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Preface

A. This monograph is dedicated to the construction of suitable categories of
infinite-dimensional Hermitian vector bundles in the framework of Arakelov ge-
ometry and to the study of their theta invariants, which are defined in terms
of theta series associated to Euclidean lattices and take values in [0,+∞]. Our
constructions are developed with a view toward applications to Diophantine ge-
ometry: using infinite-dimensional vector bundles and their theta invariants, one
may establish diverse results in Diophantine geometry and transcendence theory
by arguments that are formally similar to classical algebraization proofs in analytic
and formal geometry, as exemplified in the last chapter of this monograph.

A description of our results, intended to arithmetic geometers with a spe-
cific interest in Arakelov geometry and its applications to classical Diophantine
problems, is given in the general introduction that follows this preface and in the
introductions of the successive chapters. Notably the introduction of the final chap-
ter, written to be accessible directly after the general introduction, describes how
the general formalism developed in this monograph leads to “concrete” Diophan-
tine applications, concerning, for instance, the construction of isogenies between
elliptic curves over Q.

The general form of our results required for their applications to Diophantine
geometry, notably the need to work over a base ring that can be the ring of integers
OK of an arbitrary number field K (that is, an arbitrary extension field of Q of
finite degree), leads to some technicalities in their formulation and may hide their
basic simplicity.

In this preface, we try to present them in the simplest possible terms, by
sticking to the basic case in which the base ring OK is Z, and we refer the reader
to the more technical introduction that follows this preface for more complete
statements and for references.

B. The basic object of study in this monograph is Euclidean lattices. Recall that
a Euclidean lattice E is defined by the following data:

• a finite-dimensional R-vector space ER;

• a lattice E in ER, namely a subgroup of the additive group (ER,+) for which

there exists some R-basis (ei)1≤i≤n of ER such that E =
⊕

1≤i≤n

Zei;

• a Euclidean norm ‖.‖, associated to some Euclidean scalar product 〈., .〉, on
ER.

Euclidean lattices traditionally appear in mathematical physics, as mathe-
matical models for crystalline structures, and in number theory, via the so-called

 xi
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geometry of numbers (a terminology coined by Minkowski [86]). For the past
decades, with the development of lattice-based cryptography, they have also played
an important role in computer science.

A Euclidean lattice E admits several easily defined classical invariants. The
simplest of them are its rank, defined in the above notation as

rkE := dimRER = n,

and its covolume covolE, defined as the Euclidean volume of a fundamental do-
main for E acting on ER by translation, for instance, of

∆ :=
∑

1≤i≤n

[0, 1[ ei;

it may be expressed in terms of the Gram determinant of the basis (ei)1≤i≤n of
the lattice as

(covolE)2 = det(〈ei, ej〉)1≤i,j≤n.

One also classically considers, when the rank of the Euclidean lattice E is positive,
its first minimum

λ1(E) := min
v∈E\{0}

‖v‖

and its covering radius
ρ(E) := max

x∈ER
min
v∈E
‖x− v‖.

To every Euclidean lattice E is associated the dual Euclidean lattice E
∨

,
defined as follows. Its underlying R-vector space is the dual of the R-vector space
E∨R , defined as the space of R-linear forms

E∨R := HomR(ER,R).

The lattice E∨ in E∨R defining E
∨

is the subgroup of linear forms that are integral
valued on E:

E∨ := {ξ ∈ E∨R | ξ(E) ⊂ Z} ;

it may be identified with HomZ(E,Z) by the restriction map (ξ 7→ ξ|E). The

Euclidean norm defining E
∨

is the dual norm ‖.‖∨ on E∨R , defined by the equality

‖ξ‖∨ := max
x∈ER,‖x‖≤1

|ξ(x)| for every ξ ∈ E∨R .

The ranks of E and E
∨

are clearly equal, and their covolumes are easily seen to
be the inverses of each other:

covol(E
∨

) = (covolE)−1.

In contrast to the simplicity of these definitions, Euclidean lattices and their
invariants lead to difficult problems. Their role in cryptography actually relies on
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the computational “hardness” of basic questions involving Euclidean lattices when
their dimension becomes large. Such difficult problems arise, for instance, when
one investigates estimates relating various classical invariants of Euclidean lattices.
These estimates involve constants depending on the ranks of the Euclidean lattices
under study, and the control of these constants when these ranks become large is
often a delicate issue.

This may be illustrated by one of the oldest results in the theory of Euclidean
lattices, which goes back to Hermite and Minkowski, namely the existence, for ev-
ery positive integer n, of some positive constant C(n) such that the first minimum
of every Euclidean lattice E of rank n satisfies the following upper bound:

λ1(E) ≤ C(n)(covolE)1/n. (0.0.1)

Hermite first proved this result by induction on the rank n, by developing
what is known today as reduction theory for Euclidean lattices of arbitrary rank
(see [64]). This approach allowed him to establish the estimate (0.0.1) with

C(n) = (4/3)(n−1)/4. (0.0.2)

Minkowski proved that it actually holds with

C(n) = 2 v−1/n
n , (0.0.3)

where vn denotes the Lebesgue measure of the unit ball in Rn.
The estimate (0.0.1) with the value (0.0.3) for C(n) is the famous Minkowski’s

first theorem. Its derivation by Minkowski, in his Geometrie der Zahlen ([86, pp.
73–76]), admits the following simple physical interpretation. Let us think of the
Euclidean lattice as a model for a crystal in the n-dimensional Euclidean space
(ER, ‖.‖). The molecules in this crystal are represented by the points v of the
lattice E. Since the open balls B̊‖.‖(v, λ1(E)/2) of radius λ1(E)/2 centered at
these points are mutually disjoint, the density of the crystal — defined as the
number of its molecules per unit volume — is at most the inverse of the volume of
any of these balls, which is vn(λ1(E)/2)n. This density is nothing but the inverse
of the covolume of E. Therefore,

covol(E)−1 ≤ [vn(λ1(E)/2)n]−1.

