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Introduction

Everyone seems to carry a smartphone and/or a tablet. Nearly all of these
devices have one thing in common; they use an ARM central processing
unit (CPU). All of these devices are computers just like your laptop or
business desktop. The difference is that they need to use less power, in
order to function for at least a day on one battery charge, therefore the
popularity of the ARM CPU.

At the basic level, how are these computers programmed? What
provides the magical foundation for all the great applications (apps) that
run on them, yet use far less power than a laptop computer? This book
delves into how these are programmed at the bare metal level and provides
insight into their architecture.

Assembly Language is the native lowest level way to program a
computer. Each processing chip has its own Assembly Language. This
book covers programming the ARM 64-bit processor. If you really want to
learn how a computer works, learning Assembly Language is a great way to
get into the nitty-gritty details. The popularity and low cost of single board
computers (SBCs) like the Raspberry Pi and NVidia Jetson Nano provide
ideal platforms to learn advanced concepts in computing.

Even though all these devices are low powered and compact, they're
still sophisticated computers with a multicore processor, floating-point
coprocessor, and a NEON parallel processing unit. What you learn about
any one of these is directly relevant to any device with an ARM processor,
which by volume is the number one processor on the market today.
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INTRODUCTION

In this book, we cover how to program all these devices at the lowest
level, operating as close to the hardware as possible. You will learn the
following:

e The format of the instructions and how to put them
together into programs, as well as details on the binary
data formats they operate on

e How to program the floating-point processor, as well as
the NEON parallel processor

o About devices running Google’s Android, Apple’s iOS,
and Linux

o How to program the hardware directly using the
Raspberry Pi’s GPIO ports

The simplest way to learn this is with a Raspberry Pi running a 64-bit
flavor of Linux such as Kali Linux. This provides all the tools you need to
learn Assembly programming. There’s optional material that requires an
Apple Mac and iPhone or iPad, as well as optional material that requires an
Intel-based computer and an Android device.

This book contains many working programs that you can play with,
use as a starting point, or study. The only way to learn programming is by
doing, so don’t be afraid to experiment, as it is the only way you will learn.

Even if you don’t use Assembly programming in your day-to-day life,
knowing how the processor works at the Assembly level and knowing the
low-level binary data structures will make you a better programmer in
all other areas. Knowing how the processor works will let you write more
efficient C code and can even help you with your Python programming.

The book is designed to be followed in sequence, but there
are chapters that can be skipped or skimmed, for example, if you
aren’t interested in interfacing to hardware, you can skip Chapter 8,
“Programming GPIO Pins,” or Chapter 12, “Floating-Point Operations,” if
you will never do numerical computing.
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I hope you enjoy your introduction to Assembly Language. Learning
it for one processor family will help you with any other processor
architectures you encounter through your career.

Source Code Location

The source code for the example code in the book is located on the Apress
GitHub site at the following URL:
https://github.com/Apress/Programming-with-64-Bit-ARM--
Assembly-Language
The code is organized by chapter and includes some answers to the
programming exercises.


https://github.com/Apress/Programming-with-64-Bit-ARM-Assembly-Language
https://github.com/Apress/Programming-with-64-Bit-ARM-Assembly-Language

CHAPTER 1

Getting Started

The ARM processor was originally developed by Acorn Computers in
Great Britain, who wanted to build a successor to the BBC Microcomputer
used for educational purposes. The BBC Microcomputer used the 6502
processor, which was a simple processor with a simple instruction set. The
problem was there was no successor to the 6502. The engineers working
on the Acorn computer weren’t happy with the microprocessors available
at the time, since they were much more complicated than the 6502, and
they didn’t want to make just another IBM PC clone. They took the bold
move to design their own and founded Advanced RISC Machines Ltd.

to do it. They developed the Acorn computer and tried to position it as

the successor to the BBC Microcomputer. The idea was to use reduced
instruction set computer (RISC) technology as opposed to complex
instruction set computer (CISC) as championed by Intel and Motorola.
We will talk at length about what these terms mean later.

