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Preface

In the past decade, with the wide deployment of distributed energy resources
(DERs), power system is envisioned to be Smart Grid, which is expected to be
planned and operated in a smart response to a variety of stochastic and intermittent
characteristics at multiple time scales. Because the applications are the prime
concerns, it often turns out that the particular planning and control applications
have always gained widespread focus long before the monitoring has been well
developed, which plays an important role in providing the necessary information
for the post-processing. However, the monitoring for conventional power system
still heavily relies on the steady state model of the system, which rarely occurs in
reality with the deep penetration of DERs since there exist a variety of stochastics
in both demand side and generation side. As a result, the SCADA systems in energy
management systems (EMS), which is dependent on the steady state assumption
and no timestamps, cannot accurately capture the dynamics so as to fail the system
planning, operation, and control in some complex occasions. To address this issue,
the recent phasor measurement units (PMUs) facilitate the dynamics state estimation
(DSE) application for wide-area measurement system with its high sampling rate
up to 150 Hz. Therefore, it can help the event detection of oscillation, monitoring
under extreme event, enhance the hierarchical decentralized control for DERs, and
improve the fault detection without any a priori protection replay actions.

Despite the locally available dynamic state information for the decentralized
control or the remote available for the centralized control, the DSE application
in WAMS relies on the advanced communication infrastructure in power system.
However, considering the situation of nowadays that there are over 2000 production-
grade PMUs installed across the USA and Canada, which streams data and
provides almost 100% visibility into the bulk power system, the dynamics recorder
functionality of PMUs definitely boosts the data transmission for local control
and protection action or to the remote in communication infrastructure, finally
causing the network congestion with the booming size of smart grid. The power
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system engineers cannot always broaden the communication bandwidth to meet
this endless requirement. Therefore, it is of significance to include the limitation of
communication bandwidth into consideration in advance through the event triggered
technique. Besides, as the field of PMU and communication infrastructure gain
maturity, the quest for better design, functionality, and reliability of DSE application
has made it necessary for engineers to design and thoroughly analyze an accurate
and robust DSE under all practical communication environment. For example, the
packet dropout, a phenomenon characterized by the fail of measurement receiving
in the remote via the transmission network, leads possibly to the misunderstanding
by the remote center together with the event triggered filtering, which has no explicit
idea on whether the measurement is received or lost. Therefore, knowing how (in
what design) and when (under what conditions) an event triggered filtering for DSE
application accurately and stably work should be of fundamental importance. Such
knowledge, however, requires the appropriate design and in-depth analysis on its
numerical stability.

This book is concerned with the development and design oriented analysis
of event triggered dynamic state estimation for practical WAMS applications.
The objective is to provide a systematic treatment procedure for communication
reduction, filtering design, and stability analysis of the DSE application in WAMS.
The essential techniques for filtering with event triggered sampling strategy are
given step by step and proved, along with the practical application examples
describing the key procedure for strategy implementation integrated into the filtering
design. The target audience includes graduate students, academic researchers, and
engineers in industry who work in the field of DSE for WAMS application and
have the development need to reduce the communication burden and guarantee the
DSE accuracy in WAMS. Furthermore, in presenting various DSE filtering design, a
conscientious effort has been made to emphasize the practical implementation using
pseudo-code rather than only the mathematical abstraction. We hope this book can
also be useful as a design guideline for graduate students and academic researchers
who wish to grasp the essentials to design the DSE application for practical WAMS
in order to reduce the communication burden, as well as a readable reference for
engineers in industry who wish to implement such practical DSE.