This estimate is precisely (0.0.1) with C(n) given by (0.0.3).
Since vn = πn/2/Γ(n/2 + 1), it follows from Stirling’s formula that as n

goes to +∞, the value (0.0.3) for the constant C(n) obtained from Minkowski’s
argument admits the following asymptotics:

2v−1/n
n ∼

√
2n/eπ. (0.0.4)

It is much smaller than the value (0.0.2) originally obtained by Hermite.
The square γn of the best possible (namely, the minimal) value of the constant

C(n) in the estimate (0.0.1) is known as the Hermite constant in dimension n. It
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turns out that Minkowski’s upper bound 4v
−2/n
n on γn is of the “correct order of

growth” if n goes to infinity. Actually, by combining this upper bound with some
further results of Minkowski and Hlawka, one shows that

log γn = log n+ ε(n), (0.0.5)

where

|ε(n)| = O(1) as n −→ +∞.

However, the exact value of γn is known only for a small number of values of n,
and its precise asymptotic behavior (for instance, the possible convergence of ε(n)
to some limit as n goes to +∞) is still not understood.

C. Another circle of questions involving optimal constants in estimates comparing
invariants of Euclidean lattices are the so-called transference estimates relating

the invariants of a Euclidean lattice E and those of its dual E
∨
.

For instance, consider the first minimum λ1(E) of some Euclidean lattice E

of positive rank n, and the covering radius ρ(E
∨

) of the dual Euclidean lattice E.
An application of the reduction theory of Euclidean lattices establishes that the

product λ1(E)ρ(E
∨

) is bounded from above and from below by positive constants
τ1(n) and τ2(n) depending only on n:

τ1(n) ≤ λ1(E)ρ(E
∨

) ≤ τ2(n). (0.0.6)

One easily sees that for every n ≥ 1, the optimal value of τ1(n) is 1/2: simply
consider the lattice Zn in Rn equipped with the Euclidean norm ‖.‖ε defined by
‖(x1, . . . , xn)‖2ε = ε(x2

1 + · · ·+ x2
n−1) + x2

n, with ε a small positive real number.
Concerning τ2(n), important progress was obtained in the 1990s by Ba-

naszczyk, who showed in [7] that (0.0.6) holds with

τ2(n) = n/2,

while the best possible (namely the minimal) constant τ2(n) satisfies

τ2(n) ≥ (n/2πe)(1 + o(n)) as n −→ +∞.

To establish the upper bound

λ1(E)ρ(E
∨

) ≤ n/2,

Banaszczyk introduced a new technique, originating in harmonic analysis, based
on the consideration of the measures∑

v∈E
e−πβ‖v‖

2

δv, (0.0.7)
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on the real vector space ER defined for all β ∈ R∗+ and supported by the lattice
E and their Fourier transforms on the dual space E∨R . This technique has been
especially influential in the development of lattice-based cryptography during the
last decades.

The total mass of Banaszczyk’s measure (0.0.7) is given by the classical theta
series

θE(β) :=
∑
v∈E

e−πβ‖v‖
2

. (0.0.8)

Such theta series have classically played a central role in the study of integral
lattices, namely of Euclidean lattices whose Euclidean scalar product is Z-valued
on E×E. Indeed, the theta series associated to integral lattices turn out to define
modular forms, and from Jacobi to Siegel and his followers, the development of the
theory of modular forms has led to spectacular applications concerning integral
lattices and related integral quadratic forms. Banaszczyk’s work has demonstrated
the relevance of the theta series (0.0.8) and their measure-theoretic versions (0.0.7)
in the investigation of the fine properties of general Euclidean lattices.

D. In the first chapters of this monograph, we investigate in some detail the prop-
erties of the invariants of Euclidean lattices defined in terms of these series, their
theta invariants; the main instance of these is the nonnegative real number:

h0
θ(E) := log θE(1) = log

∑
v∈E

e−π‖v‖
2

. (0.0.9)

Besides the “technical” motivation to study these theta invariants provided
by Banaszczyk’s technique, there exists an older and more “conceptual” one, which
stems from the classical analogy between number fields and function fields. It is
closely related to Arakelov geometry, which itself constitutes an outgrowth of this
classical analogy.

Recall that in the analogy between number fields and function fields, the ring
of integers OK of some number field K, together with its archimedean places1,
appears as the counterpart of a smooth projective (geometrically connected) curve
C over some base field k. The field k(C) of rational functions over C, traditionally
known as a “function field in one variable” over k, plays the role of the number
field K. More generally, one may associate “arithmetic” counterparts over number
fields to “geometric” objects over C, such as vector bundles E over C, and to their
invariants, such as the rank rk E and the degree degC E of E , or the dimension

h0(C, E) := dimk Γ(C, E)

of its space of global regular sections.
Although the special case in which the base field k of the curve C is finite

plays an important role in this analogy, readers more inclined toward analytic than

1defined by the field embeddings of K in C, up to complex conjugation.
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algebraic geometry may focus on the situation in which the base field k is C. Then
the data of the curve C (resp., of the algebraic vector bundle E) are equivalent to
those of some compact connected Riemann surface Can (resp., of some C-analytic
vector bundle Ean over Can); the degree degC E of E coincides with its topological
degree defined by its first Chern class c1(Ean) in H2(Can,Z) ' Z, and the finite-
dimensional C-vector space Γ(C, E) with the space Γ(Can, Ean) of global analytic
sections of Ean.

