles with
dimensions greater than 300 µm; our findings highlight the need to quantify and
characterize the smaller size fractions to properly evaluate potential biological effects.
An unclear influence was found for trophic position, feeding strategy and habitat
preference on MPs ingestion and, although local relationships could be observed, they
were not easily generalized. Regional activities and hydrographic characteristics might
influence the dynamics of the local exposure conditions and thereby the frequency of
MPs ingestion and the differences in terms of size and typology of ingested particles.
Finally, we found that biological species already used as indicators for biomonitoring
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programs (such as those indicated by MSFD or national guidelines) should be also
considered for MPs monitoring [9].

Concerning the toxicological effects caused by MPs at the organism level, standard
ecotoxicological bioassays typically showed no effects, indicating that MPs per se are
not acutely toxic under short term conditions [10, 11]. Lowest observed effect con-
centrations LOEC were typically greater than 30 mg/L, irrespective of particle size,
shape, or polymer type. In general, concentrations of MPs causing acute toxicological
effects in laboratory conditions were 5 orders of magnitude higher than typical envi-
ronmental levels [12]. However, lack of acute toxicity does not necessarily mean lack
of hazard: long-term and/or less acute MP exposure scenarios revealed significant
biological effects in some cases. Virgin particles, those previously loaded with
chemical pollutants, or field-collected and micronized MPs caused biometry abnor-
mality and behavioral effects in medaka larvae [13, 14]; growth defects and decreased
number of eggs appeared in adults of marine medaka after long exposures (3–4
months), and spawning success was decreased in zebrafish [15]. Some of these effects
were more evident in organisms exposed to MPs previously loaded with different
chemicals or to environmental MPs, compared to organisms exposed to virgin particles
of commercial origin. These observations point to a non-negligible role of environ-
mentally acquired contaminants on the overall toxicity exerted by MPs in aquatic
ecosystems A significant decrease in predatory performance was observed in sandy
goby juveniles [16], while two species of sediment-dwelling bivalves exhibited, with a
different sensitivity, some changes in energy metabolism when MPs were present in
sediments [17]. Overall, these data highlight that long-term and sub-lethal responses are
needed to assess the effects of MPs in marine organisms, coupled with understanding of
the uptake/release kinetics of associated contaminants [18, 19].

One of the major take-home messages from Ephemare is that the blanket definition
of «microplastics» in biota an inadequate and too generic concept. Ingestion of these
particles, excretion rate or potential translocation to different tissues, cellular com-
partmentalization and biological effects are strongly modulated by size and shape of
MPs. Although they are still defined as particles smaller than 5 mm, the size classes of
biological relevance are much lower, typically below 200 µm for ingestion, and below
20 µm for cellular compartmentalization. Likewise, shape modulates such phenomena,
with spherules, fibres or fragments having different effects. Standard methods have
been developed to test the toxicity of those “small microplastics” to zooplankton [12].

We also need to better address indirect effects that MPs might have in combination
with other environmental stressors. Among these, chemical pollutants have received
particular attention, for the capability of MPs to bind and release these compounds after
ingestion, i.e. the so-called Trojan-horse effect. The sorption behaviour of pollutants to
MPs has been evaluated during Ephemare under various experimental conditions: it
appears to be a rather dynamic process, which depends on exposure conditions,
typology of chemical, time of contact and characteristics of particles (size, shape,
polymer type, virgin vs weathered). It is even more complex to generalize the release of
contaminants from MPs, which is modulated by the particle radius, diffusion coefficient
within the polymer matrix, polymer crystallinity, lipophilicity and gut conditions [19].
For amorphous polymers such as PE, affinity to hydrophobic chemicals is higher than
that of biological tissues, and thermodynamic models point at diffusion within the
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polymer as the rate-limiting process. Appreciable desorption dies occur for chemicals
with relatively low lipophilicity, the accumulation of which on MPs is negligible in the
environment. However, the role of surfactants should be considered further since these
compounds appear to facilitate desorption of chemicals and are present in the digestive
tract of many organisms [5].

Bioavailability of chemicals bound to MPs could be demonstrated in several
experiments after ingestion but also merely by external surface contact. Larvae of
Artemia could transfer very small MPs (1–20 lm) loaded with benzo[a]pyrene to
zebrafish (BaP) [4]. Fluorescence tracking of BaP indicated that even a lipophilic
chemical may be desorbed in the intestine of fish and be transferred to the intestinal
epithelium and liver. Similar results were observed for the transfer of contaminants
from MPs to fish larvae via Paramecium previously fed with BaP-loaded MPs.
Although the majority of studies have investigated the transfer of chemicals after oral
ingestion of MPs, transfer of BaP could also be shown after only superficial contact of
MPs with gills of adult zebrafish [3]. Yet, there was no accumulation of particles on or
inside the gills; most MPs remained trapped on the superficial mucus layer of the gill
filaments and were thus excreted. However, BaP-borne fluorescence indicated the
transfer of BaP to the cells of the gill filaments and arches after 6 and 24 h incubation,
a phenomenon confirmed by gill EROD induction.

