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Preface

The basic theme of p-adic Hodge theory is to understand the relationship between
various p-adic cohomology theories associated to algebraic varieties over p-adic
fields. In the standard formulation, it is concerned with comparisons between alge-
braic de Rham cohomology, p-adic étale cohomology, and crystalline cohomology.
Each of these cohomology theories carry additional structure: de Rham cohomology
comes equipped with a filtration, étale cohomology with a Galois action, and crys-
talline cohomology with a semi-linear Frobenius operator. Comparisons between
these theories shed light on each of these individual structures, and the package of all
of these cohomology theories and the comparison isomorphisms between them is a
very rich structure associated to algebraic varieties over p-adic fields.

In recent years, there has been a surge of activity in the area related to integral
p-adic Hodge, non-Abelian phenomena, and connections to notions in algebraic
topology. The basic comparison isomorphisms of p-adic Hodge theory are defined
rationally and don’t directly provide information about the integral structures pre-
sent in the cohomology theories, and there have been recent developments in the
area to understand integral and torsion phenomena. Non-abelian phenomena can be
understood on several levels, but the most basic one is the development of theories
with coefficients. The connections with algebraic topology arise from the strong
relationship between crystalline cohomology and topological Hochschild homol-
ogy. This is also closely tied to the theory of the de Rham–Witt complex.

This proceedings volume contains chapters related to the research presented at
the 2017 Simons Symposium on p-adic Hodge theory. This symposium was
focused on recent developments in p-adic Hodge theory, especially those con-
cerning integral questions and their connections to notions in algebraic topology.

The volume begins with the chapter of Morrow on the Ainf -cohomology theory
which was introduced in the earlier fundamental paper of Bhatt, Morrow, and
Scholze on integral p-adic Hodge theory. The present chapter contains a detailed
presentation of the Ainf -cohomology theory, largely self-contained. The author
focuses, in particular, on de Rham–Witt theory and the p-adic analogue of the
Cartier isomorphism.

v



The chapter of Colmez and Niziol is concerned with a fundamental computation
of the pro-étale cohomology of the rigid analytic affine space in any dimension.
Contrary to the standard results for étale cohomology of algebraic varieties, these
pro-étale cohomology groups are nonzero and the authors describe them using
differential forms.

The third chapter by Chung, Kim, Kim, Park, and Yoo is concerned with a certain
invariant attached to representations of the fundamental group of the ring of
S-integers OF ½1=S� of a number field F, for some finite set of primes S. The authors
describe a theory of the “arithmetic Chern-Simons action”, inspired by the topo-
logical theory. The main result is a formula relating an invariant of a torsor over
OF ½1=S� to locally defined data. The authors also give several interesting applica-
tions of this formula.

Throughout the subject of p-adic Hodge theory various large rings play a central
role. The chapter of Kedlaya discusses various key basic algebraic properties of the ring
Ainf , which is the ring of Witt vectors of a perfect valuation ring in characteristic p.
This ring is, in particular, fundamental for the Ainf -cohomology developed by Bhatt,
Morrow, and Scholze, and in integral p-adic Hodge theory. This ring is quite
different from the ones occurring in classical algebraic geometry: for example, it is
not Noetherian. Nevertheless, the author discusses several favorable properties,
e.g., those related to vector bundles.

A fundamental result in complex Hodge theory is the Simpson correspondence
relating local systems and Higgs bundles. An analogue of this theory was developed
in characteristic p by Ogus and Vologodsky. The chapter of Gros is concerned with
the problem of lifting this characteristic p correspondence to a mixed characteristic
correspondence via a q-deformation.

The final chapter of Tsuji concerns the study of integral p-adic Hodge theory with
coefficients. Early in the development of p-adic Hodge theory, Faltings constructed a
theory of coefficients for integral p-adic Hodge theory. The present chapter refines this
theory and generalizes the work of Bhatt, Morrow, and Scholze to this context. The
chapter contains a detailed exposition of the many technical aspects of the theory and
contains many improvements in this regard to the existing literature as well.

Ann Arbor, MI, USA Bhargav Bhatt
Berkeley, CA, USA Martin Olsson
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Notes on the Ainf -Cohomology of Integral
p-Adic Hodge Theory

Matthew Morrow

Abstract Wepresent a detailed overviewof the construction of theAinf -cohomology
theory from the preprint Integral p-adic Hodge theory, joint with Bhatt and Scholze.
We focus particularly on the p-adic analogue of the Cartier isomorphism via relative
de Rham–Witt complexes.

Keywords p-adic Hodge theory · Prismatic cohomology · Perfectoid ·
de Rham–Witt complex

Extended abstract

These are expanded notes of a mini-course, given at l’Institut de Mathématiques de
Jussieu–Paris Rive Gauche, 15 Jan.–1 Feb. 2016, detailing some of the main results
of the article

[5]B.Bhatt,M.Morrow,P. Scholze, Integral p-adic Hodge theory, Publ.Math.
Inst. Hautes Études Sci. 128 (2018), 219–397.

More precisely, the goal of these notes is to give a detailed, and largely self-contained,
presentation of the construction of the Ainf -cohomology theory from [5], focussing
on the p-adic analogue of the Cartier isomorphism via relative de Rham–Witt com-
plexes. By restricting attention to this particular aspect of [5], we hope to have made
the construction more accessible. However, the reader should only read these notes
in conjunction with [5] itself and is strongly advised also to consult the surveys [2,
26] by the other authors, which cover complementary aspects of the theory. In par-
ticular, in these notes we do not discuss q-de Rham complexes, cotangent complex
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2 M. Morrow

calculations, Breuil–Kisin(–Fargues) modules, or the crystalline and de Rham com-
parison theorems of [5, Sect. 12–14], as these topics are not strictly required for the
construction of the Ainf -cohomology theory.1 Moreover, we refer to [5] for several
self-contained proofs to avoid verbatim repetition.