We will concentrate on the case K = Q, and therefore OK = Z. Then in the
above analogy, the counterpart of a vector bundle E over C is precisely a Euclidean
lattice E. For instance, the role of the trivial line bundle OC over C is played by
the Euclidean line bundle Z, defined by the R-vector space R, the lattice Z in R,
and the Euclidean norm equal to the usual absolute value |.|.

To every pair (E ,F) of vector bundles over C are associated the vector bundle
E ⊕F and the finite-dimensional k-vector space HomOC (E ,F) of morphisms from
E to F . These constructions admit counterparts in the arithmetic side.

Let us indeed consider two Euclidean lattices E (resp., F ), defined by the
R-vector space ER (resp., FR), the lattice E (resp., F ), and the Euclidean norm
‖.‖E on ER (resp., ‖.‖F on FR). Then their direct sum E ⊕ F is the Euclidean
lattice defined by the R-vector space ER⊕FR, its lattice E⊕F, and the Euclidean
norm ‖.‖ on ER ⊕ FR defined by the equality

‖x⊕ y‖2 := ‖x‖2
E

+ ‖y‖2
F

for all (x, y) ∈ ER × FR.

Moreover, HomOC (E ,F) is replaced by the finite set Hom(E,F ) of R-linear maps

ϕ : ER −→ FR

such that ϕ(E) ⊆ F and

‖ϕ(v)‖F ≤ ‖v‖E for all v ∈ ER.

One may also introduce the analogue of a short exact sequence

0 −→ E i−→ F p−→ G −→ 0

of vector bundles over C. It is a so-called admissible short exact sequence of Eu-
clidean lattices:

0 −→ E
i−→ F

p−→ G −→ 0, (0.0.10)

defined by the data of Euclidean lattices E, F , and G, and of elements i and p in
Hom(E,F ) and Hom(F ,G) such that the following conditions are satisfied:

• the diagram

0 −→ E
i−→ F

p−→ G −→ 0

is an exact sequence of Z-modules; this is easily seen to imply that

0 −→ ER
i−→ FR

p−→ GR −→ 0

is an exact sequence of R-vector spaces;
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• the map i is an isometry from the Euclidean R-vector space (ER, ‖.‖E) to
(FR, ‖.‖F ), and the Euclidean norm ‖.‖G on GR that defines G is the quotient
norm induced from the norm ‖.‖F on FR by means of the surjective R-linear
map p : FR → GR.2

In this dictionary between vector bundles and Euclidean lattices, the rank
rk E of the vector bundle E is replaced by the rank rkE of E, and the degree
degC E by the Arakelov degree of E, defined as

d̂egE := − log covolE.

Instead of being Z-valued like degC E , the Arakelov degree d̂eg E is R-valued.
However, it satisfies properties formally similar to those satisfied by degC E . For
instance,

d̂eg (E ⊕ F ) = d̂egE + d̂egF ,

and more generally, for every admissible short exact of Euclidean lattices (0.0.10),

d̂egG = d̂egE + d̂egF .

It turns out that the invariant h0(C, E) attached to some vector bundle E
over C admits two distinct counterparts in the classical literature.

The first one, already considered in substance by Weil in [117], is the non-
negative real number

h0
Ar(E) := log |{v ∈ E|‖v‖ ≤ 1}|,

defined in terms of the number of points of the lattice E in the unit ball of the
Euclidean vector space (ER, ‖.‖).

We have a bijection

Hom(Z, E)
∼−→ {v ∈ E|‖v‖ ≤ 1},

defined by mapping an element ϕ in Hom(Z, E) to ϕ(1), and accordingly, the
definition of h0

Ar(E) may also be written

h0
Ar(E) := log |Hom(Z, E)|. (0.0.11)

Actually, for every vector bundle E over the curve C, we have a bijection of k-vector
spaces

HomOC (OC , E)
∼−→ Γ(C, E),

2This condition on p, ‖.‖F , and ‖.‖G may be rephrased as follows: the transpose pt : GR → FR
of p : FR → GR, defined using the Euclidean structures on FR and GR, is an isometry from
(GR, ‖.‖G) to (FR, ‖.‖F ).
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also defined by mapping ϕ in HomOC to ϕ(1), and consequently, when the base
field k is finite of order q, the integer h0(C,E) admits an expression similar to
(0.0.11):

h0(C, E) = dimk Γ(C, E) = dimkHomOC (OC , E) =
log |HomOC (OC , E)|

log q
.

The second counterpart of the invariant h0(C, E) is the theta invariant already
defined in (0.0.9):

h0
θ(E) := log

∑
v∈E

e−π‖v‖
2

.

The fact that it is an arithmetic analogue of h0(C, E) goes back to the work of
the German school of number theory, in particular to the proofs by Hecke and
Schmidt of the meromorphic continuation and the functional equation of the zeta
function of some global field. Hecke [61] first treated the case of a number field,
and later, Schmidt [97] the case of a function field, defined as above as k(C) with
k a base field of finite order q := |k|. The comparison of these proofs shows that
in the function field case,

|Γ(C, E)| = qh
0(C,E)

plays a role parallel to that of

θE(1) = eh
0
θ(E)

in the number field case.
Moreover the Riemann–Roch formula on the curve C plays, in Schmidt’s

proof, a role parallel to that of the Poisson formula for theta series in Hecke’s
proof. The Poisson formula indeed relates the theta functions θE and θE∨ attached

to some Euclidean lattice and to its dual lattice E
∨

:

θE(β) = (covolE)−1β−rkE/2 θE∨(β−1) for every β ∈ R∗+.

