
Rajib Roychowdhury
Shuvasish Choudhury
Mirza Hasanuzzaman
Sangeeta Srivastava   Editors

Sustainable 
Agriculture
in the Era of
Climate Change



Sustainable Agriculture in the Era of Climate 
Change



Rajib Roychowdhury • Shuvasish Choudhury 
Mirza Hasanuzzaman • Sangeeta Srivastava
Editors

Sustainable Agriculture  
in the Era of Climate Change



ISBN 978-3-030-45668-9    ISBN 978-3-030-45669-6 (eBook)
https://doi.org/10.1007/978-3-030-45669-6

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors
Rajib Roychowdhury
Department of Vegetables and Field Crops, 
Institute of Plant Sciences
Agricultural Research Organization 
(ARO) – The Volcani Center
Rishon Lezion, Israel

Mirza Hasanuzzaman
Department of Agronomy, Faculty of 
Agriculture
Sher-e-Bangla Agricultural University
Dhaka, Bangladesh

Shuvasish Choudhury
Plant Stress Biology & Metabolomics 
Laboratory, Central Instrumentation 
Laboratory (CIL)
Assam (Central) University
Silchar, Assam, India

Sangeeta Srivastava
Division of Crop Improvement
ICAR-Indian Institute of Sugarcane 
Research
Lucknow, Uttar Pradesh, India

https://doi.org/10.1007/978-3-030-45669-6


v

Preface

Since ancient times, human beings have been dependent on agricultural production, 
and previously the production systems were more natural and sustainable. Presently, 
climate change and global population increase jointly challenge sustainable agricul-
ture and crop productivity. One of the imposing tasks for crop researchers globally 
is to diminish the negative effects of climate change on crop biology, especially in 
relation to yield and nutritive values of the harvested products of cereals, legumes, 
vegetables and fruits. This is of special significance in view of the impending cli-
mate change, with complex consequences for economically profitable and both eco-
logically and environmentally sound global agriculture. The challenge at the hands 
of the crop scientist in such a scenario is to promote competitive and multifunc-
tional agriculture, leading to the overall crop improvement in a sustainable agricul-
tural system. Hence, crop improvement is an urgent need for us to feed the 
ever-increasing world population. As a result of continuous climatic changes in the 
form of environmental hazards, abiotic stresses (water scarcity, salinity, high and 
low temperature, heavy metals and metalloids, oxidants, and others), high disease 
incidents, global warming, etc., natural and cultivated habitats of crop plants are 
continuously disturbed. Crop productivity and biology are seriously affected by 
such changing patterns. Beyond such kind of hazardous barriers, this book is aimed 
at crop improvement through sustainable agricultural processes.

In this book Sustainable Agriculture in the Era of Climate Change, Chap.  1 
emphasizes the landraces of the crops which serve as the genetic stock having the 
many useful alleles/genes and can bridge between their genetic progenitors and 
modern cultivars and to utilize them in the modern breeding program. Chapter 2 is 
focusing on how to improve the grain damage of cereals due to pre-harvest sprout-
ing and late maturity for gearing up production. Chapters 3 and 4 are dealing with 
the macro- and micronutrients for better crop development and physiological pro-
ductivity. Chapter 5 describes the plant-mediated mitigation strategies of air pollu-
tion in the environment caused by the urbanization of lands. Chapters 6 and 7 are 
depicting the drought stress responses of crop plant and mitigation strategies with 
special aid from the involvement of silicon. Chapters 8, 9, and 10 are providing 
scientific background of crop plants that cope with salinity, high temperature, and 
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irradiation stress, respectively. As a part of abiotic and biotic stress response path-
ways, reactive oxygen species (ROS) are formed and needed to activate the crop’s 
anti-oxidant mediated mitigation pathways, which are described in Chaps. 11 and 12. 
Chapter 13 is providing heavy metal–based tolerance of crops. More specifically, 
arsenic becomes a serious threat to contaminate the crops and human health. 
Chapters 14 and 15 are describing the arsenic stress response of plants and their 
signaling pathways to mitigate the serious issues caused by such metalloid. 
Chapter 16 is providing the idea of heme oxygenase enzyme activity for its role to 
mitigate the stress conditions. In organic agriculture, plant growth-promoting rhizo-
bacteria (PGPR) are found to be very useful for crop’s stress tolerance and it is 
described in Chaps. 17. 18 is focusing on different tissue cultural methods to propa-
gate the crop in vitro. Chapter 19 is showing the involvement of different state-of-
the-art omics technologies that can be utilized in crop stress response research. 
Chapter 20 is describing microbial influences for crop’s abiotic stress response. 
Chapter 21 is briefing molecular mechanism of plant–pathogen interaction for dis-
ease resistance of crop plants. Chapter 22 is focusing on the role of small RNA or 
microRNA (miRNA) for crop’s abiotic and biotic stress tolerance. Chapter 23 is 
dealing with the transgenic improvement of crops and Chap. 24 is describing the 
utilization of very new gene-editing tool CRISPR/CAS for crop improvement. 
Different bioinformatics tools and their utilization for crop improvement research 
have been detailed in Chap. 25. Chapter 26 is emphasizing on nano-biotechnologi-
cal utility in crop’s stress tolerance. Chapter 27 is describing how to improve crop’s 
agrobiodiversity with special reference to the underutilized cereals “millets” which 
can be an alternative source of carbohydrate and nutrition for the global population. 
Thus, Sustainable Agriculture in the Era of Climate Change covers a wide range of 
topics under present- day environmental challenges, agronomy and agriculture pro-
cesses, and biotechnological approaches.

