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Foreword

It is about time! Or, perhaps more accurately, it is about “timing.” Safe and success-
ful short- and long-term weed management is highly dependent upon when weed 
seeds lose or gain dormancy, when they germinate, when seedlings emerge, how 
fast plants grow, when flowers and seeds form, differential sensitivities to disruption 
of growth and development during all phases of plant life cycles, and the fickle 
nature of herbicide fate. No farmer can understand all of these dependencies for 
even a single weed species. Nor, for that matter, can any individual weed scientist. 
Failure to comprehend and predict these dependencies helps explain why weeds 
remain common and usually unwanted residents of agricultural fields even after 
decades of intense efforts at controlling them. Indeed, by the year 2020, many spe-
cies of weeds have evolved resistance to various forms of weed control, and they 
now are not just common, but rampantly abundant in some fields. The sheer volume 
of literature in Weed Science published during the past two decades pertaining to 
resistance underscores the fact that this problem is increasing, not diminishing.

Even though no individual person understands all of the variables that affect any 
weed, groups of weed scientists can come close to doing so. These groups of scien-
tists can collaborate, conceptualize, experimentally test, and develop models that 
attempt to mimic weed behavior and control. Although models of weed growth and 
management were initiated many years ago, only some scientific groups continued 
pursuing this line of research to the present. Many other groups, however, curtailed 
modeling activities with the advent of genetically modified herbicide tolerant crops. 
Creation of herbicide tolerant crops represented truly remarkable scientific achieve-
ments, and these achievements revolutionized weed management beginning in the 
mid-1990s in countries that allowed GM crops to be grown. Unfortunately for farm-
ers and weed scientists in those same countries, evolution also is quite remarkable. 
Selection for weed resistance to herbicides used in GMO-based cropping systems 
occurred faster and was more widespread than anyone had anticipated. This was, 
indeed, a sobering development for Weed Science.

Weed resistance to herbicides is not confined to GMO-based cropping systems. 
Weeds evolve resistance to herbicides whenever and wherever overreliance on her-
bicides occurs, even in countries that banned GM crops. Consequently, the need for 
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understanding weed biology and management is worldwide in scope, and it is never-
ending, as weeds will continue evolving as new cropping systems and weed control 
techniques are developed and implemented.

Fortunately, small pockets of weed scientists scattered across the globe recog-
nized the continued need for weed models even during the GMO revolution. The 
continued efforts, intellect, and dedication of those groups are reflected in this book, 
Decision Support Systems for Weed Management. The book is divided into four 
parts, each with multiple chapters: (1) Modelling: A Brief Introduction to Decision 
Support Systems, (2) Bio-Ecological and Site-Specific based models, (3) 
Environmental Risk Modelling, and (4) Weed Management Decision Support 
Systems: Study Cases. These parts explain to readers the general and technical 
aspects of modeling and its utility in Weed Science; historical and recent advances 
in the modeling of weed behavior and dynamics, crop–weed interactions, and site-
specific phenomena; assessments of unintended consequences of weed manage-
ment, especially herbicide fate and effects; the utility of several highly functional 
DSS models developed in Australia, Europe, and Latin America. These are truly 
exciting developments.

In my view, the individual chapters, its sections, and the book as a whole repre-
sent the twenty-first-century basis for integrated weed management. In other words, 
adoption of the concepts, if not the specific models, described in this book will help 
lead to the sustainable cropping systems that agriculture must have in the future. It 
is about time!

University of Minnesota� Frank Forcella, 
St Paul, MN, USA

Foreword
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Preface

Weed management decision support systems (DSS) are increasingly important 
computer-based tools for modern agriculture. Nowadays, extensive agriculture has 
become highly dependent on external inputs, and both economic costs and the nega-
tive environmental impact of agricultural activities demand knowledge-based tech-
nology for the optimization and protection of nonrenewable resources. In this 
context, weed management strategies should aim to maximize economic profit by 
preserving and enhancing agricultural systems resources. Although previous contri-
butions focusing on weed biology and weed management provide valuable insight 
on many aspects of weed species ecology and practical guides for weed control, no 
attempts have been made to highlight the forthcoming importance of DSS in weed 
management. This book is a first attempt to integrate “concepts and practice” pro-
viding a novel guide to the state of the art of DSS and the future prospects, which 
hopefully would be of interest to higher-level students, academics, and profession-
als in related areas.

Buenos Aires, Argentina� Guillermo R. Chantre 
Córdoba, Spain � José L. González-Andújar  
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Chapter 1
Mathematical Models

Niels Holst

Abstract  Decision support systems (DSSs) rely on computational machinery in 
which mathematical models often constitute an important part. In this chapter, it is 
discussed which kinds of models are best suited for different kinds of DSSs. The 
practical steps involved in model construction are outlined, keeping in mind that 
model construction is a process that must be integrated into the larger software 
development project launched to construct the whole DSS. You are invited into the 
modeller’s workshop, as you follow the considerations involved in formulating a 
simple model of weed emergence. Two case studies close the chapter, demonstrat-
ing models of the population dynamics of annual weeds in a crop rotation and of an 
invasive weed. R scripts for all models can be found in the book’s online appendix. 
It is concluded that weed modellers must be prepared to work in multidisciplinary 
teams and that they should be better at considering the needs of the DSS users. For 
purposes of quality control, the mathematical models should be published open-
source, while the DSS itself might be proprietary.