When β = 1, after taking logarithms, it reads

h0
θ(E)− h0

θ(E
∨

) = d̂egE. (0.0.12)

This is formally similar to the Riemann–Roch formula for a vector bundle E over
a smooth projective curve C of genus g = 1, which takes the form

h0(C, E)− h0(C, E∨) = degC E .

In the same vein, for all t ∈ R, we may consider the Euclidean lattice E⊗O(t)
induced from some Euclidean lattice E by scaling its Euclidean norm by e−t. Then,
from the asymptotic behavior of θE(β) as β goes to 0, we obtain

h0
θ(E ⊗O(t)) = rkE · t+ d̂egE + o(1) as t −→ +∞.
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This may be seen as a counterpart of the relation

h0(C, E ⊗ OC(k ·O) = rk E · k + degC E when k ∈ N is large enough,

valid for an arbitrary vector bundle E over an elliptic curve C of origin O.
The two invariants h0

Ar(E) and h0
θ(E) are actually closely related. For in-

stance, using Banaszczyk’s techniques, one may establish the comparison estimates

−π ≤ h0
θ(E)− h0

Ar(E) ≤ (n/2) log n− log(1− 1/2π), where n = rkE. (0.0.13)

However, the properties of h0
θ(E) make it a better analogue of the number

h0(C, E) than h0
Ar(E). For instance, one easily sees that it is additive for direct

sums; namely, for every two Euclidean lattices E and F ,

h0
θ(E ⊕ F ) = h0

θ(E) + h0
θ(F ). (0.0.14)

Moreover, as already observed by Quillen and Groenewegen, it is subadditive for
short exact sequences; namely, for every admissible short exact sequences of Eu-
clidean lattices (0.0.10), we have

h0
θ(F ) ≤ h0

θ(E) + h0
θ(G). (0.0.15)

This is again a consequence of (a suitable version of) Poisson’s formula. The re-
lations (0.0.14) and (0.0.15) are easily seen not to hold when h0

θ is replaced by
h0

Ar.
Another illustration of the closer similarity of h0

θ(E) to h0(C, E) is the fol-
lowing observation.

From the Poisson–Riemann–Roch formula (0.0.12) and the nonnegativity of
h0
θ(E), we immediately derive the lower bound

h0
θ(E) ≥ d̂egE, (0.0.16)

which is similar to the lower bound

h0(C, E) ≥ degC E,

valid for every vector bundle over a smooth projective curve C of genus g = 1.
In turn, combined with (0.0.13), the lower bound (0.0.16) implies

h0
Ar(E) ≥ d̂egE − c(n), (0.0.17)

where
c(n) = (n/2) log n− log(1− 1/2π).

As n approaches infinity, this value of c(n) is equivalent to the best possible (that
is, the smallest) constant c(n) in (0.0.17).3

3Indeed, this best constant is easily seen to satisfy c(n) ≥ (n/2) log γn, where γn denotes the
Hermite contant in dimension n, introduced in paragraph B as the square of the best constant
C(n) in the Hermite–Minkowski inequality (0.0.1). From the asymptotics (0.0.5) on γn and
the above value for c(n), we derive that the best constant c(n) in (0.0.17) satisfies: c(n) =
(n/2) logn+O(n).
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A remarkable feature of the estimates (0.0.15) and (0.0.16) concerning the
theta invariant h0

θ is that the ranks of the Euclidean lattices under consideration
do not appear in them, while analogous relations concerning h0

Ar, such as (0.0.17),
would necessarily involve these ranks.

E. This last observation constitutes the starting point of the main constructions in
this monograph: the fact that the theta invariants of Euclidean lattices satisfy an-
alytic properties formally independent of their rank indicates that these invariants
should make sense for some infinite-dimensional avatars of Euclidean lattices. This
is similar to the following familiar observation: the fact that most constructions
in finite-dimensional Euclidean geometry are independent of the dimension points
toward the theory of Hilbert spaces.

The main result of this monograph is that it is indeed possible to define
a nice class of such “infinite-dimensional Euclidean lattices” for which the theta
invariant h0

θ(E) is still well defined and satisfies natural continuity properties.
Moreover, such infinite-dimensional Euclidean lattices naturally appear in arith-
metic geometry, and the consideration of their theta invariants leads to natural
proofs in Diophantine geometry and transcendence theory.

Let us describe in elementary terms the class of Euclidean lattices of infinite
rank that constitute the main object of study in this monograph. In the termi-

nology introduced in Chapter 5, they are the objects of the category proVect
≤1

Z
of “pro-Hermitian vector bundles over SpecZ” that have infinite rank. They are
defined by the following data:

• a topological R-vector space ÊR and a Z-submodule Ê of ÊR such that there
exists an isomorphism of topological R-vector spaces

ϕ : ÊR
∼−→ RN

such that

ϕ(Ê) = ZN.

Here the space RN of R-valued sequences is equipped with the topology of
simple convergence, or equivalently, with the product topology derived from
the usual topology on each factor R.

• a real Hilbert space (EHilb
R , ‖.‖) and a continuous injective R-linear map with

dense image

i : EHilb
R −→ ÊR.