Section1 is an introductionwhich begins by recalling some classical problems and
results of p-adic Hodge theory before stating the main theorem of the course, namely
the existence of a new cohomology theory for p-adic schemes which integrally
interpolates étale, crystalline and de Rham cohomologies.

Section2 introduces the décalage functor, which modifies a given complex by a
small amount of torsion. This functor is absolutely essential to our constructions, as
it kills the “junk torsion” which so often appears in p-adic Hodge theory and thus
allows us to establish results integrally. An example of this annihilation of torsion,
in the context of Faltings’ almost purity theorem, is given in Sect. 2.2.

Section3 develops the necessary elementary theory of perfectoid rings, empha-
sising the importance of certain maps θr ,˜θr which generalise Fontaine’s usual map
θ of p-adic Hodge theory and are central to the later constructions.

Section4 is a minimal summary of Scholze’s theory of pro-étale cohomology for
rigid analytic varieties. In particular, in Sect. 4.3 we explain the usual technique by
which the pro-étale manifestation of the almost purity theorem allows the pro-étale
cohomology of “small” rigid affinoids to be (almost) calculated in terms of group
cohomology related to perfectoid rings.

Section5 revisits the main theorem and defines the new cohomology theory as
the hypercohomology of a certain complex AΩX. In Theorem 4 we state a p-adic
Cartier isomorphism, which identifies the cohomology sheaves of the base change
of AΩX along˜θr with Langer–Zink’s relative de Rham–Witt complex of the p-adic
scheme X. We then deduce all main properties of the new cohomology theory from
this p-adic Cartier isomorphism.

Section6 reviews Langer–Zink’s theory of the relative de Rham–Witt complex,
which may be seen as the initial object in the category of Witt complexes, i.e.,
families of differential graded algebras over the Witt vectors which are equipped
with compatible Restriction, Frobenius, and Verschiebung maps. In Sect. 6.2 we
present one of our main constructions, namely building Witt complexes from the
data of a commutative algebra (in a derived sense), equipped with a Frobenius, over
the infinitesimal period ring Ainf . In Sect. 6.3 we apply this construction to the group
cohomology of a Laurent polynomial algebra and prove that the result is precisely the
relative de Rham–Witt complex itself; this is the local calculation which underlies
the p-adic Cartier isomorphism.

Finally, Sect. 7 sketches the proof of the p-adic Cartier isomorphism by reducing
to the final calculation of the previous paragraph. This reduction is based on various
technical lemmas that the décalage functor behaves well under base change and

1To be precise, there is one step in the construction, namely the equality (dimX) in the proof of
Theorem 7, where we will have to assume that the p-adic scheme X is defined over a discretely
valued field; this assumption can be overcome using the crystalline comparison theorems of [5].
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taking cohomology, and that it transforms certain almost quasi-isomorphisms into
quasi-isomorphisms.

The appendices provide an introduction to Fontaine’s infinitesimal period ringAinf

and state a couple of lemmas about Koszul complexes which are used repeatedly in
calculations.

1 Introduction

1.1 Mysterious Functor and Crystalline Comparison

Here in Sect. 1.1 we consider the following common situation:

• K a complete discrete valuation field of mixed characteristic; ring of integersOK ;
perfect residue field k.

• X a proper, smooth scheme over OK .

For � �= p, proper base change in étale cohomology gives a canonical isomor-
phism

Hi
ét(Xk, Z�) ∼= Hi

ét(XK , Z�)

which is compatible with Galois actions.2 Grothendieck’s question of the mysterious
functor is often now interpreted as asking what happens in the case � = p. More pre-
cisely, howare Hi

ét(XK ) := Hi
ét(XK , Zp) and Hi

crys(Xk) := Hi
crys(Xk/W (k)) related?

In other words, how does p-adic cohomology of X degenerate from the generic to
the special fibre?

Grothendieck’s question is answered after inverting p by the Crystalline Com-
parison Theorem (Fontaine–Messing [15], Bloch–Kato [7], Faltings [12], Tsuji [28]
Nizioł [23], …), stating that there are natural isomorphisms

Hi
crys(Xk) ⊗W (k) Bcrys

∼= Hi
ét(XK ) ⊗Zp Bcrys

which are compatible with Galois and Frobenius actions (and filtrations after base
changing toBdR), whereBcrys andBdR are Fontaine’s period rings (which we empha-
sise contain 1/p; they will not appear again in these notes, so we do not define them).
Hence general theory of period rings implies that

Hi
crys(Xk)

[

1
p

]

= (Hi
ét(XK ) ⊗Zp Bcrys)

G K

2To be precise, the isomorphism depends only on a choice of specialisation of geometric points
of SpecOK . A consequence of the compatibility with Galois actions is that the action of G K on
Hi
ét(XK , Z�) is unramified.
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(i.e., the crystalline Dieudonné module of Hi
ét(XK )[ 1p ], by definition) with ϕ on

the left induced by 1 ⊗ ϕ on the right. In summary, (H n
ét(XK )[ 1p ], G K ) determines

(H n
crys(Xk)[ 1p ],ϕ). Similarly, in the other direction, (H n

ét(XK )[ 1p ], G K ) is determined

by (H n
crys(Xk)[ 1p ],ϕ,Hodge fil.).

But what if we do not invert p? There are various partial results in the literature,
including [8, 13], and a simplifying summary would be to claim that “everything
seems to work integrally if ie < p − 1”,3 where e is the absolute ramification degree
of K . With no assumptions on ramification degree, dimension, value of p, etc., we
prove in [5] results of the following form:

(i) The torsion in Hi
ét(XK ) is “less than” that of Hi

crys(Xk). To be precise,

length
Zp

H i
ét(XK )/pr ≤ lengthW (k) Hi

crys(Xk)/pr

for all r ≥ 1, as one would expect for a degenerating family of cohomologies.
In particular, if Hi

crys(Xk) is torsion-free then so is Hi
ét(XK ).