We are grateful to all the authors/contributors who gave their valuable time to 
write the scientific chapters within the deadline for the possible success of this 
book. We shall be highly thankful to the readers for pointing out the errors and 
omissions which, in spite of all care, might have crept in. All suggestions for further 
improvement of this edited volume will be highly appreciated and accepted. We, 
along with all the contributors, apologize to those researchers for the parts of their 
work that could not be cited in this edited volume/chapters due to the space 
limitation.

We are highly thankful to Kenneth Teng (Publishing Editor, Springer Nature, 
New  York), Jacco Flipsen (Vice President, Springer, New  York), Eric Schmitt 
(Managing Director, Springer International Publishing AG, New York), Nicholas 
DiBenedetto (Editorial Assistant, Springer Nature, New  York), Saveetha 
Balasundaram (Production Editor for Springer Nature, SPi Global, Chennai, India), 
Mario Gabriele (Senior Project Manager, SPi Global, Chennai, India), Anthony L 
Dunlap (Project coordinator, Springer Natute, New York), and other members of the 
editorial staff for their approval of this book project, prompt and timely responses 
during the acquisition, production coordination and support, formatting, proof 
checking, and editorial corrections in the manuscripts to make this volume complete 
and publishable.
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In this book Sustainable Agriculture in the Era of Climate Change, the diverse 
chapters are contributed by experienced, highly dignified, and internationally 
reputed scientists, researchers, and academicians from around the world who have 
worked on the challenging problems of achieving crop improvement in the variable 
environments. Every chapter has been written in such a way that it deals with the 
theoretical as well as applied aspects of its specific theme. Hope such hot topics will 
be helpful to formulate the future keys toward the crop improvement in the present 
challenging and changing climate. This book has been written for a wide range of 
readers with easy-to-understand tables and simplified diagrams.

We believe this book will be very useful for scientists, researchers, and students 
working in the fields of agriculture, plant science, environmental biology, and 
biotechnology.

Rishon Lezion, Israel Rajib Roychowdhury 
Silchar, India  Shuvasish Choudhury 
Dhaka, Bangladesh  Mirza Hasanuzzaman 
Lucknow, India  Sangeeta Srivastava  
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Chapter 1
Stress Management in Crops by Utilizing 
Landraces: Genetics and Plant Breeding 
Perspective
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Abstract Native germplasm is often the untapped resource that is supposed to hold 
the key to unlocking nature’s repository of stress overcoming genes of crop plants. 
With an increasing global population, crop plants are expected to yield more under 
a variety of environmental conditions, hence exposing them to severe stress condi-
tions. Locally available landraces of various crop plants that are often ignored in the 
presence of high-yielding developed varieties, however, have survived environmen-
tal turmoil over the ages and thus are the urgent need of the hour in order to couple 
yield or another desirable trait with stress tolerance. To bring these landraces to use, 
various mechanisms by which they tolerate environmental stress need to be under-
stood. The use of conventional breeding techniques such as hybridization, selective 
backcrossing, gene pyramiding, etc. along with modern techniques such as muta-
genesis, use of genetic markers, development of transgenic crops, etc. enables the 
use of trait diversity of landraces to counter environmental stresses while maintain-
ing crop productivity. This chapter deals with various methods for identification of 
causal genetic factors responsible for stress tolerance in crop landraces and the pos-
sible techniques for developing tolerant varieties in the face of increasing frequency 
and severity of biotic and abiotic stresses.
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1  Introduction