These data

Ê ⊂ ÊR
i←−↩ EHilb

R , ‖.‖ (0.0.18)

will play the role of the data

E ⊂ ER, ‖.‖
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defining a Euclidean lattice. The data (0.0.18) defining a Euclidean lattice of

infinite rank Ê — or with the terminology of this monograph, an object in the

category proVect
≤1

Z — may look rather intricate. However, this definition arises
naturally, from both a practical and a conceptual point of view. Let us try to
explain how.

E.a. In many Diophantine problems, one encounters a combination of formal ge-
ometry over the integers and complex analytic geometry. It turns out that such
a combination may often be encoded in data of the type (0.0.18). Let us give a
specific example.

Let Ω be an open neighborhood of 0 in C, which will be assumed to be
connected, bounded, and invariant under complex conjugation. We may consider
the complex Hilbert space OL2(Ω) of square integrable holomorphic functions on
Ω, equipped with the L2-norm defined by

‖f‖2L2(Ω) :=

∫
Ω

|f(x+ iy)|2 dx dy.

It is equipped with a natural C-antilinear “complex conjugation”, which maps a
function f in OL2(Ω) to f defined by

f(z) := f(z).

The fixed points of this involution define a real Hilbert space EHilb
R . Its elements

are the square integrable holomorphic functions on Ω whose Taylor expansions at
0 have real coefficients.

Then we may consider:

• Ê := Z[[X]] and ÊR := R[[X]], equipped with the topology of simple conver-
gence of coefficients;

• i : EHilb
R −→ ÊR = R[[X]], defined as the map sending some holomorphic

function f in EHilb
R to its Taylor expansion at 0:

i(f) :=
∑
n∈N

1

n!
f (n)(0)Xn.

The map i is injective, since Ω is connected. It is continuous by Cauchy estimates,
and its image is dense in R[[X]], since it contains R[X], since Ω is bounded.

Therefore, these data define an object of the category proVect
≤1

Z , which will be

denoted by Ĥ(Ω).

E.b. Let us consider a projective system

E• : E0
q0←− E1

q1←− · · · qk−1←− Ek
qk←− Ek+1

qk+1←− · · · . (0.0.19)

of Euclidean lattices, defined by a sequence (Ek)k∈N of Euclidean lattices and
a sequence (qk)k∈N of morphisms qk in Hom(Ek+1, Ek). Let us assume that it
satisfies the following admissibility conditions, for all k ∈ N:
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• the morphism of Z-modules qk : Ek+1 → Ek — and therefore the R-linear
map qk : Ek+1,R → Ek,R — is surjective;

• the Euclidean norm ‖.‖k on Ek,R that defines Ek is the quotient norm induced
from the norm ‖.‖k+1 on Ek+1,R by means of qk : Ek+1,R −→ Ek,R.

These conditions may be rephrased as follows: for all k ∈ N, the morphism
qk fits into an admissible short exact sequence of Euclidean lattices, as defined in
paragraph D above (see (0.0.10)):

0 −→ Sk
ik−→ Ek+1

qk−→ Ek −→ 0. (0.0.20)

(Indeed, the Euclidean lattice Sk may be constructed from qk by considering the
lattice ker qk|Ek+1

: Ek+1 → Ek inside ker qk : Ei+k,R → Ek,R, equipped with the
restriction of the Euclidean norm ‖.‖k+1; the morphism ik is then the inclusion
map.)

We shall also assume that the nondecreasing sequence (rkEk)k∈N is un-
bounded. (Otherwise, the morphisms qk are isometric isomorphisms for k large
enough.)

To any admissible projective system E• of Euclidean lattices as above we
may associate data (0.0.18) defining some Euclidean lattice of infinite rank by the
following construction.

We may consider the projective limits

Ê := lim←−
k

Ek :=

{
(vk)k∈N ∈

∏
k∈N

Ek | ∀k ∈ N, qk(vk+1) = vk

}

and

ÊR := lim←−
k

Ek,R :=

{
(vk)k∈N ∈

∏
k∈N

Ek,R | ∀k ∈ N, qk(vk+1) = vk

}
.

They are endowed with a natural topology, defined as the topology induced by the
product topology on

∏
k∈NEk (resp., on

∏
k∈NEk,R), when each space Ek (resp.,

Ek,R) is endowed with the discrete topology (resp., with its natural topology of a
finite-dimensional R-vector space).

The surjective morphisms of Z-modules qk : Ek+1 → Ek admit Z-linear
splittings, and therefore we may construct a sequence (ϕk)k∈N of isomorphisms of
Z-modules

ϕk : Ek
∼−→ ZrkEk

such that the diagrams

Ek+1
ϕk+1−−−−→ ZrkEk+1

qk

y yprk

Ek
ϕk−−−−→ ZrkEk

(0.0.21)
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are commutative, where prk denotes the projection

prk : (xi)1≤i≤rkEk+1
7−→ (xi)1≤i≤rkEk .

The maps ϕk induce isomorphisms of finite-dimensional R-vector spaces

ϕk,R : Ek,R
∼−→ RrkEk

and, by going to the projective limit, an isomorphism of topological R-vector spaces

ϕ̂ : ÊR
∼−→ RN

such that
ϕ̂(Ê) = ZN.

Every element v in ÊR is defined by a sequence (vk)k∈N in
∏
k∈NEk,R satis-

fying the coherence conditions:

qk(vk+1) = vk, for every k ∈ N.

The morphisms qk are norm decreasing, and therefore

‖vk‖k ≤ ‖vk+1‖k+1, for every k ∈ N.

Consequently, the limit
‖v‖ := lim

k→+∞
‖vk‖k

exists in [0,+∞], and we may therefore define

EHilb
R := {v ∈ EHilb

R | ‖v‖ < +∞}.