The transfer of a chemical from MPs to tissues does not necessarily mean that these
particles should be considered as a major source of exposure for marine organisms, and
BaP visualized by fluorescence microscopy under experimental conditions did not
reach sufficiently high concentrations to induce toxic effects in the fish embryo [3, 4].
Compared to waterborne exposure, MPs certainly influence the tissues a chemical
might be released to, and the timescale thereof. Mussels exposed to Hg2+, dissolved or
sorbed onto particles (including MP and microalgae) accumulated the same amount of
Hg independently of the exposure route but in different tissues, namely the digestive
gland for particle exposure, and the gills for waterborne exposure. Approximately 70%
of the Hg incorporated through MPs was quickly eliminated through biodeposits, while
Hg2+ uptake via microalgae or water was translocated to other tissues [20, 21].
A different organotropism for chemicals released from MPs compared to waterborne
exposure has been observed also for other compounds, such as Chlorpyrifos [22].

MPs do not appear to increase the load of bioaccumulated pollutants [23],
nonetheless several lines of evidence showed that these particles can modulate the
biological effects of chemicals [24, 25]. At the organism level, virgin MPs were shown
to increase toxicity of chlorpyriphos to mussel larvae, while chlorpyriphos-spiked MPs
were less toxic than the combination of MPs and dissolved chlorpyriphos. Synergistic
effects of PFOS and MPs were observed on the 21d chronic assay with Daphnia
magna, while both synergistic and antagonistic effects were caused by gold nanopar-
ticles (5 nm) and MPs (1–5 lm) on mortality and reproduction success of Daphnia
magna [26].

Molecular and cellular mechanisms by which MPs can modulate biological effects
of chemicals have been further addressed in experiments with invertebrates and fish,
exposed to various combinations and typologies of MPs dosed alone and in combi-
nation with chemicals. Beside the ingestion of particles, translocation and possible
bioaccumulation of chemicals, a wide array of biomarkers including immune
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responses, oxidative stress, neurotoxicity, lipid metabolism, peroxisomal proliferation
and genotoxicity have been investigated at the functional cellular level, proteomic
profile and gene expression [27–30]. The main overall results confirmed the ingestion
of MPs both via both water and diet, an uncertain translocation of MPs to different
tissues depending on their size, some typical inflammatory responses at histological
and gene expression levels, accompanied by the confirmation that MPs can also act as
vehicles of associated contaminants which are desorbed and accumulated by organ-
isms, even though concentrations were not particularly elevated [31, 32]. The analyses
of several biomarkers confirmed a certain involvement of oxidative pathways and
cholinesterase inhibition, but immunological parameters were generally those revealing
more frequent and rapid variations. When the overall biological significance of cellular
variations was summarized using weighted criteria based on toxicological relevance
and magnitude of observed variations, the elaborated level of hazard generally ranged
between slight and moderate, confirming a general lack of acute effects in the medium-
term. At the same time, however, the overall results highlighted a clear shift from a
physical to a chemical toxicity in mussels exposed to BaP-contaminated MPs [30]. At
the beginning of the exposure, the main effects were induced by MPs (possibly
reflecting a physical challenge), followed by effects ascribed to a combination of MPs
and BaP; only after prolonged exposure, effects of BaP prevailed over those induced by
MPs (chemical impacts dominant).

The main conclusions on biological effects of MP ingestion in marine organisms
can be summarized as follows: standard ecotoxicological assays do not reveal acute
toxic effects after short-term exposure, whereas sublethal effects may appear at longer
exposure times; MPs can bind and release pollutants to organisms in a way that
depends on the physicochemical features of the MPs and the physiological features of
the organisms, and they do not represent a major source of chemical exposure in
absolute terms; MPs can modulate the effects of chemicals and may cause interaction
between chemical and physical challenges; effects at the cellular level were moderate,
but the observed susceptibility of the immune system points to potential subtle effects
on organisms’ health status under chronic exposure conditions; the possibility of MPs
to modulate organismal responsiveness towards other stressors including climate
change variables deserves attention.
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