The process of crop domestication is closely associated with the various agricultural 
practices, human preferences, and the changing environment (Meyer et al. 2012; 
Smýkal et al. 2018). With the change in climate or environment and changing pat-
terns in the use of natural resources, plants have been subjected to a variety of 
stresses. This led to the process of development and evolution of different adaptive 
strategies that permit plant cells to sense environmental stimuli and to activate 
responses that allow avoidance or survival of the environmental stresses encoun-
tered. The interaction of genotype and environment, which affects both agricultural 
practices and crop yield, is a critical point of research during the development of 
stress-tolerant plants under different field regimes (Mohammed 2009; Yumurtaci 
2015). In the process of domestication, plants emerged in variable types, some as 
wild types, landraces, or the traditional domesticated genotypes. The crops plants 
have been globally dispersed with the spread of humans or evolution and due to 
various other environmental factors such as wind, water, or different natural disaster 
creating a geographical barrier. The crop plants thereby varied across the world 
based on the different process of cultivation and in accordance served to be the 
landrace to a particular area. The residues of the ancient crops undergo a very slow 
process of domestication like that of an evolutionary process, making the crop toler-
ant or highly diverse (Tanno and Willcox 2006; Smýkal et al. 2018).

Stress can be defined, in the widest biological sense, as any factor that may pro-
duce an adverse effect in individual organisms, populations, or communities. It is 
also defined as the overpowering pressure that affects the normal functions of indi-
vidual life or the circumstances in which plants are interrupted from fully express-
ing their genetic potential for overall growth, development, and reproduction 
(Rhodes and Nadolska-Orczyk 2001). As per the agricultural viewpoint, stress 
includes the external factors that limit crop productivity or destroys biomass (Grime 
1979). Stress can be biotic or abiotic in nature. Biotic stresses emerge through inter-
actions between organisms, whereas abiotic stresses are those that depend on the 
interaction between organisms and the physical environment. Abiotic stresses, 
which include the various external factors of disturbance, are often interrelated, and 
either individually or in combination, they hamper the physiological, biochemical, 
and molecular processes that adversely affect plant growth and productivity. The 
combined effect of the stress factors is based on its nature of interactions with its 
effect on the crop plants ranging from germination stage to grain filling. Crop plants 
in response to stress undergo a series of modifications and process of adaptations 
that includes both morphological and genetic changes such as genome rearrange-
ment, induction of various tolerance genes, etc., as per its ability to tolerate the 
adverse effect (Tester and Bacic 2005; Pandey et  al. 2017). Plants to withstand 
against the stress effect induce a series of regulatory mechanisms which are either 
constitutively expressed or induced (Roy et al. 2014; Pradhan et al. 2019). Thereby, 
understanding the genetic regulatory mechanism of the landraces against the stress 
effect and its ability to adapt to such adverse conditions serves as a source to iden-
tify or understand the process of tolerance against stress.

A. K. Pradhan et al.
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Breeding approach to enhance the crops’ ability to adapt adverse stress condi-
tions though due to various effects of cultivation bottleneck that has a negative 
impact on crop production must be a continuous process with an added focus on the 
different stress factors in addition to its yield (Bertoldo et al. 2014). Application of 
constant monitoring of the individuals using the modern noninvasive method as 
well as sequencing of the genotype helps in the proper screening of the crops for its 
application in breeding and development of cultivar with high adaptability. In the 
majority of the cases toward the increase of the agronomic value of cultivated crops, 
its genome structure, the type of stress factors exposed, and the variable environ-
mental conditions help in the proper selection of the suitable strategies (Yumurtaci 
2015). So there is a need to build effective crop screening methods and use the 
prevalent crop biodiversity on the basis of present technical advancements for the 
detailed evaluations of the different type of landraces which will enhance and 
improve the efficiency of breeding and crop improvement.