Using that each Euclidean norm ‖.‖k is the quotient norm (via qk) of the Euclidean
norm ‖.‖k+1, one easily sees that (EHilb

R , ‖.‖) is actually a real Hilbert space, and
that the inclusion morphism

i : EHilb
R ↪−→ÊR,

is continuous with dense image. Indeed, by considering the orthogonal splittings
of the surjective R-linear maps qk : Ek+1,R → Ek,R, the topological R-vector space

ÊR may be identified with the product

E0,R ×
∏
k∈N

Sk,R

and (EHilb
R , ‖.‖) with the completed infinite direct sum

E0,R ⊕
⊕̂

k∈N
Sk,R
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of finite-dimensional Euclidean R-vector spaces.
The topological R-vector space ÊR, its submodule Ê, the Hilbert space

(EHilb
R , ‖.‖), and the inclusion morphism i : EHilb

R ↪−→ÊR so constructed from the

admissible projective system E• define an object of the category proVect
≤1

Z ,
which will be denoted by lim←−E•.

F. It turns out that this construction of Euclidean lattices of infinite rank as pro-

jective limits allows one to recover (up to isomorphism) any object of proVect
≤1

Z .

F.a. The central point behind this fact is the construction of quotient (finite-

dimensional) Euclidean lattices of an object Ê of proVect
≤1

Z defined by data
as in (0.0.18) above, associated to saturated open submodules of the topological

Z-module Ê.
Let U be an open submodule of Ê. By the definition of the topology of Ê

(which is assumed to be topologically isomorphic to ZN equipped with the product
topology), the quotient Z-module

EU := Ê/U

is then finitely generated. When it is torsion-free, hence isomorphic to Zr for some
r in N, the submodule U is called saturated. Then the quotient map

q : Ê −→ EU ' Zr

is continuous (when EU is equipped with the discrete topology), and is easily seen
to extend uniquely to a continuous R-linear map

qR : ÊR −→ EU,R := EU ⊗Z R ' Rr,

which is actually open and surjective.
Let us consider the composite R-linear map

qR ◦ i : EHilb
R

i
↪−→ ÊR

qR−→ EU,R.

Since i(EHilb
R ) is dense in ÊR and qR is continuous and surjective, its image is dense

in EU,R, hence equals EU,R, since EU,R is a finite-dimensional R-vector space.
We may therefore consider the Euclidean norm ‖.‖U of EU,R defined as the

quotient norm induced from the Hilbert norm ‖.‖ on EHilb
R by means of the con-

tinuous surjective map qR ◦ i. Finally, we may define a Euclidean lattice (of finite
rank) EU by the lattice EU in the R-vector space EU,R equipped with the Eu-
clidean norm ‖.‖U :

EU : EU ⊂ EU,R, ‖.‖U .
For instance, let us consider the Euclidean lattice of infinite rank lim←−E•,

constructed above from the admissible projective system E•. For every k ∈ N, we
may consider the canonical projection

prk : Ê −→ Ek
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that maps an element v = (vi)i∈N of Ê seen as a submodule of
∏
i∈NEi to its kth

component vk. Its kernel Uk is a saturated open submodule of Ê, and the quotient
EUk := Ê/Uk is easily seen to be canonically isomorphic to Ek, and the Euclidean

lattice ÊUk to be isomorphic to Ek.

In general, if Ê is an arbitrary object in proVect
≤1

Z , then we may choose a
decreasing sequence

U0 ⊃ U1 ⊃ · · · ⊃ Uk ⊃ Uk+1 ⊃ · · ·

of saturated open submodules of Ê that constitutes a basis of neighborhoods of 0

in Ê, and we may consider the associated Euclidean lattices ÊUk and the quotient
morphisms

qk : EUk,R −→ EUk+1,R.

They define a projective system of Euclidean lattices

EU0

q0←− EU1

q1←− · · · qk−1←− EUk
qk←− EUk+1

qk+1←− · · ·

that satisfies the admissibility condition introduced in E.b. Accordingly, we may

construct the object lim←−k EUk in proVect
≤1

Z , and there exists a canonical isomor-
phism:

Ê
∼−→ lim←−

k

EUk .

F.b. Let us apply this construction to the Euclidean lattice of infinite rank Ê :=
H(Ω) introduced in E.a. Then a natural choice for the decreasing sequence (Uk)k∈N
of saturated open submodules of Ê := Z[[X]] is

Uk :=

{∑
n∈N

anX
n | a0 = · · · = ak−1 = 0

}
= Xk Z[[X]] for all k ∈ N.

Then

EUk = Z[[X]]/Xk Z[[X]] ' Z[X]<k,

where for a ring A, we denote by A[X]<k the submodule
⊕

0≤i<k A ·Xi of A[X],
and the Euclidean norm ‖.‖k on

EUk,R
∼−→ R[X]<k

is (the restriction of) the quotient norm induced from the L2-norm ‖.‖L2(Ω) on
OL2(Ω) by the truncated Taylor expansion map

OL2(Ω) −→ C[X]<k,
f 7−→

∑
0≤i<k

1
i!f

(i)(0)Xi.
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We may also consider the admissible short exact sequences of Euclidean lat-
tices

0 −→ Sk
ik−→ EUk+1

qk−→ EUk −→ 0

associated to the quotient maps qk. The “subquotient” Euclidean lattices Sk admit
the following description. Clearly, Sk,R (resp., Sk) may be identified with R.Xk

(resp., Z.Xk). Moreover, according to the above discussion, the norm of the gen-
erator Xk of Sk is given by

‖Xk‖Sk = inf
{
‖zk + ρ‖L2(Ω); ρ ∈ OL2(Ω) and ρ(0) = · · · = ρ(k)(0) = 0

}
.