Developing silicon chips is costly, and without high volumes,
manufacturing them is expensive. The ARM processor probably wouldn’t
have gone anywhere except that Apple came calling. They were looking
for a processor for a new device under development—the iPod. The key
selling point for Apple was that as the ARM processor was RISC, it used
less silicon than CISC processors and as a result used far less power. This
meant it was possible to build a device that ran for a long time on a single
battery charge.

© Stephen Smith 2020 1
S. Smith, Programming with 64-Bit ARM Assembly Language,
https://doi.org/10.1007/978-1-4842-5881-1_1
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The Surprise Birth of the 64-Bit ARM

The early iPhones and Android phones were all based on 32-bit ARM
processors. At that time, even though most server and desktop operating
systems moved to 64 bits, it was believed that there was no need in the mobile
world for 64 bits. Then in 2013, Apple shocked the ARM world by introducing
the 64-bit capable A7 chip and started the migration of all iOS programs to

64 bits. The performance gains astonished everyone and caught all their
competitors flat footed. Now, all newer ARM processors support 64-bit
processing, and all the major ARM operating systems have moved to 64 bits.

Two benefits of ARM 64-bit programming are that ARM cleaned up
their instruction set and simplified Assembly Language programming.
They also adapted the code, so that it will run more efficiently on modern
processors with larger execution pipelines. There are still a lot of details
and complexities to master, but if you have experience in 32-bit ARM, you
will find 64-bit programming simpler and more consistent.

However, there is still a need for 32-bit processing, for instance,
Raspbian, the default operating system for the Raspberry Pj, is 32 bits,
along with several real-time and embedded systems. If you have 1GB of
memory or less, 32 bits is better, but once you have more than 1GB of RAM,
then the benefits of 64-bit programming become hard to ignore.

Unlike Intel, ARM doesn’t manufacture chips; it just licenses the
designs for others to optimize and manufacture. With Apple onboard,
suddenly there was a lot of interest in ARM, and several big manufacturers
started producing chips. With the advent of smartphones, the ARM chip
really took off and now is used in pretty much every phone and tablet. ARM
processors power some Chromebooks and even Microsoft’s Surface Pro X.

The ARM processor is the number one processor in the computer
market. Each year the ARM processors powering the leading-edge phones
become more and more powerful. We are starting to see ARM-based
servers used in datacenters, including Amazon’s AWS. There are several
ARM-based laptops and desktop computers in the works.
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What You Will Learn

You will learn Assembly Language programming for the ARM running in
64-bit mode. Everything you will learn is directly applicable to all ARM
devices running in 64-bit mode. Learning Assembly Language for one
processor gives you the tools to learn it for another processor, perhaps, the
forthcoming RISC-V, a new open source RISC processor that originated from
Berkeley University. The RISC-V architecture promises high functionality
and speed for less power and cost than an equivalent ARM processor.

In all devices, the ARM processor isn’t just a CPU; it’s a system on
a chip. This means that most of the computer is all on one chip. When
a company is designing a device, they can select various modular
components to include on their chip. Typically, this contains an ARM
processor with multiple cores, meaning that it can process instructions for
multiple programs running at once. It likely contains several coprocessors
for things like floating-point calculations, a graphics processing unit
(GPU), and specialized multimedia support. There are extensions available
for cryptography, advanced virtualization, and security monitoring.