Keywords  Decision support systems · Model construction · Software 
development · Weed population dynamics · Invasive weed · Weed modeller · 
R scripts
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1.1  �Introduction

We build models to grasp the world and to manage our lives and surroundings. 
Whether in science or in everyday life, we express ourselves, we rationalise and we 
communicate by concepts that reflect our perspective on reality. We all have models 
of the world in our minds, whether we are humans—or bats (Nagel 1974). When we 
express models in the language of mathematics, we take our more or less fluffy 
concepts and dip them in the acid of mathematics. Whatever is left stands clearly 
written in equations. Then truly, what can be said at all can be said clearly 
(Wittgenstein 1922).

The disciplines of mathematical modelling and software engineering are essen-
tial to any decision support system (DSS). Mathematical models, which are con-
structed from mathematics and algorithms, constitute the wisdom of the DSS, while 
the DSS user interface makes that wisdom accessible in a language and operational 
mode that is convenient to the user. New DSSs are created in research and develop-
ment environments by teams comprising experts on the problem domain (e.g. weed 
control), together with modellers and software engineers.

In a professional setting, the whole software development process is played out 
according to a well-defined software development protocol, such as agile develop-
ment (Martin 2006). Ideally, in the early design phase of a DSS, the users and their 
needs are defined. Once the user problem domain has been delineated, the next step 
is to identify the modelling approach that will enable the development of models, 
which can provide information helpful to the user.

An unfortunate but common déroute in DSS development is to let the whole 
construction process take place in a closed forum of researchers and modellers, who 
believe that there is a real need for the DSS that they have in mind. When the fin-
ished DSS ultimately attracts little interest, they will blame the end users (e.g. the 
farmers for being too lazy to count weed seedlings and enter those numbers into the 
DSS). I wish to reiterate what has been said many times yet seems a surprisingly 
difficult advice to follow: Before developing a model, make clear what its purpose 
is. Add to that: Before making a DSS, make certain there is an actual need for the 
guidance it will offer, and that end-users will pay the price in time and money needed 
to use the DSS. Private companies would call it a business plan.

To make certain that an initial brainstorm will reveal the full range of possible 
DSS designs, the matrix in Table 1.1 can be used as a guide. The matrix is defined 

Table 1.1  A design matrix for decision support systems (DSSs) with different scopes

Query Q&A Scenarios
What’s the status? What should I do? What if?

Tactics 2.1 2.2 2.3
Strategy 3.1 3.2 3.3
Policy 4.1 4.2 4.3

Numbers refer to the subsections which explore these nine types of DSS further
Question and answer (Q&A)

N. Holst
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by Conway’s (1984) typology which classifies decisions at either tactical, strategic 
or policy level vs. the kind of the support needed, whether it’s a status query, a ques-
tion and answer session or an exploration of what-if scenarios. In the following, I 
will discuss which modelling approaches are most appropriate for the nine classes 
of DSS resulting from the combination of the two typologies in Table 1.1. Two case 
studies and a few recommendations conclude the chapter.

1.2  �Models to Support Tactics

Tactical decisions are often the easiest to support with a DSS and also the easiest for 
which to confirm that a model provides accurate advice. Tactical decisions define a 
short time frame and a narrow spatial scale (e.g., weed management decisions 
within a given season and for a specific field). Long-term and larger-scale conse-
quences of one’s actions are deliberately ignored. The typical decision maker is a 
farmer or technical advisor.

1.2.1  �Tactical Queries

Basic queries concern weed status: Which species have emerged? At which densi-
ties? In which fields? Where in the fields? Previously, these questions were difficult 
to address except by personal observation, but with the advent of artificial vision 
and multispectral imaging, weed maps can now be drawn with increasing precision 
from videos captured by Global Positioning System (GPS)-enabled field equipment 
or from more or less autonomous rolling or flying drones. The development of 
mathematical models to extract patterns, such as weed species distributions, from 
digital images is a ripe research field driven by demands outside agronomy (e.g. 
military intelligence). This means that a DSS should be designed with future 
changes in mind; it should be easy to plug in new methods for pattern recognition 
as they become available.

1.2.2  �Tactical Q&A

When the current state of weed pressure has been assessed, whether through high-
tech monitoring, visual scouting or personal experience from earlier growing sea-
sons, the question is what to do about it? Thus, a farmer may ask whether weed 
control is necessary, and, if so, which herbicide/s and dosage/s will provide efficient 
control or minimise ecotoxicological side effects?

The model to answer such questions would be based on a database of herbicide 
efficacy for different weed species, maybe even parameters for dose-response 

1  Mathematical Models
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relations and corrections for weed growth stage and crop. The simultaneous opti-
misation on several criteria might be addressed best by optimising each sepa-
rately, and then let it over to the farmer to take the final decision, weighing the 
options.