We begin in Chap. 1 with an overview of the WAMS constitution and its DSE
application, and an outline of some practical concerns for application. In Chap. 2, in
order to build the fundamental knowledge of event triggered based DSE, various
event triggered sampling strategies and its advantageous features are given for
linear filtering design. Besides, as a performance reference, the intermittent Kalman
filtering is also designed, which is also targeted at the filtering for communication
reduction. Furthermore, the simplest nonlinear Kalman variant, i.e., the extended
Kalman filter, together with the event triggered strategy is designed for the brief
demonstration of DSE implementation. However, its performance greatly suffers
from the practical nonlinearity of power grid, which therefore initiates the subse-
quent research journey of this book for the sake of practical application. In Chap. 3,
an event triggered cubature Kalman filter (ETCKF) is proposed to reduce the amount
of data transmission while ensuring the estimation accuracy. The ETCKF uses the
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innovation based event triggered sampling strategy in the sensor node to reduce
the data transmission. Based on the developed nonlinear event triggered strategy,
the cubature Kalman filter (CKF), using the third-degree spherical-radial cubature
rule, is adopted to further ensure the estimation accuracy. Further, the stochastic
stability of ETCKF is analyzed. Using the stochastic Lyapunov stability lemma,
ETCKF is proven to be stochastically stable if a sufficient condition, which is
composed of offline parameters, is satisfied. Moreover, the average communication
rate of ETCKF is derived, which is only related to design parameters in innovation
condition. To satisfy the determined arrival rate need of the limited channel capacity,
an event triggered particle filter is accordingly designed in Chap. 4. An arrival rate
guaranteed event triggered strategy is established by utilizing Monte Carlo method
to approximate the prior conditional distribution of observations. Moreover, an ET-
PF filtering algorithm is further proposed by making full use of the information
from the event triggered strategy to enhance the performance of estimation. Under
the constraints including both the communication and computation power at sensor
nodes, an event triggered heterogeneous nonlinear Kalman filter (ET-HNF) is
designed in Chap. 5. The ET-HNF utilizes the unified filtering of unscented transfor-
mation with PF theories so that both the accuracy and the relief of communication
burden can be guaranteed. An unscented transformation based event triggered UKF
(ET-UKF) is firstly designed to supply the event triggered strategy. Furthermore,
a Monte Carlo based filtering algorithm is designed in the estimation center to
provide the accurate filtering results. To deal with the non-Gaussian or unknown
noises, Chap. 6 designs the stochastic event triggered robust cubature Kalman filter
(SETRCKF). Firstly, to make up for the deficiency of ETCKF, the stochastic event
triggered cubature Kalman filter (SETCKF) is proposed using the stochastic inno-
vation based event triggered sampling strategy, which can maintain the Gaussian
property of the conditional distribution of the system state. Based on SETCKF,
the SETRCKF is further designed by using the moving-window estimation method
and the adaptive method to estimate the measurement noise covariance matrices
and the process noise covariance matrices and using the Huber function to make
SETCKF more robust. Moreover, the stochastic stabilities of the two proposed filters
are analyzed by deriving the sufficient conditions regarding the stochastic stability
of the filtering error. To tackle the presence of packet dropout when using the
stochastic innovation based event triggered sampling strategy, Chap. 7 proposes the
stochastic event triggered cubature suboptimal filter (SETCF). Firstly, by modeling
the packet dropout as a Bernoulli process and inspired by the linear suboptimal
filter, the cubature suboptimal filter (CF) is designed for periodic sampling system.
Based on CF and the stochastic innovation based event triggered sampling strategy,
SETCF is proposed. Moreover, the stochastic stability of the two proposed filters is
analyzed by using the Lyapunov stability lemma. Considering that CPS is vulnerable
to cyber attack and has limited bandwidth, the event triggered cubature Kalman
filters under two typical attack types, which are the data tampering attack and the
deviation control command forgery attack, are established in Chap. 8, respectively.
Aiming at the data tampering attack problem, the anomaly data detector is designed
by using the projection statistics method. After the attack is discovered, the weight
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matrix is constructed by using the detection result to correct the measurement value
to ensure the filtering accuracy, which completes the filter design. For the deviation
control command forgery attack problem, the problem is firstly transformed into
the problem that the system is with unknown input. Then, the Bayesian inference
method is used to derive the event triggered cubature Kalman filtering algorithm.
The feasibility and performance of all the developed filterings are verified based on
the IEEE 39 bus system.

For the successful completion of this book, I highly appreciate a number of
people, institutions, and organizations. First of all, in the course of my research in
this field, I have constantly collaborated and been inspired with my former students,
among which I am indebted to Dr. Sen Li, Dr. Luyu Li, and Bin Liu for their
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easily overlooked problems but finally great findings. I also wish to give my sincere
appreciation to Dr. Xi Chen, Prof. Tyrone Fernando, and Prof. Xiangdong Liu, who
helped me a lot along the research in this field and their experienced advisory.
Furthermore, Dr. Junbo Zhao deserves my grateful thanks due to our discussion
on the research of DSE. I would also like to thank the staff of the Springer for their
professional and constant support of this project.

Last but not least, I must thank the Grant Council of Beijing Natural Science
Foundation under grant No. 3182034 for funding my research work.
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Chapter 1
Introduction

1.1 WAMS System

The development of power system is continuously accompanied with the emer-
gence of new technologies, which ranges from the electrical infrastructure to
the informatics. Smart grid is envisioned to offer an intelligent, automated, and
widespread distributed generation (DG) by a two-way flow of electricity genera-
tion/consumption and information exchange. The metering is the fundamental of
all the functional applications in power system such as control, analysis, plan, etc.
Therefore, the wide-area measurement systems (WAMS) have greater impact on the
reliable operation of power system.