With advances in fields like physiology, molecular biology, and genetics, our 
understanding of crops’ response to stress and the basis of varietal differences in 
tolerance have greatly improved. In this chapter, the biotic and abiotic stress man-
agement of crops by utilizing landraces and their wild relatives through plant breed-
ing and genetic approaches are addressed.

2  Crop Landraces and Their Significance

Landraces include a group of progressive cultivated plant populations with a distinct 
location of origin and specific distinguishing characters, with high genetic diversity 
and ability to adapt variable local weather conditions. The process of landrace ori-
gin includes the set of seed selection practices or the crop domestication by farmers 
and the process of field management as per the different agricultural practices by 
farmers which vary with the area (Fuller 2007; Casañas et al. 2017). As reported by 
Dwivedi et  al. (2016), plant landraces encompass mainly the domesticated plant 
species with heterogeneous local adaptations which provide the genetic elements 
required to meet the growing challenges of farming crops in stressful environments. 
These local heterogeneous genotypes with wide genetic diversity show changing 
phenotype with its yield ranging from low to moderate level but with high nutri-
tional quality. Thereby, landraces with high ability to cope with stress factors include 
the traditional cultivars with high nutritional content and yield ability under low 
input system of agriculture (Zeven 1998; Azeez et  al. 2018). A landrace which 
serves as the repository of various mechanisms of tolerance completely varies from 
that of the new selectively improved cultivar or variety developed by breeder taking 
into account a specific trait. Landraces with high genetic diversity and different 
traits responsible for adaptation to adverse conditions thereby serve as the source of 
efficient crop development using plant breeding techniques contributing mainly 
toward the efficient traits of nutrient uptake, utilization, and genes of tolerance 
against stress conditions. An unambiguous evaluation of the landrace with the 

1 Stress Management in Crops by Utilizing Landraces: Genetics and Plant Breeding…



4

improved techniques of identification (Fig. 1.1) may uncover the different patterns 
of diversity present, which will expedite in identifying alleles/gene loci for increas-
ing growth, yield, and adaptation to stress, thus increasing the productivity and sta-
bility of staple crops in vulnerable environments.

Landraces are normally low yielding and less productive in comparison to the 
developed commercial varieties, but with the advancement in modern research in 
the recent years, they now serve as the repository source of genetic variability in the 
search for genes or traits responsible for tolerance or resistance to biotic and abiotic 
factors for the proper establishment of agriculture in that specific locality (Casañas 
et al. 2017). However, the intense use of developed varieties or transgenic plants led 
to decrease in use, management, and conservation of local landraces, thereby caus-
ing less presence of the agronomic or genetic data of the landraces which appear to 
be of great importance with changing the environment. Zeven (1998) proposed the 
importance and role that landraces played in the development of the crop worldwide 
and also its role in the improvement of crops and agricultural production which 
served to have been in existence since the origin of agriculture itself. Since the time 
of origin of agriculture, landraces have been subjected to various natural genetic 
modifications which include both the abiotic and biotic interventions, leading to the 
development of a mechanism of adaptation and tolerance (Bansal et al. 2014). Crop 
landraces are thereby the principal focus for the development of the agricultural 
system from century’s immemorial (Umakanth et al. 2017). The traditional process 
of farmers sowing, harvesting, and storage of some proportion of seeds for sowing 
in the subsequent season highly enriched the genetic pools promoting intraspecific 
diversity (Frankel et al. 1998). This traditional concept of crop cycle for conserva-
tion and maintenance of crop landrace with the beginning of plant breeding leading 
to generation of generally higher-yielding cultivar resistant to specific stress subse-
quently replaced the traditional process leading to decrease in diversity and gene 
pool, thereby causing downfall to agricultural production in the present condition 
(Frankel and Hawkes 1975; Casañas et al. 2017).

Fig. 1.1 Schematic representation of the process of landrace utilization in crop breeding 
programs

A. K. Pradhan et al.
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Hawkes (1983) remarked landraces as crops associated to one specific geograph-
ical area in contrast to that of cultivars, which are breed and trialed in diverse loca-
tions seeking its ability of tolerance to that of the trait opted for. Thus, landraces of 
a particular location are highly specific to that particular location and with most of 
the landrace nomenclature taken as per the name of the location likewise the Kent 
Wild White Clover from Kent, UK. However, various ecological factors often led to 
the introduction of informal landrace varieties and migration of traditional landra-
ces from native region to new regions.