The models defining the optimisation problem might be based on simple regres-
sion models that describe dose-response-price-environment relations. However, 
with all the possible combinations of weed species, crops, herbicides and non-
chemical treatment options, these models quickly turn very data hungry. Sensible 
ways of cutting down on this combinatorial explosion should be addressed early in 
the process of model development.

In precision agriculture (PA), questions must be addressed at a fine spatial reso-
lution within each field. This will make the optimisation problem more difficult, 
maybe difficult even to define. Numerical optimisation in itself is a classical disci-
pline within mathematics, physics and computer science. Please, see Chap. 3 of this 
section for a detailed description on numerical optimisation.

1.2.3  �Tactical Scenarios

We most often think of scenarios as something distant and far reaching, but even 
within the scope of a single field in a single season, different scenarios can be envis-
aged at the time of weed control. Thus, a farmer may ask, which among the avail-
able control options will give the highest yield, by grain or by net income? If we get 
a dry spring and I do not control the weeds, what will the yield loss be? How much 
should the price of grain change to make one control tactic economically better than 
another?

With scenarios, DSS models become more demanding. Maybe the total range of 
possible outcomes cannot be described by regression models alone. More complex 
simulation models might become necessary. This will incur additional costs in 
terms of model development and assessment of model reliability. A DSS in scenar-
ios mode easily gets more speculative, and the user interface more difficult to design 
to strike the right level of detail and functionality.

1.3  �Models to Support Strategy

While tactical decisions are taken in the season as a reaction to imminent weed 
problems, strategic decisions can be made off-season usually as a simulation exer-
cise. The scale of strategic decisions extends into weed management over several 
years in the same field and across all the fields belonging to a farm or a landscape. 
Invasive weeds and the management of weeds in natural habitats are problems that 
necessitate strategic (and policy) level decisions. When we are developing a DSS 
for strategic planning, we should be careful to recognise that weed management 

N. Holst
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forms only a small part of farm management and the whole-farm organisation. We 
should always think carefully about the interface between the DSS and other farm 
management software to achieve a smooth integration and convenience of use. The 
typical user is an agricultural consultant.

1.3.1  �Strategic Queries

The necessity of a strategy, rather than just simple tactics, for weed management 
becomes obvious when weed problems escalate above the norm. Common causes 
are a reduced diversity in crop rotation (in the extreme case, monoculture), an over-
reliance on a small subset of herbicides with similar modes of action and, ulti-
mately, the advent of herbicide resistance. For example, a DSS could help by 
identifying and predicting imminent weed outbreaks. If monitoring data on weed 
occurrence were logged, together with a log of field activities, then an ideal DSS 
could issue early warnings which could then inspire changes in weed management 
strategies. Models for such a DSS would incorporate weed population dynamics 
analysed either statistically or numerically through simulation. However, it is doubt-
ful whether farmers/advisers really need an early warning system for weeds. Field 
infestations are obvious to the naked eye, and weed problems will usually announce 
themselves in a few hot spots before large areas suffer from the infestation. At land-
scape level, a DSS taking input from remote sensing could point out patches of 
invasive weeds.

1.3.2  �Strategic Q&A

An aspect of weed status that is important for strategic planning yet remains diffi-
cult to ascertain is an answer to the query: What is the current prevalence of herbi-
cide resistance? It still seems far into the future that a DSS, fed with drone-collected 
biomolecular characteristics of weeds, could provide this information. The models 
underpinning such a DSS would be in the reign of bioinformatics.

A more approachable strategic question might be: will this crop rotation control 
this weed? Or, if I choose this crop rotation, which weed species would be prevented 
and which would be promoted? Or, with this rotation of herbicides, will I prevent 
herbicide resistance building up? A model to answer these questions could be a 
rather simple simulation model working in time steps of cropping seasons. The 
model would consist of difference equations describing the mechanisms at a rather 
coarse level. Even so, it might prove difficult to find solid empirical data to estimate 
all model parameters. The best course is then to include parameter uncertainty in the 
model (e.g. by supplying min-max values for all parameters) and use proper meth-
ods to derive the resulting uncertainty in model outputs (Saltelli et al. 2008).

1  Mathematical Models
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1.3.3  �Strategic Scenarios

A DSS could provide tools to design a complete weed management strategy, includ-
ing crop rotations and herbicides, or the full complement of methods used in organic 
farming. Outputs could include economic performance, yields, weed densities, 
herbicide-resistance prevalence and environmental side effects. Such a DSS might 
acquire the flavour of a computer game, in which the user tries to win by fulfilling 
as many goals as possible, accepting trade-offs according to personal preferences. 
The model underlying this DSS will be more complex than the previous. A simula-
tion model is clearly called for, and even more detail is needed, reflecting the detail 
of the scenarios and the outputs.