As shown in Fig. 1.1, the WAMS consist of the control center, time synchroniza-
tion, network communication system, and phasor measurement unit (PMU). The
measurement data are collected from stations distributed in different areas, which
are equipped with PMUs. In general, the information about the power system can
be extracted from its raw data measured by PMU or other data resources by a kind
of computer aided tools known as WAMS applications. All the applications in the
area control center (for large scale system) or central control center (for small scale
system) acquire system data from PMUs or other data resources for dispatching and
control purpose via the wire or wireless communication link as shown in Fig. 1.2.
And most of them have strict real-time requirement. But with the widespread use
of PMUs, a huge amount of data needs to be transmitted even within regions,
which may result in communication link congestion and increasing communication
latency. Therefore, the state estimation should be specifically designed to deal with
the communication constraint.

With the assist of accurate state estimation from WAMS, a scheduling and control
center can master all operational data of the grid in a real time and online manner so
as to calculate the real-time operating parameters and acquire the online state of the
system through state estimation, and simulate the operational states of grid based
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Springer Nature Switzerland AG 2020
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on the estimation, and further conduct online stability analysis of the system, and
optimize grid scheduling, and finally combine local control and grid scheduling to
ensure the reliability and accuracy of the whole system. It also allows the analysis
of the local fault through the synchronization of phasor measurement data, and the
locating of system’s weaknesses. By doing so, the systematic research, analysis, and
improvement can be facilitated to avoid recurrence of similar accidents.
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1.1.1 Basic Synchronization Principles of WAMS

The WAMS was initially invented to enhance the reliability of the domestic grid
of the USA and adjust its electric market. In 1989, WAMS was jointly developed
by the Bonneville Power Administration (BPA) and the Western Area Power
Administration of the Department of Energy (DOE) and firstly applied in the
northwestern power grid. Its main scope of development is to establish the flexible
AC transmission system (FACTS) as the core element base for real-time operation
monitoring and optimization of the grid, and develop an effective online software
package in response to voltage and dynamic safety evaluation issues.

For the synchronization, WAMS must unify their time coordinate so as to
establish a time synchronization system. The time coordinate system comprises the
beginning timestamp and the scale unit of time (second). The time synchronizing
system can be synchronized with the measurement data only when the clock of the
synchronous measurement unit in WAMS conforms to the coordinated universal
time (UTC). The time synchronizing technologies primarily include long- and
short-wave-time transfer time synchronization, internet based time synchronization,
satellite time service and digital hierarchy (SDH) network time synchronization,
telephone dialing time synchronization, and other technologies. They are effectively
applied in different fields of time synchronization and have their respective weak-
nesses.

1. Long-and-short-wave-time transfer time synchronization. Long- and short-wave-
time service technology is commonly used for military and navigational pur-
poses, and it is based on the transmission of radio signals. Its advantages include
the simple transmitting and receiving devices, extensive signal coverage, low
cost, and real-time calibration of the local clock. Its weakness is the seldom usage
in civilian applications.

2. Internet time synchronization. This technology allows the remote calibration
of computer clocks via the Internet at an accuracy of 1–50 ms. However, this
technology is based on computers and the Internet so that the system safety
cannot be guaranteed in a complicated network environment.

3. Digital hierarchy (SDH) network time synchronization. This technology utilizes
the feature in synchronization between time code and clock so as to add the time
code signals into the unused bytes of SDH or SONET-STM-N multiplex section
overhead (MSOH). The whole coded signals satisfy the frame structure required
in ITU-TG.708 with a length setting of 5 bit. This technology enables the long
distance and highly accurate transmission in the scale of 100 ns. Its weaknesses
are the frequent hardware maintenance, which hinders its own development in
power system.

4. Telephone dialing time synchronization. Telephone dialing time synchronization
is not a high technology and can be completed via a computer or some
synchronization software with the help of a telephone wire, modem, or other
common communication devices. However, this technology offers very poor real-
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Table 1.1 Time accuracy for various synchronization techniques

Time synchronization
technique

Long-and-short-
wave Internet SDH Telephone GPS

Accuracy 1–10 ms 1–50 ms 100 ns 100 ms 5–100 ns

time performance. Even if the transmission delay caused by part of the telephone
wires is alleviated with the help of feedback technologies, it still cannot satisfy
the practical requirement of the complex power system.

5. Satellite time synchronization. The worldwide well developed GPS system
extensively applies the satellite time synchronization technology. GPS satellites
send out the synchronous signals, and the user can receive the signals transmitted
by 24 satellites in orbit and several standby satellites at any place on the
earth. These satellites are all equipped with the accurate atomic clocks. If the
user’s clock and the satellite’s atomic clock are synchronized, the navigation
time from the satellite to the user can be acquired, and their distance and
the current time coordinate can be inferred as well. The advantage of this
technology is that the signals synchronized by GPS satellites can be received
on a real-time basis and the reliability and high time accuracy can be guaranteed.
However, some situations hinder the development of GPS technology. Firstly,
the US army controls the time codes of higher accuracy and opens them only
to authorized users. Secondly, the high GPS operational requirements disable
the wide installation of GPS synchronizing equipment at the power plant with
comparatively complex ambient environments.