The occurrence and maintenance of landrace germplasm include various pro-
cesses like that of seed exchange or replacement among farmers in a geographical 
area (Louette and Smale 1996). The process of continuous cultivation by an indi-
vidual farmer or discontinuous but collective cultivation of landraces also forms a 
significant process of maintenance. Therefore, open cultivation system with routine 
local or the remote introduction of landrace germplasm serves as the major process 
for the maintenance and occurrence of genetic diversity among landraces belonging 
to a particular location.

3  Genetic Mechanisms of Plant Against Different Stresses

Plants respond to various stresses with alterations in different gene expressions. 
Genes that are induced by the effect of biotic or abiotic stresses often impart stress 
tolerance to the plants. Genes induced by stress include functional genes or regula-
tory genes. Stress response genes also induce the activation of antioxidant response 
pathways and protection against damage from oxidative injury. Salinity, drought, 
heat, cold, heavy metals, radiation, and submergence are various abiotic factors 
responsible for stress in plants, whereas pathogens also induce biotic stress in plants. 
Genes responsible for stress tolerance have been identified in many plants for a 
variety of stresses, and overexpression of such genes in transformed plants has been 
shown to result in increased tolerance.

3.1  Salinity

Salinity induces both osmotic and ionic stress in plants. The salt overly sensitive 
(SOS) pathway is an important mechanism maintaining ion homeostasis during salt 
stress. The SOS signaling pathway comprises of three important genes, SOS1, 
SOS2, and SOS3 (Ji et al. 2013). Maintenance of ion homeostasis is a key response 
to salt stress, where Na+ extrusion is the primary process, providing tolerance to the 
plant against salt. Elevation in Na+ levels disrupts enzymatic functions and is toxic 
to plant cells. During salt stress, a Ca+ spike activates the cascade of SOS signal 
transduction in the root cell cytoplasm. SOS3 is responsible for activation of a pri-
mary Ca+ sensor, and with the binding of Ca+ and SOS3, the SOS2 gets activated.  

1 Stress Management in Crops by Utilizing Landraces: Genetics and Plant Breeding…
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In shoots, however, SCaBP8 (SOS3-like calcium-binding protein 8) is the dominant 
activator of SOS2. Activation of SOS2 recruits it to the plasma membrane, thereby 
activating the downstream target SOS1. SOS1 is a Na+/H+ antiporter, and its activa-
tion leads to the extrusion of Na+. SOS1 mutants are found to be highly sensitive to 
salt (Ji et  al. 2013). High-affinity potassium transporter (HKT) genes are also 
involved in ion exclusion. HKT2 has been found to increase salt tolerance through 
Na+ exclusion (Roy et al. 2014). Tolerance to salinity is also achieved by sequestra-
tion of Na+ to vacuoles by vacuolar Na+/H+ antiporters such as OsNHX1, OsNHX2, 
OsNHX3, and OsNHX4  in rice. Activities of Na+/H+ antiporters increase during 
salinity, and the increase is found to be more in case of tolerant plants. Increased 
expression of OsNHX1 leads to increased tolerance due to Na+ compartmentaliza-
tion in vacuoles and also increases tolerance in transgenic rice plants. Upregulation 
of OsHKT1;1, OsHAK10, and OsHAK16 leads to increased Na+ accumulation in old 
leaves and is an important stress adaptive feature in rice (Reddy et al. 2017).

High salinity induces the biosynthesis of abscisic acid (ABA) hormone that leads 
to the closure of guard cells and helps plants to overcome osmotic stress occurring 
due to salinity. Jasmonic acid (JA) is important in the ABA-dependent regulation of 
salinity response genes. Homologues of the JASMONATE ZIM DOMAIN (JAZ), 
OsTIFY1, OsTIFY6, OsTIFY9, OsTIFY10, and OsTIFY11 have been identified in 
rice. Several protein kinases (MAPK, RLK, etc.) are also parts of the ABA- 
dependent pathways of regulation of gene expression besides transcription factors 
such as ONAC022 and microRNAs. Transcription factors such as DREB 
(dehydration- responsive element-binding protein) are important in ABA- 
independent pathways. Overexpression of OsDREB1A, OsDREB1F, and OsDREB2A 
has improved salt tolerance in transgenic rice. Genes such as PDH45, OsCPK12, 
etc. regulate the accumulation of ROS during salt stress and improve tolerance to 
salinity (Reddy et al. 2017).