1.4  �Models to Support Policy

Policy models are for decision makers at the highest organisational level. They 
might be decision makers at international, national or regional levels, or decision 
makers working for the interest of non-governmental organisations (NGOs), such 
as farmer organisations or nature conservation societies. For a modeller, it can be 
a frightening experience to develop models that will feed into decision processes 
affecting society at large, even though economist modellers seem less challenged 
by this prospect. Policy models play such a powerful role in modern society that 
they have been put in their own category dubbed post-normal models (Funtowicz 
and Ravetz 1993). For policy models, it is of particular importance to include 
uncertainty in model inputs (and consequently, in model outputs) to prevent abuse 
of the models by overzealous policymakers. In a democratic society, the models 
should be open-source since they are used to formulate arguments in the pub-
lic debate.

1.4.1  �Policy Queries

At policy level, queries are made to identify problems and motivate the formulation 
of policies. Thus, one may ask, what is the current distribution of an invasive weed? 
What is the current use of herbicides per year, and in which crops are they applied? 
Queries such as these can often be translated into queries into databases. Thus, the 
underlying model is within the range of software engineering, maybe overlaid with 
descriptive statistics.

N. Holst
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1.4.2  �Policy Q&A

Weed management policies are formulated with an eye to political goals, preferen-
tially those that can be formulated in terms of performance indicators: production 
quantity and quality, farmer economy, environmental side effects, etc. Political 
instruments are foremost economical (taxes, subsidies) but also include indirect 
measures such as education and research. This means that even the simplest ques-
tion (e.g. if herbicide taxes were increased in proportion to their ecotoxicity, what 
are the consequences on farmer economy and the environment?) will involve sev-
eral fields of knowledge (agronomy, ecology, economics, sociology). The corre-
sponding models will tend to be rich in assumptions and parameters estimated by 
expert opinion. Model outputs will be equally rich and challenging to condense into 
information useful to the decision maker.

It is very difficult to construct a policy model with a clear rationale for which 
components and mechanisms should be included and at which level of detail. Model 
uncertainties must be included in the DSS outputs, but there is a high risk of uncer-
tainty being caused by structural faults (i.e. the exclusion or misrepresentation of 
key elements and key processes), which cannot be diagnosed by formal methods but 
only by scientific argument. Structural faults might lead to biased outputs, as will be 
pointed out soon enough by political combatants. The modeller must be prepared to 
defend in public the scientific base of a policy model.

1.4.3  �Policy Scenarios

When even the simplest policy question leads to models of high complexity, the 
modelling of policy scenarios will lead to even higher complexity. We quickly reach 
the limit of what can be modelled with some confidence—and within a weed 
research budget. The conscientious modeller confronted with a demand for a model 
of such immense complexity should consider to decline the order.

A problem domain bordering that of weed management is pesticide legislation 
and regulation. Legislators and land-use administrators are in need of information 
on the fate of herbicides in the environment (e.g. persistence, leakage to ground and 
surface water) and on the magnitude of their unwanted side effects (ecotoxicologi-
cal and human toxicological). A DSS to support these policymakers would incorpo-
rate models of the physicochemical pathways of herbicides in air, soil and biota and 
the derived effects on exposed populations (by necessity including only a few key 
species from selected taxa). The information provided by such a DSS could be used 
to formulate laws and regulations on herbicide use, including the possible banning 
of a specific herbicide. Due to the vast economical interest in herbicides, repre-
sented by farmers and pesticide companies, and the skepticism of NGOs represent-
ing a variety of interests, the modeller should be prepared that the DSS will be 
playing part in a complex political theatre.

1  Mathematical Models



10

1.5  �Model Development

For models that consist of a few regression equations or other statistical measures, 
the modelling procedure falls inside common research practice. The only challenge 
will be to communicate with software developers on how to embed the statistics in 
a DSS. For models that are simply queries into a database, the software engineer is 
in command and will need the weed modeller only as a consultant to assist in the 
proper interpretation of the data.

The really demanding models are simulation models. Since they will need to be 
embedded in dedicated DSS software, their implementation will become an integral 
part of a commercial-scale software development project. The best software design 
will ensure a loose coupling (Seemann 2012) between the DSS user interface and 
the simulation model, both kept in separate modules. This will allow independent 
development of the DSS and the model. Furthermore, it will allow the DSS code to 
be proprietary (i.e. owned by a company or institute) and the model code to be open-
source and thereby open for scientific publication and public scrutiny.

Model development goes through a series of steps, generally acknowledged in the 
modelling community and outlined in the following: formulation, parameter estima-
tion, verification, testing, validation, uncertainty analysis and sensitivity analysis.

1.5.1  �Formulation

Simulation models are formulated in the language of mathematics and logic. They 
should be based on the theoretical concepts of the topic and should re-use earlier 
models or sub-models when possible. If the model contains many interacting com-
ponents, consider software engineering methods to manage the complexity 
(reviewed by Holst and Belete 2015).