(ii) If H∗
crys(Xk) is torsion-free for ∗ = i, i + 1, then (Hi

ét(XK ), G K ) determines
(Hi

crys(Xk),ϕ).

It really is possible that additional torsion appears when degenerating the p-adic
cohomology from the generic fibre to the special fibre, as the following example
indicates (which is labeled a theorem as there seems to be no case of an X as above
for which Hi

ét(XK ) ⊗Zp W (k) and Hi
crys(X) were previously known to have non-

isomorphic torsion submodules):

Theorem 0 There exists a smooth projective relative surface X over Z2 such that
Hi

ét(XK ) is torsion-free for all i ≥ 0 but such that H 2
crys(Xk) contains non-trivial

2-torsion.4

Proof We do not reproduce the construction here; see [5, Proposition 2.2].

1.2 Statement of Main Theorem and Outline of Notes

The following notation will be used repeatedly in these notes:

• C is a complete, non-archimedean, algebraically closed field of mixed character-
istic5; ring of integers O; residue field k.

3Our results can presumably make this more precise.
4In [5, Theorem2.10]we also give an example forwhich H2

ét(XK )tors = Z/p2Z and H2
crys(Xk)tors =

k ⊕ k.
5More general, most of the theory which we will present works for any perfectoid field of mixed
characteristic which contains all p-power roots of unity.
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• O� := lim←−ϕ
O/pO is the tilt (using Scholze’s language [24]—orRO in Fontaine’s

original notation [14]) of O; so O� is a perfect ring of characteristic p which is
the ring of integers of C

� := FracO�, which is a complete, non-archimedean,
algebraically closed field with residue field k.

• Ainf := W (O�) is the first period ring of Fontaine6; it is equipped with the usual
Witt vector Frobenius ϕ. There are three key specialisation maps:

W (C�)

O Ainf
Fontaine′s map θ

de Rham���� crystalline �� ����

étale

��

W (k)

where Fontaine’s map θ will be discussed in detail, and in greater generality, in
Sect. 3.

The goal of these notes is to provide a relatively detailed overview of the proof of the
following theorem, establishing the existence of a cohomology theory, taking values
in Ainf -modules, which integrally interpolates the étale, crystalline, and de Rham
cohomologies of a smooth p-adic scheme:

Theorem 1 For any proper, smooth (possibly p-adic formal) scheme X over O,
there is a perfect complex RΓA(X) of Ainf -modules, functorial in X and equipped
with a ϕ-semi-linear endomorphism ϕ, with the following specialisations (which are
compatible with Frobenius actions where they exist):

(i) Étale: RΓA(X) ⊗L

Ainf
W (C�) � RΓét(X, Zp) ⊗L

Zp
W (C�), where X := XC is

the generic fibre of X (viewed as a rigid analytic variety over C in the case that
X is a formal scheme)

(ii) Crystalline: RΓA(X) ⊗L

Ainf
W (k) � RΓcrys(Xk/W (k)).

(iii) de Rham: RΓA(X) ⊗L

Ainf
O � RΓdR(X/O).

The individual cohomology groups

Hi
A
(X) := Hi (RΓA(X))

have the following properties:

(iv) Hi
A
(X) is a finitely presented Ainf -module;

(v) Hi
A
(X)[ 1p ] is finite free over Ainf [ 1p ];

(vi) Hi
A
(X) is equipped with a Frobenius-semi-linear endomorphism ϕ which

becomes an isomorphism after inverting any generator ξ ∈ Ainf of Ker θ, i.e.,

ϕ : Hi
A
(X)[ 1

ξ
] �→ Hi

A
(X)[ 1

ϕ(ξ)
];

6A brief introduction to O� and Ainf may be found at the beginning of Appendix 1.



6 M. Morrow

(vii) Étale: Hi
A
(X) ⊗Ainf W (C�) ∼= Hi

ét(X, Zp) ⊗Zp W (C�), whence

(Hi
A
(X) ⊗Ainf W (C�))ϕ=1 ∼= Hi

ét(X, Zp).

(viii) Crystalline: there is a short exact sequence

0 −→ Hi
A
(X) ⊗Ainf W (k) → Hi

crys(Xk/W (k)) −→ TorAinf
1 (Hi+1

A
(X), W (k)) −→ 0,

where the Tor1 term is killed by a power of p.
(ix) de Rham: there is a short exact sequence

0 −→ Hi
A
(X) ⊗Ainf O → Hi

dR(X/O) −→ Hi+1
A

(X)[ξ] −→ 0,

where the third term is again killed by a power of p.
(x) If Hi

crys(Xk/W (k)) or Hi
dR(X/O) is torsion-free, then Hi

A
(X) is a finite free

Ainf -module.

Corollary 1 Let X be as in the previous theorem, fix i ≥ 0, and assume
Hi

crys(Xk/W (k)) is torsion-free. Then Hi
ét(X, Zp) is also torsion-free. If we assume

further that Hi+1
crys (Xk/W (k)) is torsion-free, then

Hi
A
(X) ⊗Ainf W (k) = Hi

crys(Xk/W (k)) and Hi
A
(X) ⊗Ainf O = Hi

dR(X/O).

Proof We first mention that the “whence” assertion of part (vii) of the previous
theorem is the following general, well-known assertion: if M is a finitely generated
Zp-module and F is any field of characteristic p, then (M ⊗Zp W (F))ϕ=1 = M
(where ϕ really means 1 ⊗ ϕ).

Now assume Hi
crys(Xk/W (k)) is torsion-free. Then part (x) of the previous theo-

rem implies that Hi
A
(X) is finite free; so from part (vii) we see that Hi

ét(X, Zp) cannot
have torsion. If we also assume Hi+1

crys (Xk/W (k)) is torsion-free, then Hi+1
A

(X) is
again finite free by (x), and so no torsion terms appear in the short exact sequences
in parts (viii) and (ix) of the previous theorem.