Table 1.1 lists the comparison of the different time accuracies for different
synchronizing technologies. Considering the advantages of different synchronizing
technologies mentioned above, the satellite synchronizing technology is the most
appropriate for the implementation of accurate and affordable WAMS.

1.1.2 Phasor Measurement Unit

PMU facilitates the widespread application of WAMS. Its main function is firstly
receiving the synchronized measurement data and then transmitting these synchro-
nized signals to the scheduling and control center. In a UTC system, the operator
on duty analyzes and calculates all system measurement data collected by PMU
to acquire the synchronized phasor measurement information. PMU can record the
transient data through the triggering mode and the dynamic data through continuous
recording. It can be further divided into centralized and distributed mode according
to the installment. If there has only one control center to collect the measurement
data, the centralized installment of PMUs is preferred. On the other hand, the
distributed installment of PMUs is recommended for extensively distributed stations
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(e.g., power plant). Finally, the data collector will package the distributed PMU data
and transmit them to the master center.

The synchronous phasor measurement of WAMS can link the massive state
observations together within a structurally complex power system based on a UTC
system.

1.1.3 WAMS Control Center

The hardware system of WAMS’s control center includes the communication server,
data analysis, historical data server, statement, scheduler workstation, and other
equipment. The functions of WAMS control center include the real-time monitoring
and management of PMUs, the reception of the real-time measurement data,
recording files, event logging, wave recording. The data received from the station
are further pre-processed and then sent to the real-time or historical database for
the purpose of real-time or offline analysis. Besides, the software system includes
the data collection and pre-processing, real-time monitoring system, database
system (including real-time and historical data), advanced applications, and internet
interface. Figure 1.1 shows the main WAMS applications in the control center. Some
modern WAMS applications are as follows [1].

Wide-Area Dynamic Monitoring and Analysis This application can provide various
basic tools to observe power grid and form a global and dynamic view of the system.

Instability Prediction Conventionally, the stability analysis of power systems is
done offline. But due to the high sample rate of PMU, the real-time stability analysis
and instability prediction can be fulfilled.

Generator Operation Status Monitoring This function can provide a close supervi-
sion of generators, which is very useful in system operation and stability assessment
because it can provide the real-time information of generators.

State Estimation This is the most important WAMS application and is considered
as kernel because it can provide extracts creditable data, which is the input of other
applications, by eliminating the effect of bad measurements.

The WAMS control center and the conventional SCADA/EMS are intercon-
nected through the network communication via the Internet, the latter of which
provides the state estimation to WAMS main station. On the other hand, the WAMS
offers the dynamic information of grid to the SCADA/EMS. Moreover, the WAMS
control center can also extract the transient data of grid and the relay protection from
the fault information management system of SCADA/EMS.
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1.1.4 Network Communication System

The network communication system aims at providing the channel for data
exchange between its subsystems to ensure its reliable operation, which needs
to guarantee the real-time data transmission, particularly in a large scale
interconnected network. The principles of the physical structure of a network
communication system include that,

1. It should be layered and divided into zones according to the monitored area,
i.e., provincial and regional monitoring system and national scheduling and
monitoring system, among which the level of these three monitoring and control
systems increases successively.

2. Various systems within WAMS keep the bidirectional data exchange through a
tree structure.

3. Different WAMS control center and stations can engage in the bidirectional
transmission of real-time online data and historical data stored in the database.

4. There is no specific requirement on the control center, which can have the direct
exchange with the PMUs of lower levels.

1.2 State Estimation of WAMS

WAMS is typically a cyber-physical system (CPS). As shown in Fig. 1.3, the
measurement data needs to be transmitted to the decision-making layer for state
estimation via a network, which is mostly via the wireless sensor network (WSN) in
WAMS. Therefore, it is necessary to consider the influence of unstable transmission
network on system states. Specifically, with the deep penetration of renewable
energy to the conventional power system, which is widely installed in rural area,
the network communication media can be easily exposed to the interference from
environment. Such influence includes the time delay, packet dropout, channel atten-
uation, network attack, etc. This section specifically provides a general description
of the state estimation in case of the packet dropout and network attack.

1.2.1 State Estimation Under Packet Dropout

The packet dropout occurs when the filter on the decision-making level fails to
receive the measurement transmitted by the sensor via the transmission network.
The causes of packet loss include the physical fault, nodal hardware fault, network
congestion, routing error, data packet conflict, etc. The packet dropout cannot be
avoided in a communication network, particularly a radio transmission network,
where it may occur due to EMI in the environment. If the state estimation is
specifically designed for the dropout, the estimation accuracy will decline sharply
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and the divergence will even occur. Therefore, it is valuable in practice to investigate
the state estimation and analyze its accuracy and stability under packet dropout.