An important part of model formulation is parameterisation. This term is most 
often used in the wrong sense to mean ‘parameter estimation’ (see next subsection). 
What it means properly is to ‘formulate in terms of parameters’. For example, you 
may need a hump-shaped curve to represent a process such as seedling emergence 
rate through time (Fig. 1.1 top). You can formulate that as a parabolic curve using 
the standard parameterisation

	 y ax bx c= + +2

	 (1.1)

This parameterisation, however, has the problem that none of the parameters 
represent a biological feature of seedling emergence. A better parameterisation 
describes the curve by its start (xbegin) and end (xend) on the x-axis and by its maxi-
mum on the y-axis (ymax). Equivalent to Eq. (1.1), we get

	

y y
x x x x

x x x x
=

−( ) −( )
−( ) −( )

4 max

begin end

begin end end begin 	

(1.2)

N. Holst
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Fig. 1.1  A hump-shaped curve to describe seedling emergence rate (Eq. 1.3, top) and accumulated 
seedling emergence (Eq. 1.4, bottom) with xbegin = 160, xend = 174 and ytotal = 80. Implemented in 
the dsswm-1-1.R script

Yet, as you begin to use this equation, you may realise that ymax is not a convenient 
parameter. The area under the curve, expressing total emergence (ytotal), would be a 
much better parameter. Hence, you proceed to integrate Eq. (1.2) and replace ymax 
with ytotal and finally get

	

y y
x x x x

x x x x
=

−( ) −( )
−( ) −( )

6
2total

begin end

begin end end begin 	

(1.3)

The benefits of this parameterisation are plenty. The user of the model (foremost 
yourself) can now estimate, communicate and change the parameters with a clear 
rationale. Moreover, in a sensitivity analysis, the uncertainty induced by parameters 
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xbegin, xend and ytotal will have a direct biological interpretation. Compare that to model 
uncertainty caused by a, b and c (Eq. 1.1) which would be difficult to interpret.

Note that both Eqs. (1.1) and (1.3) have three parameters. Thus, they have the 
exact same level of complexity (in fact, they are equivalent). You might want to add 
an additional parameter to Eq. (1.3) to obtain a skewed emergence curve, but with 
every parameter you add to a model, you incur an increasing debt of parameter 
estimation. If the curve is used to describe the course of seedling emergence in the 
field, there will be so many mechanisms not accounted for (weather and soil being 
the most important ones), that further detail is not merited. The detail of model for-
mulation should match the detail in the information available about the real system. 
Modelling of the more intricate details of seed bank dynamics is dealt with in 
Chap. 4.

The curve (Fig. 1.1 top) has a superficial similarity with the normal distribution 
(which would also demand three parameters: mean, standard deviation and y scal-
ing), but Eq. (1.3) has the advantage, that it has well-defined zero limits and is easily 
integrated if needed (as seen in the following, Eq. 1.4). In comparison, the normal 
distribution never reaches zero (an additional parameter would be needed), and it 
has no analytical integral.

1.5.2  �Parameter Estimation

Often, model parameters are estimated by standard statistical procedures, such as 
linear or nonlinear regression. For the emergence model (Fig. 1.1 top), for example, 
you could regress observed cumulative emergence (Y) on the integral of Eq. (1.3) 
(Fig. 1.1 bottom):

	

Y
y x x x x x

x x x x
=

− −( ) −( )
−( ) −

total end begin begin

end begin begin e

3 2
2

nnd

,
( )2

	

(1.4)

which expands to a third-degree polynomial. The estimated polynomial coefficients 
can be used to calculate the three parameters: xbegin, xend and ytotal.

In an early stage of model development, you should consider whether the DSS 
ought to include uncertainty. If so, each uncertain parameter must be described by a 
distribution (e.g. uniform between min-max values or normal defined by mean and 
standard deviation). Be suspicious, in particular of parameter values that are expert 
opinions (guesses). Ask the expert up front for parameter ranges or distributions 
rather than simple point values.

In the case of parameters estimated by regression of equations such as Eq. (1.4), 
you cannot always use the standard error of the coefficients to generate random 
parameter values independently. If the standard errors of the regression parameters 
cannot be considered independent, you must use the regression model itself to draw 
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random values from the predicted distribution of y given x. For the particular case of 
the emergence model, however, it does seems reasonable that the three parameters 
vary independently, though you might choose to replace xend with xbegin + xduration, 
where xduration designates the duration of the emergence period.

Some parameters are best estimated from the model itself, a process commonly 
called calibration. This is a somewhat dubious activity: You make the model fit your 
expectations, usually empirical data, by fine-tuning one or several model parame-
ters. The more parameters you calibrate, the less confident you should feel about the 
general applicability and robustness of the model.

1.5.3  �Verification

In model verification, you check that model behaviour makes sense. For this pur-
pose, you define a series of parameter sets (often considered model scenarios) of 
increasing complexity and proceed, more or less formally, to check that model out-
puts look right. In other words, you check that model outputs could be true, that the 
behaviour of the model makes sense. Negative, zero or infinite weed densities are 
typical examples of model fragility discovered during verification. You proceed by 
mending the model as needed to pass verification. Do find the root cause of any 
problem and implement a scientifically sane solution. Do not thoughtlessly use this 
solution, often hiding in model code, if (x < 0) then x = 0, or other hacks like it.

1.5.4  �Testing

Testing is an important discipline in computer science, even to the degree that the 
whole software development process can be centred around it (Beck 2002). Software 
testing is not a part of model development as such, but the testing of the DSS easily 
becomes intertwined with model verification. As a modeller, you should be pre-
pared to supply the software engineers with unit tests: Each unit test defines the 
output values expected from certain input values. This makes it possible to automa-
tise the test procedure. A less favoured method, nowadays, of software quality 
assurance is debugging, which is an unsystematic stress test traditionally carried out 
by the programmer.