Having stated the main theorem, we now give a very brief outline of the ideas
which will be used to construct the Ainf -cohomology theory.

(i) We will define RΓA(X) to be the Zariski hypercohomology of the following
complex of sheaves of Ainf -modules on the formal scheme X:

AΩX := Lημ

(

̂Rν∗(Ainf,X )
)

where:

• Ainf,X is a certain period sheaf of Ainf -modules on the pro-étale site Xproét of
the rigid analytic variety X (note that even if X is an honest scheme overO,
we must view its generic fibre as a rigid analytic variety);
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• ν : Xproét → XZar is the projection map to the Zariski site of X;
• the hat indicates the derived p-adic completion of Rν∗(Ainf,X ) (see also the
end of item (iv));

• Lη is the décalage functorwhichmodifies a given complex by a small amount
of torsion (in this case with respect to a prescribed element μ ∈ Ainf ).

(ii) Parts (ii) and (iii) of Theorem 1 are proved simultaneously by relating AΩX to
Langer–Zink’s relative de Rham–Witt complex WrΩ

•
X/O; indeed, this equals

Ω•
X/O if r = 1 (which computes de Rham cohomology of X) and satisfies

WrΩ
•
X/O ⊗Wr (O) Wr (k) = WrΩ

•
Xk/k (whereWrΩ

•
Xk/k is the classical deRham–

Witt complex of Bloch–Deligne–Illusie computing crystalline cohomology of
Xk).

(iii) If Spf R is an affine open of X (so R is a p-adically complete, formally smooth
O-algebra7) which is small, i.e., formally étale over O〈T ±1

1 , . . . , T ±1
d 〉 (:= the

p-adic completion ofO[T ±1
1 , . . . , T ±1

d ]), then wewill use the almost purity the-
orem to explicitly calculate RΓZar(Spf R, AΩX) in terms of group cohomology
and Koszul complexes. These calculations can be rephrased using “q-de Rham
complexes” over Ainf (=deformations of the de Rham complex), but we do not
do so in these notes.

(iv) Some remarks on the history and development of the results:

• Early motivation for the existence of RΓA(X) (e.g., as discussed by Scholze
at Harris’ 2014 MSRI birthday conference) came from topological cyclic
homology. These notes say nothing about that point of view, which may now
be found in [6].

• At the time of writing the announcement of our results [4], we only knew that
the definition of RΓA(X) in part (i) of the remark almost (in the precise sense
of Faltings’ almost mathematics) had the desired properties of Theorem 1,
so it was necessary to modify the definition slightly; this modification is no
longer necessary.

• Further simplifications of some of the proofs were explained in [2], some of
which are also taken into account in these notes.

• The definition of AΩX continues to make sense for any p-adic formal O-
scheme X, not necessarily smooth, and in particular the comparison isomor-
phisms of Theorem 1 have been extended to case of semi-stable reduction
by Česnavičus and Koshikawa [9].

• In late 2018 the authors of [5] realised that the period sheaf Ainf,X on Xproét

might not be derived p-adically complete, though this had been implicitly
used in the construction. This is easily fixed, without changing any of the

7Throughout these notes we follow the convention that formally smooth/étale includes the condition
of being topologically finitely presented, i.e., a quotient of O〈T1, . . . , TN 〉 by a finitely generated
ideal. Under this convention formal smoothness implies flatness. In fact, according to a result of
Elkik [11, Theorem7] (see Rmq. 2 on p. 587 for elimination of the Noetherian hypothesis), a p-
adically completeO-algebra is formally smooth if and only if it is the p-adic completion of a smooth
O-algebra.
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ensuing arguments, either by replacing Ainf,X by its derived p-adic com-
pletion (which is then a complex of sheaves) or else by derived p-adically
completing all occurrences of Rν∗(Ainf,X ) and RΓproét(−, Ainf,X ) in the the-
ory. In the published version of [5] the former approach is adopted, but in
these notes we will follow the latter route which has the conceptual advan-
tage that Ainf,X remains an honest sheaf of rings. Unfortunately this leads to
a notation inconsistency: the Ainf,X of these notes is H0(−) of the complex
of sheaves Ainf,X of [5].

• Most recently, a site theoretic definition of theAinf -cohomology is now avail-
able through the prismatic theory of Bhatt–Scholze [3].

2 The décalage Functor Lη: Modifying Torsion

For a ring A and non-zero divisor f ∈ A, we define the décalage functor which was
introduced first by Berthelot–Ogus [1, Chap. 8] following a suggestion of Deligne.
It will play a fundamental role in our constructions.

Definition 1 Suppose that C is a cochain complex of f -torsion-free A-modules.
Then we denote by η f C the subcomplex of C[ 1

f ] defined as

(η f C)i := {x ∈ f i Ci : dx ∈ f i+1Ci+1}

i.e., η f C is the largest subcomplex of C[ 1
f ] which in degree i is contained in f i Ci

for all i ∈ Z.

It is easy to compute the cohomology of η f C :

Lemma 1 The map on cocycles Zi C → Zi (η f C) given by m → f i m induces a
natural isomorphism

Hi (C)/Hi (C)[ f ] �→ Hi (η f C).

Proof It is easy to see that the map induces Hi (C) → Hi (η f C), and the kernel
corresponds to those x ∈ Ci such that dx = 0 and f x ∈ d(Ci−1), i.e., Hi (C)[ f ].
Corollary 2 If C

∼→ C ′ is a quasi-isomorphism of complexes of f -torsion-free A-
modules, then the induced map η f C → η f C ′ is also a quasi-isomorphism.

Proof Immediate from the previous lemma.

We may now derive η f . There is a well-defined endofunctor Lη f of the derived
category D(A) defined as follows: if D ∈ D(A) then pick a quasi-isomorphism
C

∼→ D where C is a cochain complex of f -torsion-free A-modules (e.g., pick a
projective resolution, at least if D is bounded above) and set
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Lη f D := η f C.

This is well-defined by the previous corollary and standard formalism of derived
categories.