Generally, the filtering upon the packet dropout is referred to as the intermittent
filtering. The architecture is shown in Fig. 1.4. The research basis for intermittent
filtering is the modeling of packet loss. The most commonly used model is Bernoulli
stochastic process model subject to i.i.d. (independent identically distribution),
whose assumption is that the packet loss in channel at the current time has no
dependence with the previous time instance so that the probability of packet loss
at each time is identical. Based on this packet dropout model, the stochastic
stability of linear intermittent Kalman filter was investigated and the definition of
intermittent linear filter stability was pointed out that the estimation of the mean
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value of prior variance matrix was stochastically bounded [2]. Furthermore, it was
further proved that the intermittent Kalman filter was stochastically stable when
the packet loss rate was lower than the critical probability. However, the analytical
solution of such critical probability was not given. It was also demonstrated that the
analytical solution of such critical probability could be got only when the system’s
observation matrix was nonsingular. Besides, the solving condition of critical
probability was relaxed and the solution could be obtained when the observable
subspace corresponding to the system observation matrix has full rank [3, 4].

Except Bernoulli stochastic process to model the packet loss, the other is the
homogeneous Markov model, under which the packet loss rate at each time instance
is no longer independent but relates to whether the packet loss occurs at previous
time instance. Compared with Bernoulli stochastic process, this model can represent
more extensive characteristics of channel condition and better fit in with the actual
conditions. Based on this model, the stochastic stability issue of intermittent Kalman
filter was studied under this model [5], where the mean peak of the prior variance
matrix was selected as the evaluation index of stochastic stability and the sufficient
conditions for the stochastic stability was given for the filter. The results showed
that the peak stability of the Kalman filter for the scalar system was only related to
the probability of recovery after the packet loss and there existed a critical recovery
probability. Based on this, a stochastic Riccati equation was utilized to infer the
more stringent sufficient condition of filter stability [6] than that in [5]. In [7], it was
proved that the mean peak stability of the prior variance matrix was equivalent to the
mean stability proposed in [2] under certain conditions. Apart from the evaluation
index of peak stability above, the mean of posterior variance matrix was proposed
in [8] as an evaluation index of stability estimation and more stringent sufficient
conditions of stability were derived. The evaluation index of the weak convergence
stability of filter was designed in [9] under the Markov process, which proved that
the sufficient conditions considering weak convergence were most relaxed through
the comparison of the sufficient conditions of filter stability using various evaluation
indexes under the homogeneous Markov process.

The aforementioned intermittent filter collects data from a single sensor. How-
ever, it is common that data are collected from distributed sensors and transmitted
to the decision-making layer via various channels in the CPS system. According to
such a scenario, the situation was studied in [10], where two sensors were used for
data collection and both transmission channels were described as i.i.d. and Bernoulli
stochastic process, and the stochastic stability of the filter was analyzed accordingly.
The stability of the intermittent filter under the homogeneous Markov model was
investigated when two sensors were used for data collection [11]. However, the
previous two methods were inapplicable to the case of multiple sensors. The linear
matrix inequality (LMI) equation was utilized in [12] to solve the critical probability
of arrival rate for various channels so that the filtering stability was analyzed for the
multi-sensor filtering system under packet loss.

The previous research results are obtained based on the linear system. Many
researchers have also studied the intermittent filters for nonlinear system. The LMI
was utilized to simplify the nonlinear filtering into a multiple linear filtering so as to
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analyze nonlinear intermittent filter [13–15]. The stability of intermittent EKF was
studied in [16] and the results showed that the stability of nonlinear intermittent
filter must use the mean error as the evaluation index. However, there contains
online parameters for the sufficient conditions of stability. The sufficient conditions
of filtering stability were given for intermittent suboptimal EKF in [17], which
only contained offline parameters. A more relaxed sufficient conditions of filtering
stability was proposed in [18] based on [16], which can be completely expressed by
offline parameters. The stability analysis of intermittent UKF under the Bernoulli
stochastic process and the homogeneous Markov process was carried out in [19, 20].

Moreover, some researchers have investigated the state estimation upon the
occurrence of packet dropout with other channel conditions. The state estimation
under packet dropout and time delay was studied in [21, 22]. Besides, the state
estimation upon packet dropout and quantification was considered in [23, 24].

However the previous research focused on the intermittent filtering under the
periodic sampling strategy, there is almost no intermittent filtering under the event
triggered sampling strategy. Although the event triggered sampling strategy can
hinder the packet dropout to one certain extent due to the reduced data transmission,
there are various kinds of causes for packet dropout as mentioned above, and not
only within the scope of small channel bandwidth and heavy data transmission load.
Therefore, it is necessary to design the intermittent filtering under event triggered
sampling strategy and analyze its filtering stability.