3.2  Drought

Drought induces osmotic stress in plants. Expressions of late embryogenesis abun-
dant (LEA) proteins involved in protection against desiccation are upregulated dur-
ing drought. Overexpression of some LEA class genes has led to increased tolerance 
to dehydration. A gene coding for galactinol synthase (GolS), which is involved in 
the biosynthesis of raffinose family oligosaccharide, has enhanced drought toler-
ance in transgenic Arabidopsis. Gene expressing raffinose synthase is also upregu-
lated during drought. Raffinose functions as an osmoprotectant and alleviates 
cellular damage during drought stress (Shinozaki and Yamaguchi-Shinozaki 2007). 
Methionine sulfoxide reductase (MSR) proteins encoding gene MsrB2 induces tol-
erance to drought in terms of reduction of oxidative injury by ROS. CaMsrB2 from 
Capsicum annuum overexpressed in transgenic rice has improved rice tolerance to 
drought (Nahar et al. 2016).

A. K. Pradhan et al.
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DRE/CRT (dehydration responsive element/C-repeat) regulons cooperatively 
with ABRE (ABA-responsive element) regulate the expression of RD29A gene 
encoding LEA-like proteins. RD29B, also encoding for LEA-like proteins, is regu-
lated by ABRE elements. Drought induced DREB genes to regulate the expression 
of several drought tolerance genes. Overexpression of DREB1A in transgenic rice 
increases drought tolerance. DREB2 genes are also induced by drought stress. 
However, overexpression of DREB2 does not result in increased drought tolerance 
in transgenic plants, which suggests that DREB2 protein requires posttranslational 
activation (Nakashima and Yamaguchi-Shinozaki 2006). Two basic leucine zipper 
(bZIP) transcription factors AREB/ABF activate ABA-dependent gene expression 
by binding to ABRE.  Overexpression of ABF3 or AREB2/ABF4 leads to ABA 
hypersensitivity and reduces transpiration, enhancing drought tolerability of trans-
genic Arabidopsis plants. Transcription factors AtMYC2 and AtMYB2 cooperatively 
activate the RD22, a drought-inducible gene, following the accumulation of endog-
enous ABA. Overexpression of both AtMYC2 and AtMYB2 enhanced osmotic stress 
tolerance in transgenic plants (Shinozaki and Yamaguchi-Shinozaki 2007).

3.3  Heat

Thermo-tolerance in plants is measured in terms of cell membrane thermostability 
(CMS). QTL and co-segregation analyses revealed several heat shock proteins to be 
the genetic cause of thermo-tolerance in many cereals. Thermo-tolerance is not con-
trolled by a single gene in cereals (Maestri et al. 2002). Heat stress results in the 
expression of heat shock genes (HSG) that encode heat shock proteins (HSP). Heat 
shock factors (HSF) bind to the specific binding sites of Heat Shock Elements 
(HSE) in the promoters of HSGs, inducing the expression of HSPs on heat treat-
ment. HSPs act as chaperones and protect intracellular proteins against denatur-
ation, maintaining their structural stability through protein folding and keeping their 
functions intact. HSPs are categorized on the basis of their molecular mass, viz., 
HSP100, HSP90, HSP70, HSP60, and HSP20 (sHSP). Small heat shock proteins 
(sHSPs) show the highest diversity among all the HSPs (Hasanuzzaman et al. 2013). 
All sHSPs have a conserved 90-amino acid carboxyl-terminal domain, the 
α-crystallin domain (ACD). ACD distinguishes sHSPs from other heat-induced pro-
teins. Tolerance to heat stress is induced in sHSP-overexpressing plants (Sun et al. 
2002). HSP70 and HSP101 are involved in heat stress tolerance in Arabidopsis. 
Three HSP101 members, Tahsp101a, Tahsp101b, and Tahsp101c, have also been 
cloned in wheat (Maestri et  al. 2002). Hsp17.7 and Hsp100 have been found to 
confer thermo-tolerance in transgenic plants overexpressing these genes. NPK1- 
related transcripts are significantly elevated by heat. Constitutive overexpression of 
H2O2-responsive ANP1/NPK1 was found to increase protection against heat stress 
in tobacco. Overexpression of APX1, coding for antioxidant ascorbate peroxidase, 
was also found to confer moderate heat tolerance in barley (Hasanuzzaman 
et al. 2013).