Warning: Lη f does not preserve distinguished triangles! For example, if A = Z then
Lηp(Z/pZ) = 0 but Lηp(Z/p2Z) = Z/pZ.

The general theory of the functor Lη f will be spread out through the notes (see
especially Remarks 7 and 9); now we proceed to two important examples.

2.1 Example 1: Crystalline Cohomology

The following proposition is the origin of the décalage functor, in which A = W (k)

and f = p; it is closely related to the Cartier isomorphism for the de Rham–Witt
complex.

Proposition 1 Let k be a perfect field of characteristic p and R a smooth k-algebra.
Then

(i) (Illusie 1979) The absolute Frobenius ϕ : WΩ•
R/k → WΩ•

R/k is injective and
has image ηpWΩ•

R/k , thus inducing a Frobenius-semi-linear isomorphism

Φ : WΩ•
R/k

�→ ηpWΩ•
R/k .

(ii) (Berthelot–Ogus 1978) There exists a Frobenius-semi-linear quasi-isomorphism

Φ : RΓcrys(R/W (k))
∼→ Lηp RΓcrys(R/W (k)).

Proof Obviously (i)⇒(ii), but (ii) was proved earlier and is the historical origin of
Lη: see [1, Theorem 8.20] (with the zero gauge). Berthelot–Ogus applied it to study
the relation between the Newton and Hodge polygons associated to a proper, smooth
variety over k.

(i) is a consequence of the following standard de Rham–Witt identities:

• ϕ has image in ηpWΩ•
R/k since ϕ = pi F on WΩ i

R/k and dϕ = ϕd.
• ϕ is injective since FV = V F = p.
• the image ofϕ is exactlyηpWΩ•

R/k sinced−1(pWΩ i+1
R/k) = F(WΩ i

R/k) [18, Equa-
tion I.3.21.1.5].
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2.2 “Example 2”: An Integral Form of Faltings’ Almost
Purity Theorem

We now present an integral form of (the main consequence of) Faltings’ almost
purity theorem; we do not need this precise result, but we will make use of Lemma 2
and the “goodness” of the group cohomology established in the course of the proof
of Theorem 2. Moreover, readers familiar with Faltings’ approach to p-adic Hodge
theory may find this result motivating. To recall Faltings’ almost purity theorem we
consider the following situation:

• C is a complete, non-archimedean, algebraically closed field of mixed character-
istic; ring of integers O.

• R is a p-adically complete, formally smoothO-algebra, which we further assume
is connected and small, i.e., formally étale overO〈T ±1〉 := O〈T ±1

1 , . . . , T ±1
d 〉. As

usual in Faltings’ theory, we associate to this the following two rings:
• R∞ := R̂⊗O〈T ±1〉O〈T ±1/p∞〉—this is acted on by Γ := Zp(1)d via R-algebra
automorphisms in the usual way: given γ ∈ Γ = HomZp ((Qp/Zp)

d ,μp∞) and

k1, . . . , kd ∈ Z[ 1p ], the action is γ · T k1
1 . . . T kd

d := γ(k1, . . . , kd)T
k1
1 . . . T kd

d .

• R := the p-adic completion of the normalisation of R in the maximal (ind)étale
extension of R[ 1p ]—this is acted on by Δ := Gal(R[ 1p ]) via R-algebra automor-
phisms, and its restriction to R∞ gives the Γ -action there.

Faltings’ almost purity theorem states R is an “almost étale” R∞-algebra, and the
main consequence of this is that the resulting map on continuous group cohomology

RΓcont(Γ, R∞) −→ RΓcont(Δ, R)

is an almost quasi-isomorphism (i.e., all cohomology groups of the cone are killed
by the maximal ideal m ⊂ O). This is his key to calculating étale cohomology in
terms of de Rham cohomology; indeed, RΓcont(Δ, R) is a priori hard to calculate and
encodes Galois/étale cohomology, while RΓcont(Γ, R∞) is easy to calculate using
Koszul complexes (as we will see in the proof of Theorem 2) and differential forms.

The following is our integral form of this result, inwhichwe apply Lη with respect
to any element f ∈ m ⊂ O:

Theorem 2 Under the above set-up, the induced map

Lη f RΓcont(Γ, R∞) −→ Lη f RΓcont(Δ, R)

is a quasi-isomorphism (not just an almost quasi-isomorphism!) for any non-zero
f ∈ m.

Remark 1 (i) The proof of Theorem 2 requires knowing nothing new about
RΓcont(Δ, R): a key remarkable property of Lη is that it can transform almost
quasi-isomorphisms into actual quasi-isomorphisms, having only imposed
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hypotheses on the domain, not the codomain, of the morphism; this will be
explained in the next lemma.

(ii) The theorem implies that the kernel and cokernel of Hi
cont(Γ, R∞) → Hi

cont
(Δ, R) are killed by f ; since f is any element ofm, the kernel and cokernel are
killed by m. Thus Theorem 2 is a family of on-the-nose integral results which
recovers Faltings’ almost quasi-isomorphism RΓcont(Γ, R∞) → RΓcont(Δ, R).

Lemma 2 Let M ⊆ A be an ideal of a ring and f ∈ M a non-zero-divisor. Say that
an A-module M is “good” if and only if both M and M/ f M contain no non-zero
elements killed by M. Then the following statements hold:

(i) If M → N is a homomorphism of A-modules with kernel and cokernel killed
by M, and M is good, then M/M[ f ] → N/N [ f ] is an isomorphism.

(ii) If C → D is a morphism of complexes of A-modules whose cone is killed by
M, and all cohomology groups of C are good, then Lη f C → Lη f D is a quasi-
isomorphism.

Proof Clearly (ii) is a consequence of (i) and Lemma 1. So we must prove (i).
Since the kernel of M is killed byM, but M contains no non-zero elements killed

by M, we see that M → N is injective, and we will henceforth identify M with
a submodule of N . Then M[ f ] = M ∩ N [ f ] and so M/M[ f ] → N/N [ f ] is also
injective.