1.2.2 State Estimation Under Network Attack

The network attack refers to the damage to the measurement data due to an
malicious attack on the transmission channel, which includes DoS attack [25],
replay attack [26], data injection attack [27], wormhole attack [28], etc. Because
the transmission highly relies on the media, the CPS is vulnerable to DoS and data
injection attack. Once the network attack occurs, the accuracy of state estimation
will be severely affected, and the divergence may even occur. Therefore, many
researchers have studied the state estimation under network attack.

Normally, the network attack may be blocked and intercepted by the protection.
In other words, the network attack normally occurs on a stochastic basis. Therefore,
the state estimation system under network attack is shown in Fig. 1.5. The state
estimation of linear system upon data infusion attack was carried out and an attack
set was established which would not be discovered by the detector [29]. The
data infusion attack issue was studied for smart grid state estimation [30], which
showed that the attacker could change the state estimation at any time [31] and
Literature [32]. Two safety indexes were set in [31] to evaluate the difficulty of
launching a data infusion attack on specific measurements while it was pointed out
in [32] that the defense against data infusion attack could be fulfilled through the
encryption of a certain number of sensors. Furthermore, the defense mechanism
against data injection attack on state estimation was investigated [33], which
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Fig. 1.5 The system diagram of dynamic state estimation under the data alteration attack through
the communication channel

proposed the fewest number of nodes to be attacked as the safety index and designed
an designation algorithm for encrypted sensor to realize attack defense.

Moreover, an elastic estimator was designed to address the issue of state
estimation under a stochastic system hidden attack [34]. The estimation of the
initial value of system state was investigated in [35] when some measurements
are damaged, which showed that there had relationship between the quantity of
recoverable sensors under attack and the existence of the decryptor. An attack-elastic
estimator for the linear time-varying system was designed and the robustness of the
estimator was analyzed as well [36]. An elastic self-adaptive filter was proposed
in [37] for network attack defense and verified on a ground robot platform. It
demonstrated that this algorithm could provide a better estimation results than an
attack-elastic estimator.

However, the previous research on state estimation under network attack only
focuses on the linear system. But the practical CPS is mostly a nonlinear system
and suffers from the heavy data transmission and inadequate bandwidth. Therefore,
it is necessary to investigate the issue of nonlinear state estimation when a channel
is subject to network attack with the event triggered sampling strategy.

1.3 Development of the Event Triggered Filter

The concept of event triggered sampling was initially proposed by Ho et al. on the
discrete event system in the early 1980s [38]. Different from traditional periodic
sampling, in the event triggered sampling the sensor samples the data and transmits
the data to the remote data center only when the specific condition is reached, which
is called as event, which can effectively reduce the data transmission and the energy
consumption of sensor nodes. This novel sampling mode aroused the focus from
both the academia and the industry when Åström and Arzén creatively applied the
event triggered sampling in a dynamic system with continuous state space [39, 40].
In [39], Åström compared the event based sampling and the stochastic system based
periodic sampling and proved that the event based sampling could provide the
better performances with smaller output variance at the same average sampling rate.



1.3 Development of the Event Triggered Filter 11

In [40], Arzén designed a PID controller based on the event triggered sampling and
proved that the control performance would not decline when the CPU utilization
ratio was substantially reduced, which promoted the continuous development of
signal processing technology based on event triggered sampling. This section will
summarize the research on the event triggered filtering from two perspectives: event
triggered sampling strategy design and the filter design based on event triggered
sampling.

1.3.1 Design of Event Triggered Sampling Strategy

In [39], Åström proved that the performance can be improved for both the
continuous time system and the discrete system as long as a reasonable event
triggering strategy is designed. Inspired by this, the early research primarily focused
on even triggered sampling strategy design.

In general, the event triggered sampling strategy design has multiple conflict
objectives. The conflicts between communication rate and filtering accuracy dom-
inate in the design of event triggered filter. To address this problem and achieve
multiple objectives, it is generally turned into the constrained optimization problem
so that some objectives are listed into the objective function and others as the
constraints [41–46]. Based on this, the transmission and scheduling were studied for
the event based optimal finite-time sensor regarding the continuous time and discrete
time scalar linear system [41, 42]. By relaxing the zero-mean initial conditions
and considering the measurement noise, the previous results were further extended
to a linear vector system [43]. The adaptive sampling method was developed for
the continuous time linear system state estimation [46]. The relationship between
sampling performance and mean sampling rate was analyzed and the suboptimal
event triggered sampling strategy was further proposed, which could guarantee the
minimum mean sampling rate [47].

Another method of addressing multi-objective conflicts is to include different
weighted items into the objective function of the optimization [48, 49]. Following
this concept, one event triggered sampling strategy was proposed to guarantee the
error covariance boundedness through balancing the estimation of error covari-
ance and communication rate [48, 49]. The distributed event triggered estimation
was studied in [50] and one global event triggered communication strategy was
developed for the state estimation through minimizing the weighted function
of network energy consumption and communication cost and considering the
estimation performance constraints. The joint design of event triggered sampling
strategy and estimation was considered for the first-order stochastic system with
the noise of arbitrary distribution [51], where the gaming theory framework was
utilized to analyze the optimal tradeoff between mean square estimation error and
the corresponding expected transmission rate.