Why Use Assembly

Most programmers write in a high-level programming language like
Python, C#, Java, JavaScript, Go, Julia, Scratch, Ruby, Swift, or C. These
highly productive languages are used to write major programs from

the Linux operating system to web sites like Facebook, to productivity
software like LibreOffice. If you learn to be a good programmer in a couple
of these, you can find a well-paying interesting job and write some great
programes. If you create a program in one of these languages, you can
easily get it working on numerous operating systems on multiple hardware
architectures. You never have to learn the details of all the bits and bytes,
and these can remain safely under the covers.
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When you program in Assembly Language, you are tightly coupled to
a given CPU, and moving your program to another requires a complete
rewrite of your program. Each Assembly Language instruction does only
a fraction of the amount of work, so to do anything takes a lot of Assembly
statements. Therefore, to do the same work as, say, a Python program,
takes an order of magnitude larger amount of effort, for the programmer.
Writing in Assembly is harder, as you must solve problems with memory
addressing and CPU registers that is all handled transparently by high-
level languages. So why would you want to learn Assembly Language
programming? Here are ten reasons people learn and use Assembly
Language:

1. To write more efficient code: Even if you don'’t
write Assembly Language code, knowing how the
computer works internally allows you to write
more streamlined code. You can make your data
structures easier to access and write code in a
style that allows the compiler to generate more
effective code. You can make better use of computer
resources, like coprocessors, and use the given
computer to its fullest potential.

2. To write your own operating system: The core of
the operating system that initializes the CPU and
handles hardware security and multithreading/
multitasking requires Assembly code.

3. To create a new programming language: If it is
a compiled language, then you need to generate
the Assembly code to execute. The quality and
speed of your language is largely dependent on the
quality and speed of the Assembly Language code it
generates.
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To make your computer run faster: The best way to
make Linux faster is to improve the GNU C compiler.
If you improve the ARM 64-bit Assembly code
produced by GNU C, then every program compiled
by GCC benefits.

To interface your computer to a hardware
device: When interfacing your computer through
USB or GPIO ports, the speed of data transfer is
highly sensitive as to how fast your program can
process the data. Perhaps, there are a lot of bit
level manipulations that are easier to program in
Assembly.

To do faster machine learning or three-
dimensional (3D) graphics programming: Both
applications rely on fast matrix mathematics. If you
can make this faster with Assembly and/or using
the coprocessors, then you can make your Al-based
robot or video game that much better.

To boost performance: Most large programs
have components written in different languages.
If your program is 99% C++, the other 1% could
be Assembly, perhaps giving your program a
performance boost or some other competitive

advantage.

To manage single board computer competitors
to the Raspberry Pi: These boards have some
Assembly Language code to manage peripherals
included with the board. This code is usually called
a BIOS (basic input/output system).
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9. To look for security vulnerabilities in a program
or piece of hardware: Look at the Assembly code to
do this; otherwise you may not know what is really
going on and hence where holes might exist.

10. To look for Easter eggs in programs: These are
hidden messages, images, or inside jokes that
programmers hide in their programs. They are
usually triggered by finding a secret keyboard
combination to pop them up. Finding them requires
reverse engineering the program and reading
Assembly Language.

Tools You Need

The best way to learn programming is by doing. The easiest way to play
with 64-bit ARM Assembly Language is with an inexpensive single board
computer (SBC) like the Raspberry Pi or NVidia Jetson Nano. We will
cover developing for Android and iOS, but these sections are optional.
In addition to a computer, you will need

e A texteditor

e Some optional specialty programs

Raspberry Pi 4 or NVidia Jetson Nano

The Raspberry Pi 4 with 4GB of RAM is an excellent computer to run 64-bit
Linux. If you use a Raspberry Pi 4, then you need to download and install

a 64-bit version of Linux. These are available from Kali, Ubuntu, Gentoo,
Manjaro, and others. I find Kali Linux works very well and will be using

it to test all the programs in this book. You can find the Kali Linux
downloads here: www.offensive-security.com/kali-linux-arm-images/.


http://www.offensive-security.com/kali-linux-arm-images/
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Although you can run 64-bit Linux on a Raspberry Pi 3 or a Raspberry Pi
4 with 1GB of RAM, I find these slow and bog down if you run too many
programs. I wouldn’t recommend these, but you can use them in a pinch.
The NVidia Jetson Nano uses 64-bit Ubuntu Linux. This is an excellent
platform for learning ARM 64-bit Assembly Language. The Jetson Nano
also has 128 CUDA graphics processing cores that you can play with.
One of the great things about the Linux operating system is that
itis intended to be used for programming and as a result has many
programming tools preinstalled, including

e GNU Compiler Collection (GCC) that we will use to
build our Assembly Language programs. We will use
GCC for compiling C programs in later chapters.

e GNU Make to build our programs.

e GNU Debugger (GDB) to find and solve problems in
our programs.