Since the quotient N/M is killed by M, there is a chain of inclusions M f N ⊆
f M ⊆ f N ⊆ M . But M/ f M contains no non-zero elements killed byM, so f M =
f N , and this completes the proof: any n ∈ N satisfies f n = f m for some m ∈ M ,
whence n ≡ m mod N [ f ].
Proof (Proof of Theorem 2). To prove Theorem 2 we use Faltings’ almost purity
theorem and Lemma 2 (in the context A = O, f ∈ M = m): so it is enough to
show that Hi

cont(Γ, R∞) is “good” for all i ≥ 0. This is a standard type of explicit
calculation of Hi

cont(Γ, R∞) in terms of Koszul complexes. For the sake of the reader
unfamiliarwith this typeof calculation, the special case that R = O〈T ±1〉 is presented
in a footnote8; here in the main text we will prove the general case. Both there and

8In this footnote we carry out the calculation of the proof of Theorem 2 when R = O〈T ±1〉, in
which case R∞ = O〈T ±1/p∞〉. To reiterate, we must show that Hi

cont(Γ, R∞) is good for all i ≥ 0.
First note that R∞ admits a Γ -equivariant decomposition into O-submodules

R∞ = ̂

⊕

k∈Z

[

1
p

]OT k

(where the hat denotes p-adic completion of the sum), with the generator γ ∈ Γ acting on the rank-

one free O-module OT k as multiplication by ζk . Thus RΓcont(Zp,OT k) � [O ζk−1−−−→ O] (since
the group cohomology of an infinite cyclic group with generator γ is computed by the invariants
and coinvariants of γ, and similarly in the case of continuous group cohomology), and so

RΓcont(Zp, R∞) � ̂

⊕

k∈Z

[

1
p

][O ζk−1−−−→ O]
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here we pick a compatible sequence ζp, ζp2 , . . . ,∈ O of p-power roots of unity to
get a generator γ ∈ Zp(1) and an identification Γ ∼= Z

d
p; as a convenient abuse of

notation, we write ζk := ζa
p j when k = a/p j ∈ Z[ 1p ].

First note that O〈T ±1/p∞〉 admits a Γ -equivariant decomposition into O〈T ±1〉-
modules:

O〈T ±1/p∞〉 = O〈T ±1〉 ⊕ O〈T ±1〉non-int,

where

O〈T ±1〉non-int := ̂
⊕

k1,...,kd∈Z

[ 1
p

]

∩[0,1)
not all zero

O〈T ±1〉T k1
1 . . . T kd

d

(where the hat denotes p-adic completion of the sum), with the generators γ1, . . . ,
γd ∈ Γ acting on the rank-one freeO-moduleOT k1

1 . . . T kd
d respectively as multipli-

cation by ζk1 , . . . , ζkd .
Base changing to R we obtain a similar Γ -equivariant decomposition of R∞ into

R-modules

R∞ = R ⊕ Rnon-int
∞ , Rnon-int

∞ := ̂
⊕

k1,...,kd∈Z

[ 1
p

]

∩[0,1)
not all zero

RT k1
1 . . . T kd

d ,

and so RΓcont(Z
d
p, R∞) � RΓcont(Z

d
p, R) ⊕ RΓcont(Z

d
p, Rnon-int∞ ), where

RΓcont(Z
d
p, Rnon-int

∞ ) � ̂
⊕

k1,...,kd∈Z

[ 1
p

]

∩[0,1)
not all zero

RΓcont(Z
d
p, RT k1

1 . . . T kd
d )

(where the hat now denotes the derived p-adic completion of the sum of complexes).
Now we must calculate Hi

cont(Zp, ?) for ? = R or RT k1
1 . . . T kd

d .
In the first case, the action ofZd

p on R is trivial and so a standard group cohomology

fact says that Hi
cont(Z

d
p, R) ∼= ∧i

R Rd . In the second case, another standard group

(where the hat now denotes the derived p-adic completion of the sum of complexes), which has
cohomology groups

H0
cont(Zp, R∞) ∼= ̂

⊕

k∈Z
O ⊕ 0, H1

cont(Zp, R∞) ∼= ̂

⊕

k∈Z
O ⊕

⊕

k∈Z

[

1
p

]

\Z

O/(ζk − 1)O

(once some care is taken regarding the p-adic completions: see footnote 9).
We claim that both cohomology groups are good. Since O has no non-zero elements killed

by m, it remains only to prove that the same is true of O/aO, where a = f or ζk − 1 for some
k ∈ Z[ 1p ] \ Z. But this is an easy argument with valuations: if x ∈ O is almost a multiple of a, then
νp(x) + ε ≥ νp(a) for all ε > 0, whence νp(x) ≥ νp(a) and so x is actually a multiple of a.
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cohomology fact says that RΓcont(Z
d
p, RT k1

1 . . . T kd
d ) can be calculated by the Koszul

complex K R(ζk1 − 1, . . . , ζkd − 1); then Lemma 23 reveals (crucially using that not
all ki are zero) that

Hi
cont(Z

d
p, RT k1

1 . . . T kd
d ) ∼= R/(ζpr − 1)R(d−1

i−1)

where r := −min1≤i≤d νp(ki ) ≥ 1 is the smallest integer such that ζpr − 1|ζki − 1
for all i = 1, . . . , d.

Assembling9 these calculations yields isomorphisms

Hi
cont(Γ, R∞) ∼=

i
∧

R

Rd ⊕
⊕

k1,...,kd∈Z

[ 1
p

]

∩[0,1)
not all zero

R/(ζp−min1≤i≤d νp (ki ) − 1)R(d−1
i−1),

which we claim is good for each i ≥ 0. That is, we must show that R, R/ f R, and
R/(ζpr − 1)R, for r ≥ 1, contain no non-zero elements killed by m. This is trivial
for R itself since it is a torsion-free O-algebra, so it remains to show, for each
non-zero a ∈ m, that R/a R contains no non-zero elements killed by m; but R is a
topologically freeO-module [5, Lemma 8.10] and so R/a R is a freeO/aO-module,
thereby reducing the problem to the analogous assertion forO/aO, whichwas proved
in the final paragraph of footnote 8.