Except the previous achievements, some researchers also proposed other meth-
ods to design an event triggered sampling strategy. For example, the periodic
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sampling and event triggered sampling were combined in [42] and one mixed
data sampling method was further proposed to reduce the computation complexity.
The previous research designed the multiple event based sampling strategies from
various perspectives and thus provided an important theoretical basis for the further
design of the event triggered filters.

1.3.2 Design of Event Triggered Filtering

The state estimation not only plays an important role in the design of feedback
controller but also is essential to the performance monitoring and fault detection of a
complicated dynamic system. Therefore, other than the research on event triggered
sampling strategy design, designing the optimal filter for specific event triggered
sampling strategy is also a hot topic of research.

The state estimation system based on event triggered sampling is shown in
Fig. 1.6. In a state estimation system based on event triggered sampling, the
measurements will be transmitted to the remote filter only when the specifically
pre-designed event is satisfied although the sensor still samples the actual physical
system at each sampling time. Therefore, the filter must deal with the measurement
set containing “point value” and “set value” at each time instance in order to
acquire the optimal estimation performance. When the remote filter receives the
measurement, the filter will use the “point value” for updating. On the other
hand, when the remote filter does not receive the measurement, the filter is still
acquainted that the current measurement satisfies the event triggering conditions,
i.e., the measurement contained in the event triggering conditions. In this case,
the filter carries out the update according to the “set value” data. Based on
this inspiration, many researchers have conducted the work considering different
practical applications.

Based on the Gaussian hypothesis of system state condition distribution, the min-
imum mean square error filter was designed [52] for the innovational based event
triggered sampling strategy and the analytical expression of communication rate was
inferred theoretically, where the relationship between the estimation performance
and communication rate was analyzed. The previous results were extended to the
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event triggered sampling strategy based on sending data (Send-on-Delta) in [53].
By means of using the finite number of Gaussian distribution and approximate even
distribution, the filter was proposed based on event triggered sampling strategy with
a mixed updating mechanism [54]. One stochastic event triggered sampling strategy
was proposed in [45] and the minimum mean square error filter was derived for the
closed loop stochastic event triggered sampling strategy without introducing extra
approximation. The sufficient conditions were provided in [55] for the existence
of filter with expected performances regarding one certain nonlinear stochastic
system with time delay. The Markov chain approximation algorithm was proposed
to address the event triggered filtering of the nonlinear system [56]. Regarding the
estimation of the event triggered sampling strategy of the hidden Markov model,
the upgrade of system state was inferred considering the reliable channel and packet
loss [57]. The performances of the linear filter were compared considering the
periodic sampling and event triggered sampling and a quantitative comparison of
the first-order and the second-order system was performed [58]. An event triggered
sampling strategy based on state estimation of error covariance matrix was proposed
and the convergence of the triggering strategy was strictly proved. It also showed
that the triggering strategy can be designed offline [59].

In the previous research, the Gaussian assumption is adopted to directly address
the non-Gaussian problem caused by the event triggered sampling strategy. How-
ever, many researchers also applied other methods to indirectly address this
problem. The noise and event triggered sampling strategy were taken as a stochastic
and non-stochastic uncertainty, respectively, and the filter based on event triggered
sampling was derived by minimizing the mean square error in the worst conditions.
According to this concept, the set value filtering was utilized to address the design
issue of filters based on event triggered sampling [44]. In response to the event
triggered sampling strategy proposed in [52], the constrained optimization was
utilized to address the maximum likelihood estimation under this strategy [60]. The
calculation of the upper and lower bound of the communication rate was discussed
under this strategy [61]. The distributed filtering based on event triggered sampling
was studied and the stability of the filter was further analyzed considering the
unconditional distribution [62].

Meanwhile, there are also extensive researches on the filters for the optimal event
triggered sampling regarding the different indexes, among which the robustness
H∞ based filtering method gained the greatest concern. The robustness H∞ based
filtering method was initially developed based on the gaming theory and Riccati
equation for the periodically sampled linear system. With the help of linear matrix
inequality (LMI) equation, it has been successfully extended to the event triggered
sampling strategy [63–65]. In this method, the performance of filter based on event
triggered sampling is normally quantified according to the dynamic stability of filter
error and the L2 gain between the disturbance and estimation error. Although this
method can only guarantee the filtering performance in the worst condition, the
joint design of the filter and the event sampling strategy was facilitated with the
capability to handle the packet dropout and time delay [66, 67]. Based on such
idea, on theH∞ filtering based on event triggered sampling strategy was studied for
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the communication network with delay and the sufficient condition was obtained
to ensure the index stability by using the Lyapunov–Krasovskii function [68].
A general event triggering framework for the discrete time-varying system was
developed, which has an attenuated communication channel, and the recursive LMI
method was utilized to design the filter gain [69]. The LMI tool was developed for
the H∞ filter based on event triggered sampling [70]. The consensus filtering of
distributed H∞ based on event triggered sampling was studied and the coordinated
design algorithm was proposed to obtain the filter gain and the threshold parameter
of event triggered sampling strategy was acquired based on the bounded real number
lemma [71].