(0.0.22)
Observe that according to Cauchy estimates, for every k ∈ N, there exists

Ck in R∗+ such that the following inequality holds:∣∣∣f (k)(0)/k!
∣∣∣ ≤ Ck‖f‖L2(Ω), for all f ∈ OL2(Ω) such that

f(0) = · · · = f (k−1)(0) = 0. (0.0.23)

It is straightforward that the smallest possible constant Ck in (0.0.23) coincides
with the inverse ‖Xk‖−1

Sk
of the norm (0.0.22).

It is possible to give upper bounds on the constants Ck — or equivalently,
lower bounds on the norms ‖Xk‖Sk — in terms of invariants of Ω defined by a
classical construction from potential theory. Since this type of estimates plays a
key role in the applications of the formalism in this monograph to Diophantine
geometry, we want to discuss them more closely.

Let us, for instance, assume that the boundary of Ω is regular enough —
say that Ω is the interior of some compact C1-submanifold with boundary Ω of
C ' R2. Then we may introduce the Green’s function attached to the point 0 in
Ω, namely the unique function gΩ,0 on Ω \ {0} with values in R∗+ such that:

• gΩ,0 vanishes on ∂Ω := Ω \ Ω;

• gΩ,0 is harmonic on Ω \ {0};
• gΩ,0 has a logarithmic singularity at 0; in other words, the harmonic function

h(z) := gΩ,0(z)− log |z|−1

of z ∈ Ω\{0} remains bounded as z goes to 0, and therefore extends to some
harmonic function h on Ω.

The real number
C(Ω) := eh(0)

provides a potential theoretic measure of the size of Ω. If, for instance, Ω is the
open disk D̊(0, R) of center 0 and positive radius R, then C(Ω) = R. In general,
if K denotes the compact subset of C defined as

K := {0} ∪ {z−1; z ∈ C \ Ω},
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then h(0) is the so-called Robin constant of K, and C(Ω) is the inverse of the
capacity of K.

For all ε ∈ R∗+, we may consider the following relatively compact open subset
of Ω:

Ωε := {0} ∪ {z ∈ Ω \ {0} | gΩ,0(z) > ε}.

By Cauchy estimates, there exists A(ε) in R∗+ such that for every function f in
OL2(Ω),

‖f‖L∞(∂Ωε) ≤ A(ε)‖f‖L2(Ω). (0.0.24)

When, moreover, f satisfies f(0) = · · · = f (k−1)(0) = 0, the maximum modulus
principle applied to the function log |f | + n.gΩ,0, together with the inequality
(0.0.24), leads to the estimates

log
∣∣∣f (k)(0)/k!

∣∣∣ ≤ −nh(0) + log ‖f‖L∞(∂Ωε) + nε

≤ −n(h(0)− ε) + logA(ε) + log ‖f‖L2(Ω).

This shows that the estimate (0.0.23) holds with some constant Ck that
satisfies

logCk ≤ −n(logC(Ω)− ε) + logA(ε),

and finally establishes the following asymptotic lower bound on ‖Xk‖Sk :

lim inf
k→+∞

k−1 log ‖Xk‖Sk ≥ logC(Ω). (0.0.25)

Estimates like (0.0.23), together with some control on the constant Ck, clas-
sically appear in Diophantine approximation and transcendence proofs under the
name of Schwarz lemma. As exemplified by the previous discussion, they may be
seen as lower bounds on the norms of Euclidean lattices defined as subquotients
of the Euclidean lattices of infinite rank encoding the arithmetic and complex
analytic data under investigation. These lower bounds are relevant for providing
upper bounds on the theta invariants of these subquotients, and consequently, as
we will see, to control the theta invariants of these Euclidean lattices of infinite
rank.

G. Let us now return to the theta invariants of Euclidean lattices and their possible
generalizations concerning Euclidean lattices of infinite rank.

A naive guess would be that to an object Ê of the category proVect
≤1

Z
constructed as the projective limit lim←−E• of some admissible projective system

E• as in E.b, one could associate a well-defined and significant theta invariant by
the rule

h0
θ(Ê) := lim

k→+∞
h0
θ(Ek).
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This is grossly wrong. Actually, for every Euclidean lattice of infinite rank

Ê, there always exists an admissible projective system E• such that lim←−E• is

isomorphic to Ê and
lim

k→+∞
h0
θ(E) = +∞.

Equivalently, if U(Ê) denotes the filter basis of saturated open submodules of Ê,
we have

lim sup
U∈U(Ê)

h0
θ(EU ) = +∞.

It may, however, happen that for some other realization of Ê as lim←−E•, the limit

limk→+∞ h0
θ(E) exists in R, or does not exist in [0,+∞].

Among the possible candidates for a definition of h0
θ(Ê), two natural ones,

both taking values in [0,+∞], may be defined as follows.
Firstly, we can simply mimic the definition of h0

θ(E) of a (finite-dimensional)
Euclidean lattice by letting

h0
θ(Ê) := log

∑
v∈Ê∩i(EHilb

R )

e−π‖i
−1(v)‖2 .

An immediate drawback of this definition is that it involves the intersection Ê ∩
i(EHilb

R ), which in general may be uncountable.
Secondly, we may try a definition “by approximation”, which would avoid

the lack of convergence of the theta invariants h0
θ(EU ) discussed above, by letting

h
0

θ(Ê) := lim inf
U∈U(Ê)

h0
θ(EU ).