9This step requires some care about p-adic completions: the following straightforward result is
sufficient. Suppose (Cλ)λ is a family of complexes satisfying the following for all i ∈ Z: the group
Hi (Cλ) is p-adically complete and separated for all λ, with a bound on its p-power-torsion which
is independent of λ. Then Hi (̂

⊕

λCλ) = ̂

⊕

λ Hi (Cλ), where the left hat is the derived p-adic
completion of the sum of complexes, and the right hat is the usual p-adic completion of the sum of
cohomology groups. Proof. Set Cdisc := ⊕

λ Cλ and C = Ĉdisc (derived p-adic completion); then
the usual short exact sequences associated to a derived p-adic completion are

0

��
lim←−

1
r

Hi (Cdisc)[pr ]

��
0 �� Ext1

Zp
(Qp/Zp, Hi (Cdisc)) ��

��

Hi (C) �� HomZp (Qp/Zp, Hi+1(Cdisc)) �� 0

Ĥ i (Cdisc) = ̂

⊕

λ Hi (Cλ)

��
0

Our assumption that
⊕

λ Hi (Cλ) has bounded p-power-torsion implies that the right and top terms
vanish.
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3 Algebraic Preliminaries on Perfectoid Rings

Fix a prime number p, and let A be a commutative ring which is π-adically complete
(and separated) for some element π ∈ A dividing p. Denoting by ϕ : A/p A →
A/p A the absolute Frobenius, we have:

• the tilt A� := lim←−ϕ
A/p A of A, which is a perfect Fp-algebra, on which we also

denote the absolute Frobenius by ϕ. We sometimes write elements of A� as x =
(x0, x1, . . .), where xi ∈ A/p A and x p

i = xi−1 for all i ≥ 1, and unless indicated
otherwise the “projection A� → A/p A” refers to the map x �→ x0.

• the associated “infinitesimal period ring” W (A�) of Fontaine, which is denoted
by Ainf(A) in [5]. Note that, since A� is a perfect ring, W (A�) behaves just like
the ring of Witt vectors of a perfect field of characteristic p: in particular p is
a non-zero divisor of W (A�), each element has a unique expansion of the form
[x] + p[y] + p2[z] + · · · , and W (A�)/pr = Wr (A�) for any r ≥ 1.

The goal of this section is to study these constructions in more detail, in particular
to introduce ring homomorphisms

˜θr , θr : W (A�) −→ Wr (A)

which play a fundamental role in the paper, and to define perfectoid rings.

3.1 The Maps θr , ˜θr

The following lemma is helpful in understanding A� and will be used several times;
we omit the proof since it is relatively well-known and based on standard p-adic or
π-adic approximations:

Lemma 3 The canonical maps

lim←−
x �→x p

A −→ A� = lim←−
ϕ

A/p A −→ lim←−
ϕ

A/πA

are isomorphisms of monoids (resp. rings).

Before stating the main lemma which permits us to define the maps θr , we recall
that if B is any ring, then the associated rings of Witt vectors Wr (B) are equipped
with three operators:

R, F : Wr+1(B) → Wr (B) V : Wr (B) → Wr+1(B),

where R, F are ring homomorphisms, and V is merely additive. Therefore we can
take the limit over r in two ways (of which the second is probably more familiar):
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lim←−
r wrt F

Wr (B) or W (B) = lim←−
r wrt R

Wr (B).

Lemma 4 Let A be as above, i.e., a ring which is π-adically complete with respect
to some element π ∈ A dividing p. Then the following three ring homomorphisms
are isomorphisms:

W (A�) = lim←−r wrt R
Wr (A�) lim←−r wrt F

Wr (A�)
ϕ∞

(i)
��

(i i)

��
lim←−r wrt F

Wr (A)
(i i i)

�� lim←−r wrt F
Wr (A/πA)

where

(i) ϕ∞ is induced by the homomorphisms ϕr : Wr (A�) → Wr (A�) for r ≥ 1;
(ii) the right vertical arrow is induced by the projection A� → A/p A → A/πA;

(iii) the bottom horizontal arrow is induced by the projection A → A/πA.

There is therefore an induced isomorphism

W (A�)
�−→ lim←−

r wrt F

Wr (A)

making the diagram commute.

Proof We refer the reader to [5, Lemma 3.2] for the elementary proofs of the iso-
morphisms.

Definition 2 Continue to let A be as in the previous lemma, and r ≥ 1. Define
˜θr : W (A�) → Wr (A) to be the composition

˜θr : W (A�)
�−→ lim←−

r wrt F

Wr (A) −→ Wr (A),

where the first map is the isomorphism of the previous lemma, and the second map
is the canonical projection. Also define

θr := ˜θr ◦ ϕr : W (A�) −→ Wr (A).

We stress that the Frobenius maps F : Wr+1(A) → Wr (A) need not be surjective,
and thus θr ,˜θr need not be surjective; indeed, such surjectivity will be part of the
definition of a perfectoid ring (see Lemma 7).

To explicitly describe the maps θr and ˜θr , we follow the usual convention of
exploiting the isomorphism of monoids of Lemma 3 to denote an element x ∈ A�

either as x = (x0, x1, . . .) ∈ lim←−ϕ
A/p A or x = (x (0), x (1), . . .) ∈ lim←−x �→x p

A:
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Lemma 5 For any x ∈ A� we have θr ([x]) = [x (0)] ∈ Wr (A) and ˜θr ([x]) = [x (r)]
for r ≥ 1.

Proof The formula for ˜θr follows from a straightforward chase through the above
isomorphisms, and the corresponding formula for θr is an immediate consequence.