1.5.5  �Validation

Validation does not mean proof of model correctness; rather, it is the comparison of 
model outputs with independent field data. Thus, validation aims to convince peers 
that there is a robust and rather accurate match between model predictions and the 
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real world. It is wise always to make a plan for model validation in the early phase 
of model development. The model design should be accommodated to make a final 
validation possible, often by restricting the model’s scope and the modeller’s 
ambitions.

1.5.6  �Uncertainty Analysis

If some model parameters are best described not by a single estimate but by a dis-
tribution (e.g. normal), reflecting uncertainty due to statistical error or natural (irre-
ducible) variation, then model output will be distributed as well. Users will be 
familiar with uncertainty from weather forecasts which may predict, for example, a 
20% chance of rain tomorrow. Likewise, a weed DSS may predict, for example, that 
a yield loss >10% is highly improbable due to a risk level of only 1%. Models that 
include uncertainty make most of their assumptions transparent as they shine 
through in the recommendations issued by the DSS. Since DSSs are meant to be 
reliable tools, one should not be shy of situations which produce a very wide range 
of responses. Sometimes, the future may be unpredictable in essence. That informa-
tion can also be useful.

1.5.7  �Sensitivity Analysis

Sensitivity analysis is a step following up on uncertainty analysis. In sensitivity 
analysis, the uncertainty in model outputs is apportioned to the inputs thus identify-
ing those inputs, that are most decisive for model uncertainty (Saltelli et al. 2008). 
Sensitivity analysis is usually an academic activity related to the scientific publica-
tion of the model, but it could potentially be useful as a DSS feature. The user could 
be told how much certainty would be gained in DSS outputs by giving more precise 
estimates of, for instance, weed density or herbicide resistance.

1.6  �Case Studies in Model Development

1.6.1  �A Difference Equation Model for Annual Weeds

Weed populations tend to be highly dynamic; fast establishment and rapid prolifera-
tion are part of being an r strategist. Once established, the soil bank of seeds or 
shoots becomes a constant source of potential outbreaks. The long-term manage-
ment of weeds is a strategic problem raising questions such as: Which level of seed-
ling mortality will be necessary to reduce the infestation? Or, will this change of the 
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crop rotation help to regulate the weeds? Modellers themselves have for a long time 
been prolific developing models to answer such questions (Holst et al. 2007). In the 
following, I will go through the steps of developing a classical iterative model which 
moves forward in steps of 1 year:

	
S S E P= −( ) − +( )1 µsoil prev prev prev 	

(1.5)

The equation computes this year’s seed bank (S; m–2) from the previous year’s seed 
bank (Sprev; m–2), emergence (Eprev; m–2) and seed production (Pprev; m–2), while 
undergoing a certain basic seed bank mortality (μsoil; y–1).

From the seed bank, a certain proportion (ϵ; y–1) will emerge as seedlings (E; m–2):

	 E S=  	 (1.6)

of which again a certain proportion (μcontrol; y–1) will be killed by weed control 
measures:

	
N E= −( )1 µcontrol 	

(1.7)

to leave some plants surviving (N; m–2) to produce new seeds (P; m–2):

	

P
f
f f

f N

=
+

−
∞

∞1 1

1 	

(1.8)

The two parameters describing fecundity are f1 (seeds per plant), which is the 
expected number of seeds produced by one plant growing in competition with the 
crop only, and f∞ (seeds per m2), which is the maximum number of seeds produced 
in competition with the crop by an infinite density of weed plants.

It is not obvious from this formulation (Eqs. 1.5–1.8) that the model is composed 
of difference equations. A mathematically more concise formulation makes this 
clear. Equation (1.6), for example, could be written more correctly as

	 ∆ ∆E S t=  	 (1.9)

where ΔE (m–2) expresses the change in E, i.e. the difference to be added to E over 
the time step Δt = 1 year. Note that multiplication with Δt is necessary to make the 
units right; Equation (1.9) corrects Eq. (1.6) also in that sense. However, here, we 
will maintain the slightly incorrect formulation (Eqs. 1.5–1.8) as this is commonly 
found in literature. The left-out multiplications with 1 will have no effect other than 
to annoy finicky mathematicians, who would in any case likely prefer a differential 
equations formulation. To continue with Eq. (1.6) as an example, this would 
look like
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dE

dt
S= 

	
(1.10)

If you are mathematically skilled, the option stands open for you to build a differen-
tial equations model, rather than a difference equations model, but for most weed 
modellers, this is not the case.

Equations (1.5)–(1.7) are all linear which makes them easy to comprehend. 
Equation (1.8) was given a nonlinear form to take into account density dependence; 
fecundity per plant decreases with increasing plant density until an asymptote is 
reached.