A drawback of this definition is that contrary to h0
θ(Ê), it is not obviously com-

patible with direct sums of Euclidean lattices of infinite rank.
These two invariants satisfy the estimate

h0
θ(Ê) ≤ h0

θ(Ê),

which may actually be strict in general.
It turns out that there exists a class of “tame” Euclidean lattices of infinite

rank for which these two invariants are finite and coincide, and which, moreover,
is quite convenient for applications to Diophantine geometry.

In order to introduce this class, let us return to the construction of the

object lim←−E• in proVect
≤1

Z from some admissible projective system E• in E.b.
As already observed, by the definition of such a system, the morphisms qk may be
inserted into admissible short exact sequences of Euclidean lattices:

0 −→ Sk
ik−→ EUk+1

qk−→ EUk −→ 0.
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From the subadditivity (0.0.15) of h0
θ in admissible short exact sequences, we get

the sequence of inequalities

h0
θ(Ek+1)− h0

θ(Ek) ≤ h0
θ(Sk).

This implies that the sequence with kth term

h0
θ(Ek)−

∑
0≤i<k

h0
θ(Si)

is nonincreasing. When, moreover, the condition

Sum :
∑
i∈N

h0
θ(Si) < +∞

holds, it is also bounded from below, hence converges, and therefore the sequence
(h0
θ(Ek))k∈N itself has a limit in R+.

A central result of this monograph is that the following minor strengthening4

of the condition Sum,

Sum+ : for some ε ∈ R∗+,
∑
i∈N

h0
θ(Si ⊗O(ε)) < +∞,

is enough to ensure that h0
θ(Ê) and h

0

θ(Ê) belong to [0,+∞[, coincide, and are
actually equal to the limit limk→+∞ h0

θ(Ek). In this case, we define:

h0
θ(Ê) := h0

θ(Ê) = h
0

θ(Ê) = lim
k→+∞

h0
θ(Ek) ∈ R.

Conversely, for every object Ê in proVect
≤1

Z , one may prove that, if some for
ε ∈ R∗+,

h0
θ(Ê ⊗O(ε)) = h

0

θ(Ê ⊗O(ε)) < +∞,

then Ê may be realized as lim←−E• for some admissible projective system E• satis-

fying Sum+.

The Euclidean lattices of infinite dimension Ê such that the Euclidean lattices
Ê ⊗ O(t) derived from them by scaling their Hilbert norm by e−t satisfy the
condition

h0
θ(Ê ⊗O(t)) = h

0

θ(Ê ⊗O(t)) < +∞

for all t ∈ R — the θ-finite pro-Hermitian vector bundles over SpecZ in the termi-
nology of Chapter 7 — satisfy convenient permanence properties. Moreover, the
properties of the theta invariants of finite-dimensional Euclidean lattices naturally
extend to these Euclidean lattices of infinite dimension.

4Recall that Si⊗O(ε) is the Euclidean lattice derived from Si by scaling its Euclidean norm
by e−ε.
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The proof of these results relies on several remarkable analytic properties
of the theta series attached to Euclidean lattices — especially, on subadditivity
properties that extend the estimate (0.0.15) satisfied by the theta invariants of
Euclidean lattices in admissible short exact sequences, and on the convexity of the
function log θE(β) — and on measure-theoretic constructions on the Polish (non

locally compact) topological space Ê.

H. It turns out that θ-finite Euclidean lattices (of infinite rank) provide a conve-
nient framework for applications to Diophantine geometry.

To give some hint of these applications, let us return to the object Ĥ(Ω) of

proVect
≤1

Z defined in E.a and investigated in F.b.

With the notation of F.b, it may be realized as the projective limit lim←−k ÊUk .
It is therefore θ-finite, provided that for all t ∈ R, the condition Sum is satisfied by

the subquotients Sk ⊗O(t) of Ĥ(Ω)⊗O(t), namely when the following condition
holds:

for all t ∈ R,
∑
k∈N

h0
θ(Sk ⊗O(t)) < +∞. (0.0.26)

Recall that Sk is a Euclidean lattice of rank 1 and that the norm ‖Xk‖Sk of

the generator Xk of Sk satisfies the asymptotic lower bound (0.0.25). The latter
implies that for all t ∈ R,

lim inf
k→+∞

k−1 log ‖Xk‖Sk⊗O(t) = lim inf
k→+∞

k−1(log ‖Xk‖Sk − t) ≥ logC(Ω). (0.0.27)

By means of (0.0.27), we easily obtain the following:

If C(Ω) > 1, then condition (0.0.27) holds, and therefore Ĥ(Ω) is θ-finite.
(0.0.28)

Indeed, we have

h0
θ(Sk ⊗O(t)) = log

∑
m∈Z

e
−πm2 log ‖Xk‖2

Sk⊗O(t) .

According to (0.0.27), when C(Ω) > 1, we have:

lim
k→+∞

‖Xk‖Sk⊗O(t) = +∞,

and therefore

h0
θ(Sk ⊗O(t)) ∼ 2e

−π‖Xk‖2
Sk⊗O(t) as k −→ +∞.

Using (0.0.27) again, we see that the series
∑
k∈N h

0
θ(Sk ⊗O(t)) indeed converges

when C(Ω) > 1.
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As discussed in Chapter 10, the finiteness property (0.0.28) of the infinite-

dimensional Euclidean lattice Ĥ(Ω) lies at the heart of the algebraicity and ratio-
nality properties of meromorphic functions on Ω with integral Taylor expansions
when C(Ω) > 1, which have been investigated by E. Borel, G. Pólya, D. V. and
G. V. Chudnovsky, and their followers.
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