The previous research on the event triggered filtering are all carried out for the
linear system instead of the nonlinear system. Furthermore, most only provides the
filter design instead of the qualitative proof of filter performance and stability [72,
73]. Because the physical models in the CPS are mostly nonlinear, it is necessary
to design the nonlinear filter based on the event triggered sampling and prove its
corresponding stability.

1.4 Development of Nonlinear Filtering

Generally, the high accuracy state estimation can effectively improve the accuracy
and effectiveness of the control system. As an important branch of control theory, the
state estimation theory has received extensive attention from academics. In the early
nineteenth century, Gauss proposed the least square estimation algorithm, which is
considered by academics as the earliest optimal estimation and has been applied
till now. Under nonsingular situations of relevant Gramian matrix, this method only
requires the least square error of the observation constraint equation and can acquire
the unique solution of unknown variables but without the need for the statistic
characteristics of observation. Therefore, this method can be easily realized from
an engineering perspective. But the least square method suffers from the inadequate
estimation accuracy [74]. In the 1940s, Wiener and Kolmogorov proposed the
Wiener filtering successively applicable for the continuous time system and the
discrete time system, which found the theoretical basis of estimation including
forecast, filtering, and smoothening [75, 76]. The Wiener filtering fully uses the
statistic characteristics of measurement and input signals. Together with the linear
system theory, the optimal method was given to filter the disturbances of known
statistic characteristics during the generalized stability process under the least mean
square error criteria. As the Wiener filtering estimates the states at the current time
instance according to all observations of the system, it is only applicable for a stable
stochastic process and requires solving the Wiener–Hopf equation, which needs
huge storage and high computation complexity and it is unsuitable to deal with the
vector problem. Therefore, it has remarkable restrictions in application and cannot
be extensively applied in practice. In 1960, in order to address the problem of high
accuracy state estimation for NASA’s moon landing initiative, Kalman summarized
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the concepts of minimum mean square error, probability theory and stochastic
system, and introduced the state variable into Weiner filtering and further proposed
the epoch-making Kalman filter for the linear time domain state space model [77].
The Kalman filtering realizes the estimation for the time-varying unstable stochastic
process and multi-dimensional signal through the iteration within the time domain,
beyond the constraints of Weiner filtering, making it easy implementation on a
computer.

Although it was proved later that Kalman filtering was the unbiased optimal filter
in the sense of both mean square error and maximum likelihood from multiple
perspectives [78–80], Kalman filtering is only applicable for the linear system.
However, the nonlinear system prevails in engineering. Therefore, the optimal
nonlinear filter was inferred based on the previous work and the critical fundamental
for the iterative computation of optimal nonlinear filter in the sense of mean square
error is to solve one second-order nonlinear partial differential equation [81–83].
Since there is generally no analytical solution for the second-order nonlinear partial
differential equation, and huge computation is required to derive the numerical
solution, it is almost impossible to realize the iterative computation of optimal
nonlinear filtering. Therefore, the researchers began to seek the design of nonlinear
suboptimal filter with adequate accuracy and high filtering stability. Its design
concept is to approximate the optimal nonlinear filter according to one certain
approximation principles. The approximation method can be categorized into the
nonlinear filtering based on Taylor expansion approximation, the filtering based on
deterministic sampling and filtering based on stochastical sampling.

1.4.1 Nonlinear Filtering Based on Taylor Expansion
Approximation

To address the state estimation for nonlinear system in the Apollo Program,
Schmidt et al. proposed the extended Kalman filter (EKF) based on Kalman
filtering [84, 85]. The EKF performs the Taylor series expansion on the nonlinear
state and observation equation at the steady state, but only the first order is taken into
consideration, and then the Jacobian matrix is used to replace the original nonlinear
function. Based on this, the linear Kalman filtering is further used for the iterated
estimation. Since this filtering algorithm is easy to be implemented using Taylor
expansion, EFK has been extensively applied in engineering in the last several
decades.

However, the EKF is only applicable for the nonlinear system that can be locally
linearized, and the round off error is introduced during the linearization. Therefore,
the accuracy of the filter will decline sharply and even become divergent when
the system is of strong nonlinearity. To reduce the influence of linear round off
error and increase the filtering accuracy for EKF, various EKF variants have been
developed. The nonlinear filter was proposed that used the estimation results as the