Always verify that the shape of your equations makes sense in the real world. For 
a nonlinear equation, make a plot to ascertain its shape and check its limits both 
graphically and algebraically. In the case of Eq. (1.8), we get meaningful boundary 
conditions:

	

P f N

P f N

P N

→ →∞
= =
→ →

∞ for

for

for
1 1

0 0 	

(1.11)

Not all verification turns out as successful. For instance, Zwerger and Hurle (1989) 
proposed an alternative to Eq. (1.8):

	 P Nae bN= −
	 (1.12)

for which P → 0 for N → ∞. At high weed density, seed production P (m–2) goes 
towards zero. A self-defeating weed!

A model consisting of Eqs. (1.5)–(1.8) is called an iterative model because you 
run a simulation by repeatedly computing Eqs. (1.5)–(1.8), thereby updating the 
four state variables of the model (S, E, N, P) iteratively in time steps of 1 year. It is 
a stage-structured model of population dynamics since the population is divided 
into separate life stages (S, E, N) which are simulated dynamically.

A model needs to be started from some initial state. In this case, we need initial 
values for Sprev, Eprev and Pprev. More importantly, we need to estimate the values of 
the model parameters. For this model, there are only few parameters: μsoil, ϵ, μcontrol, 
f∞   and    f1. The task of parameter estimation seems simple until you realise that 
some of the parameters are likely to depend on the crop. Moreover, they are all lia-
ble to differ between years and locations. To accommodate this inherent variability 
of the parameters, we will define their values as ranges rather than point estimates, 
some of them specific to the crop (Table 1.2).

The values in Table 1.2 are the expected average values, originally given without 
indication of their standard errors (Zwerger and Hurle 1989). However, both f̂  and 
̂  will certainly vary markedly between fields due differences in soil and weather. 
To capture this uncertainty in the model, we pick values at random inside intervals 
defined as
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Table 1.2  Weed life history parameters from Zwerger and Hurle (1989), except∗ from CABI (2019)

Spring barley Maize Winter wheat Any crop

Alopecurus myosuroides

Fecundity f̂( )
∗1000 ∗1000 ∗1000

Emergence ̂( )
0.040 0.034 0.050

Soil mortality (μsoil) 0.81
Avena fatua

Fecundity f̂( )
∗200 ∗200 ∗200

Emergence ̂( )
0.240 0.240 0.230

Soil mortality (μsoil) 0.87
Fallopia convolvulus

Fecundity f̂( )
192 1855 93

Emergence ̂( )
0.043 0.020 0.078

Soil mortality (μsoil) 0.16
Galium aparine

Fecundity f̂( )
3 100 40

Emergence ̂( )
0.036 0.010 0.037

Soil mortality (μsoil) 0.20
Lamium purpureum

Fecundity f̂( )
32 300 280

Emergence ̂( )
0.013 0.017 0.023

Soil mortality (μsoil) 0.16
Thlaspi arvense

Fecundity f̂( )
60 630 330

Emergence ̂( )
0.073 0.021 0.043

Soil mortality (μsoil) 0.08
Veronica persica

Fecundity f̂( )
150 200 150

Emergence ̂( )
0.079 0.066 0.030

Soil mortality (μsoil) 0.50

f̂ : seeds per plant; ̂ : y-1; μsoil: y-1

1  Mathematical Models



18

	

f
f

f1 5
2∈











ˆ
; ˆ

	

	
f f f∞∈ 



10 100ˆ; ˆ

	

	
  ∈ 





ˆ ; ˆ
5 2

	

Limits for random numbers are conventionally closed-open; [a; b[ designates an 
interval including a and excluding b.

For soil mortality (μsoil), we will use the point estimates (Table 1.1) without any 
variance. We will assume that the efficacy of weed control vary quite much picking 
random values, μsoil ∈ [0.6; 0.9[.

Since we let four of the parameters vary randomly, our model is a stochastic 
model; it will not always give the same result. Hence, we have to run it many times 
to assess the uncertainty in its predictions (Fig. 1.2). During model verification, it 
was found that two of the weed species were dying out (ALOMY, AVEFA). Hence, 
the parameter values from Zwerger and Hurle (1989) were replaced with values 
roughly taken from CABI (2019) (Table 1.2).

The first impression of Fig. 1.2 is that the uncertainty is much larger for some 
species (ALOMY, AVEFA, VERPE) than for others. Note that two units on the 
y-axis correspond to variation by a factor of 100. It could be of interest to know 
which of the model parameters are causing this huge variation. This could be 
resolved by a sensitivity analysis (Saltelli et al. 2008). Some species exhibit fluctua-
tions clearly provoked by crop rotation (FALCO, THLAR), more clearly seen for 
seedling than for seed bank density. This makes sense because different weed spe-
cies are known to emerge either in spring or autumn sown crops, or in both.

During the 24 years covered by this simulation, most species are attaining an 
equilibrium density, THLAR most quickly, AVEFA most slowly. It is difficult to 
imagine, however, how knowledge of the equilibrium density could be interesting 
from a DSS perspective. We would rather like to help the farmer to achieve the situ-
ation illustrated by GALAP for which density is decreasing in this scenario; it is a 
weed under control. It would be wise though to consult with weed experts and dis-
cuss whether this GALAP scenario seems realistic (a belated verification of 
the model).