Text Editor

You will need a text editor to create the source program files. Any text
editor can be used. Linux usually includes several by default, both
command line and via the GUI. Usually, you learn Assembly Language
after you've already mastered a high-level language like C or Java. So,
chances are you already have a favorite editor and can continue to use it.

Specialty Programs

We will mention other helpful programs throughout the book that you can
optionally use, but aren’t required, for example:

e The Android SDK
e Apple’s XCode IDE
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e Abetter code analysis tool, like Ghidra, which we will
discuss in Chapter 15, “Reading and Understanding Code”

All of these are either open source or free, but there may be some
restrictions on where you can install them.

Now we will switch gears to how computers represent numbers. We
always hear that computers only deal in zeros and ones; now we’ll look at
how they put them together to represent larger numbers.

Computers and Numbers

We typically represent numbers using base 10. The common theory is we
do this, because we have ten fingers to count with. This means a number
like 387 is really a representation for

387 =3 * 102 + 8 * 10 + 7 * 10°
3 %100 + 8 * 10 + 7
300 + 80 + 7

There is nothing special about using 10 as our base, and a fun exercise in
math class is to do arithmetic using other bases. In fact, the Mayan culture
used base 20, perhaps because we have 20 digits: ten fingers and ten toes.

Computers don’t have fingers and toes; rather, everything is a switch
that is either on or off. As a result, computers are programmed to use base
2 arithmetic. Thus, a computer recognizes a number like 1011 as

1011 = 1 * 23 + 0 * 22 + 1 * 2t + 1 * 2
1*8+0*4+1*2+1
8+0+2+1

11 (decimal)

This is extremely efficient for computers, but we are using four digits
for the decimal number 11 rather than two digits. The big disadvantage for
humans is that writing, or even keyboarding, binary numbers is tiring.
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Computers are incredibly structured, with their numbers being the
same size in storage used. When designing computers, it doesn’t make
sense to have different sized numbers, so a few common sizes have taken
hold and become standard.

A byte is 8 binary bits or digits. In our preceding example with 4 bits,
there are 16 possible combinations of 0s and 1s. This means 4 bits can
represent the numbers 0 to 15. This means it can be represented by one
base 16 digit. Base 16 digits are represented by the numbers 0-9 and then
the letters A-F for 10-15. We can then represent a byte (8 bits) as two base
16 digits. We refer to base 16 numbers as hexadecimal (Figure 1-1).

[Decimal [ 0-9 ] 10 | 11 | 12 | 13 | 14 [ 15 |
[HexDigt |  0-9 | A | B | C | D | E | F |

Figure 1-1. Representing hexadecimal digits

Since a byte holds 8 bits, it can represent 22 (256) numbers. Thus, the
byte e6 represents

e6 = e * 16' + 6 * 16°
14 * 16 + 6

230 (decimal)

1110 0110 (binary)

We call a 32-bit quantity a word and it is represented by 4 bytes. You
might see a string like B6 A4 44 04 as a representation of 32 bits of memory,
or one word of memory, or the contents of one register. Even though we
are running 64 bits, the ARM reference documentation refers to a word as
32 bits, a halfword is 16 bits, and a doubleword is 64 bits. We will see this
terminology throughout this book and the ARM documentation.

If this is confusing or scary, don’t worry. The tools will do all the
conversions for you. It’s just a matter of understanding what is presented to
you on screen. Also, if you need to specify an exact binary number, usually
you do so in hexadecimal, although all the tools accept all the formats.