1 Stress Management in Crops by Utilizing Landraces: Genetics and Plant Breeding…
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DREB2A in its active form during high-temperature stress regulates the expres-
sion of heat shock-related genes (Sakuma et al. 2006). Heat induces the expression 
of many HSFs. Plants have multiple copies of HSF genes. Heat stress regulatory 
proteins have conferred thermo-tolerance in transformed plants. Arabidopsis 
HSFA1a and HSFA1b control early response of many genes to heat. HSFA1 has been 
proposed to be the master regulator of heat shock response in tomato (Hasanuzzaman 
et al. 2013).

3.4  Cold

A number of functional and regulatory genes in plants respond to cold stress. 
Desaturation of fatty acids is important for membrane functioning during cold 
stress. Glycerol-3-phosphate acyltransferase (GPAT) gene from Cucurbita maxima 
and Arabidopsis thaliana, which induces desaturation of phosphatidyl glycerol fatty 
acid, results in an increase in unsaturated fatty acids in transgenic tobacco plants 
and reduces cold sensitivity. Mutants of FAB1 (involved in fatty acid biosynthesis), 
fad5, and fad6 or triple mutants of genes fad3-2, fad7-2, and fad8 (genes involved 
in fatty acid desaturation) lead to increase in saturated membranes and show 
decrease in chlorophyll content and photosynthetic efficiency and growth retarda-
tion during cold stress, suggesting their significance in low-temperature tolerance. 
LEA proteins functioning against cellular damage and anti-aggregation of enzymes 
under freezing stress increase plant cold tolerance. Arabidopsis genes LOS4 and 
AtNUP160 responsible for the export of RNA from the nucleus to the cytoplasm are 
also crucial for chilling and freezing tolerance in plants (Sanghera et al. 2011).

Transcriptional regulation during cold stress is mediated by ICE1 [inducer of 
C-repeat binding factor (CBF) expression 1]. ICE1 induces expression of CBF3, 
which in turn regulates transcription during cold stress. CBFs regulate genes 
involved in membrane transport and hormone metabolism, phosphoinositide metab-
olism, osmolyte biosynthesis, ROS detoxification, and signaling (Chinnusamy et al. 
2007). DREB1A/CBF3, DREB1B/CBF1, and DREB1C/CBF2 regulons are found to 
be involved in cold stress-responsive gene expression. The products of cold-induced 
DREB1/CBF genes regulate the expression of many stress-inducible genes. 
Overexpression of these genes in transgenic Arabidopsis led to increased tolerance 
to freezing. ICE1 gene was found to regulate the expression of DREB1A promoter 
without affecting the other DREB1/CBF genes. A homologue of DREB1/CBF, 
LeCBF1 from tomato was found to induce freezing tolerance in transgenic 
Arabidopsis. Novel DREB1/CBF transcription factor, ZmDREB1A, from maize 
was found to regulate cold-responsive gene expression (Nakashima and Yamaguchi- 
Shinozaki 2006).

A. K. Pradhan et al.
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3.5  Heavy Metal

Heavy metals lead to the onset of oxidative injury in plants (Roychowdhury and Tah 
2011h; Basu et al. 2012; Roychowdhury et al. 2018, 2019). In Arabidopsis thaliana, 
cadmium uptake induces expression of Atcys-3A, which is involved in cysteine bio-
synthesis under heavy metal stress. Cysteine is the precursor in glutathione biosyn-
thesis, which in turn is required for phytochelatin production. Phytochelatins bind 
to heavy metals and increase plant tolerance against heavy metal stress. Transformed 
Arabidopsis plants overexpressing Atcys-3A have shown increased tolerance to cad-
mium (Domı́nguez-Solı́s et  al. 2001). CABPR1 overexpression in tobacco also 
showed increased tolerance to heavy metal stress (Sarowar et  al. 2005). In rice, 
OsPIP2;6 has been demonstrated to play a role in As3+ efflux, thereby increasing 
plant tolerance against arsenic. Transgenic Arabidopsis thaliana overexpressing 
PvACR3 from Pteris vittata, involved in vacuole sequestration of arsenic, have been 
shown to have increased tolerance to arsenic (Kalita et al. 2018).