Simulation experiments with the crop rotation and a sensitivity analysis could help 
suggest effective control strategies for these weed species. The model could be incor-
porated into a DSS, allowing the farmer/advisor to address problematic weed species 
through strategic means, rather than the purely tactical which entails giving up on 
controlling the seed bank (left-hand side of Fig. 1.2) and just limiting its expression 
(right-hand side of Fig. 1.2), which after all is the ultimate cause of yield loss.
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Fig. 1.2  The result of 30 simulations of the crop rotation, maize-winter wheat-spring barley. 
Yellow curves show smoothed averages. For full species names, see Table 1.2. All populations 
started with ten seeds per m2. Model formulated in Eqs. (1.5)–(1.8) and implemented in the 
dsswm-1-2.R script
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1.6.2  �A Matrix Model for a Perennial Weed

Matrix models are a class of models which summarises the life history parameters 
of a population in a single matrix (Table  1.3), a so-called Leslie matrix (Leslie 
1945). In the columns, you find the fate over one time step of individuals according 
to life stage. Column sums <1 account for mortality, and column sums >1 account 
for reproduction. Likewise, rows show the origin of individuals entering the differ-
ent life stages. Numbers below the diagonal describe life stage progression; above 
the diagonal, life stage regression; and on the diagonal, life stage conservation. In 
this concrete matrix, the seven stages are a mixture of life stage, age and size classes.

Since this is a deterministic model, only one run is necessary to explore what 
happens after an initial introduction of ten seeds (Fig. 1.3). Notice that the model is 
linear which means that it gives the same result, whether we consider the simulated 
population dynamics pertinent to the whole population or to, say, 1 m2.

The two fields seem clearly different (Fig.  1.3). In field L, the population is 
increasing, approaching exponential growth after c. 10 years. In field J, the popula-
tion is decreasing, approaching a negative exponential decline after c. 5 years. In 
theory, these matrix models will converge towards a state in which all life stages 
grow (or shrink) exponentially with the same growth rate, namely the intrinsic rate 
of increase (r) known from the classical model of unlimited growth:

	
N N rtt = ( )0 exp 	

(1.13)

When r has stabilised, so has the relative proportion of the population in each stage; 
the stable stage distribution has been reached. It follows that when the stage distri-
bution is not stable, then r is not stable either. This is obvious from the simulation 
(Fig. 1.3); otherwise, all the points would have fallen on a straight line. Note though 
that the y-axis transformation bends the exponential decrease in field J towards zero. 
The population density in field L initially oscillates (Fig. 1.3), but the reason behind 
these oscillations is different than for the oscillations in the previous model 
(Fig. 1.2). Here, it is due to the unstable stage distribution, and there, it was due to 
crop rotation.

Leslie matrix models can be analysed mathematically which was part of their 
original motivation. Thus, the first eigenvalue of the Leslie matrix equals exp(r), 
and the first eigenvector holds the stable stage distribution. For fields L and J, we get 
r = 0.18 y−1 and r =  − 0.49 y−1, respectively, which match the values arrived at by 
Werner and Caswell (1977).

The lines produced by these growth rates on a log scale (Eq. 1.13) are shown in 
Fig. 1.3, from the time about when the populations reach their stable stage distribu-
tion (again, the line is distorted on the approach towards zero for field J). The initial 
population size (N0 in Eq. 1.13) was chosen to let the line pass through the average 
population size through years 10 to 20 for field L and through years 5–20 for field 
J. The stable stage distributions are computed in the dsswm-1-3.R script.
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Seed0 Seed1 Seed2 RosetteS RosetteM RosetteL Flowering

Field L
Seeds0 0 0 0 0 0 0 503
Seeds1 0.43 0 0 0 0 0 0
Seeds2 0 0.97 0 0 0 0 0
RosettesS 0.01 0.021 0.005 0 0 0 0
RosettesM 0.036 0.003 0 0.19 0.253 0 0
RosettesL 0 0 0 0.07 0.105 0.15 0
Flowering 0 0 0 0 0.002 0.517 0

Field J
Seeds0 0 0 0 0 0 0 476
Seeds1 0.423 0 0 0 0 0 0
Seeds2 0 0.987 0 0 0 0 0
RosettesS 0.024 0.009 0.006 0.007 0 0 0
RosettesM 0.044 0 0 0.05 0.158 0 0
RosettesL 0.001 0 0 0.002 0.008 0 0
Flowering 0 0 0 0 0 0.25 0

Table 1.3  Leslie matrices for Dipsacus sylvestris (from Werner and Caswell (1977)) estimated for 
two fields, L and J

Seeds of age 0, 1 or 2 years. Rosettes of size: small, medium or large. Diagonal cells greyed 
for easier reading

Fig. 1.3  The result of a simulation starting with ten seeds of Dipsacus sylvestris running for 
20 years based on Leslie matrices for field L and J. Seed bank numbers are the sum of all three age 
classes of seeds. Rosette plants are the sum of all three size classes of plants. Orange lines show 
the asymptotic population growth rate. Implemented in the dsswm-1-3.R script
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