3.6  Radiation

Transcript levels of PyroA, Ubq3, and MEB5.2 were found to be increased by a low 
dose of UV-B radiation. PyroA, involved in the biosynthesis of pyridoxine, is impor-
tant in protection of cellular structures against singlet oxygen. Ubq3 encodes ubiq-
uitin, associated with protein degradation. MEB5.2 is a novel gene with unknown 
function (Brosche et al. 2002). Plant flavonoids are important secondary metabo-
lites that protect against UV-B exposure, due to its absorbance in this wavelength 
region and elevation of its levels in epidermal cell layers. Flavonoids are also found 
to inhibit oxidative stress. Flavanone 3-hydroxylase (F3H) is a key enzyme in the 
flavonoid biosynthetic pathway, which is encoded by RsF3H in Reamuria soong-
orica. RsF3H gene expression and enzyme activity increase rapidly under stress 
(Liu et al. 2013).

3.7  Submergence

A QTL for submergence response in rice, Sub1, has been identified near the centro-
mere of chromosome 9 of rice. Sub1A, Sub1B, and Sub1C are three genes identified 
in the Sub1 locus, of which Sub1B and Sub1C are present in all genotypes. Sub1A 
which is the variant gene has two alleles, of which Sub1A-1 is specific for submer-
gence tolerance and Sub1A-2 is specific for intolerance. Sub1A-1 overexpression 
has been found to confer submergence tolerance in transgenic rice (Xu et al. 2006).

1 Stress Management in Crops by Utilizing Landraces: Genetics and Plant Breeding…



10

3.8  Biotic Stress

Expressions of various regulatory genes determine tolerance or susceptibility to 
biotic stress caused by pathogen attack (Mamgain et al. 2013). ABA-independent 
dehydration-responsive DREB2A signaling pathways were found to crosstalk with 
adr signaling pathways, associated with disease resistance (Agarwal et al. 2006). 
Transgenic tobacco plants constitutively expressing OsDREB1B were found to 
induce pathogenesis-related (PR) gene expression. The promoter of OsDREB1B 
contains several disease-responsive cis-elements, and transgenic tobacco overex-
pressing OsDREB1B has shown reduced disease manifestations and delayed sys-
temic infections with induced expression of PR genes such as PR1b, PR2, PR-3, 
PR5, and CHIN50 (Gutha and Reddy 2008). Plants overexpressing OsEREBP1 
showed the reduced impact of the fungus Magnaporthe grisea where transcriptome 
analysis revealed high expression of transcription regulators belonging to the NAC 
and WRKY families (Jisha et al. 2015). Overexpression of MBF1a transcriptional 
coactivator gene has been found to induce resistance to fungal disease in Arabidopsis 
(Kim et al. 2007). Rice 14-3-3 family genes GF14b, GF14c, GF14e, and GF14f are 
differentially regulated in the interactions of rice with fungal pathogen Magnaporthe 
grisea and bacterial pathogen Xanthomonas oryzae pv. oryzae. 14-3-3 proteins act 
as scaffoldings for the assemblage of large signaling complexes and are potential 
factors in disease resistance and tolerance of stress. Response of 14-3-3s in defense 
against pathogens has also been reported in many other plants such as soybean, cot-
ton, and tomato (Chen et  al. 2006). Rice gene Osmyb4 which encodes an Myb 
transcription factor leads to the upregulation of several genes with known functions 
in resistance against pathogens. Myb is effective in induction of systemic acquired 
resistance (SAR) (Vannini et al. 2006). Overexpression of SlAREB1, a member of 
the AREB/ABF subfamily of bZIP transcriptional factors, from Solanum lycopersi-
cum has been found to enhance the expression of PR proteins (Orellana et al. 2010). 
NAC transcriptional factors are important in plant pathogen interactions. NAC pro-
teins activate PR genes, induce hypersensitive response (HR), and result in cell 
death at the infection site. Some NAC proteins, however, also increase the suscepti-
bility of plants against pathogens. ATAF2 overexpression was found to increase 
susceptibility toward Fusarium oxysporum by repressing PR genes. ATAF1 increases 
resistance against Blumeria graminis f. sp. graminis (Bgh) but reduces resistance 
against Pseudomonas syringae, Botrytis cinerea, and Alternaria brassicicola 
(Puranik et  al. 2012). Overexpression of OsNAC6 in transgenic rice has led to 
increased tolerance against blast disease (Nakashima et al. 2007).
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