In particular, Lemma 5 implies that θ := θ1 : W (A�) → A is the usual map of
p-adic Hodge theory as defined by Fontaine [14, Sect. 1.2], and also shows that the
diagram

W (A�)
θr ��

��

Wr (A)

��
Wr (A�) �� Wr (A/p A)

commutes, where the left arrow is the canonical restrictionmap and the bottom arrow
is induced by the projection A� → A/p A.

The following records the compatibility of the maps θr and˜θr with the usual oper-
ators on theWitt groups; though it is probably the first set of diagrams which initially
appears more natural, it is the second set which we we will use when constructing
Witt complexes:

Lemma 6 Continue to let A be as in the previous two lemmas. Then the following
diagrams commute:

W (A�)

id
��

θr+1 �� Wr+1(A)

R

��
W (A�)

θr �� Wr (A)

W (A�)

ϕ

��

θr+1 �� Wr+1(A)

F

��
W (A�)

θr �� Wr (A)

W (A�)
θr+1 �� Wr+1(A)

W (A�)
θr ��

λr+1ϕ
−1

��

Wr (A)

V

��

where the third diagram requires an element λr+1 ∈ W (A�) satisfying θr+1(λr+1) =
V (1) in Wr+1(A). Equivalently, the following diagrams commute:

W (A�)

ϕ−1

��

˜θr+1 �� Wr+1(A)

R

��
W (A�)

˜θr �� Wr (A)

W (A�)

id
��

˜θr+1 �� Wr+1(A)

F

��
W (A�)

˜θr �� Wr (A)

W (A�)
˜θr+1 �� Wr+1(A)

W (A�)
˜θr ��

×ϕr+1(λr+1)

��

Wr (A)

V

��

Proof See [5, Lemma 3.4] for the short verification.
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3.2 Perfectoid Rings

The next goal is to define what it means for A to be perfectoid, which requires
discussing surjectivity and injectivity of the Frobenius on A/p A. We do this in
greater generality than we require, but this greater generality reveals the intimate
relation to the map θ and its generalisations θr , ˜θr .

Lemma 7 Let A be a ring which is π-adically complete with respect to some element
π ∈ A such that π p divides p. Then the following are equivalent:

(i) Every element of A/π p A is a pth-power.
(ii) Every element of A/p A is a pth-power.

(iii) Every element of A/π p A is a pth-power.
(iv) The Witt vector Frobenius F : Wr+1(A) → Wr (A) is surjective for all r ≥ 1.
(v) θr : W (A�) → Wr (A) is surjective for all r ≥ 1.

(vi) θ : W (A�) → A is surjective.

Moreover, if these equivalent conditions hold then there exist u, v ∈ A× such that
uπ and vp admit systems of p-power roots in A.

Proof The implications (i)⇒(ii)⇒(iii) are trivial since π p A ⊆ p A ⊆ π p A. (v)⇒
(vi) is also trivial since θ = θ1.

(iii)⇒(i): a simple inductive argument allows us to write any given element x ∈ A
as an infinite sum x = ∑∞

i=0 x p
i π pi for some xi ∈ A; but then x ≡ (

∑∞
i=0 xiπ

i )p mod
pπA.

(iv)⇒(ii): Clear from the fact that the Frobenius F : W2(A) → W1(A) = A is
explicitly given by (α0,α1) �→ α

p
0 + pα1.

(iv)⇒(v): The hypothesis states that the transition maps in the inverse system
lim←−r wrt F

Wr (A) are surjective, which implies that each map ˜θr is surjective, and
hence that each map θr is surjective.

(vi)⇒(ii): Clear since any element of A in the image of θ is a pth-power mod p.
It remains to show that (ii)⇒(iv), but we will first prove the “moreover” assertion

using only (i) (which we have shown is equivalent to (ii)). Applying Lemma 3 to both
A and A/π p A implies that the canonical map lim←−x �→x p

A → lim←−x �→x p
A/π p A is an

isomorphism.Applying (i) repeatedly, there therefore existsω ∈ lim←−x �→x p
A such that

ω(0) ≡ π mod π p A (resp. ≡ p mod π p A). Writing ω(0) = π + π px (resp. ω(0) =
p + π px) for some x ∈ A, the proof of the “moreover” assertion is completed by
noting that 1 + px ∈ A× (resp. 1 + πx ∈ A×).

(ii)⇒(iv): By the “moreover” assertion, there exist π′ ∈ A and v ∈ A× satisfying
π′p = vp. Note that A is π′-adically complete, and so we may apply the implication
(ii)⇒(i) for the element π′ to deduce that every element of A/π′ p A is a pth-power;
it follows that every element of A/I p is a pth-power, where I is the ideal {a ∈ A :
a p ∈ p A}. Now apply implication “(xiv)′ ⇒(ii)” of Davis–Kedlaya [10].

Lemma 8 Let A be a ring which is π-adically complete with respect to some element
π ∈ A such that π p divides p, and assume that the equivalent conditions of the
previous lemma are true.
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(i) If Ker θ is a principal ideal of W (A�), then

(a) Φ : A/πA → A/π p A, a �→ a p, is an isomorphism;
(b) any generator of Ker θ is a non-zero-divisor10;
(c) an element ξ ∈ Ker θ is a generator if and only if it is “distinguished”,

i.e., its Witt vector expansion ξ = (ξ0, ξ1, . . .) has the property that ξ1 is a
unit of A�.

(d) any element ξ ∈ Ker θ satisfying θr (ξ) = V (1) ∈ Wr (A) for some r > 1
is distinguished (and such an element exists for any given r > 1).

(ii) Conversely, if π is a non-zero-divisor and Φ : A/πA → A/π p A is an isomor-
phism (which is automatic if A is integrally closed in A[ 1

π
]), then Ker θ is a

principal ideal.

Proof Rather than copying the proof here, we refer the reader to Lemma 3.10 and
Remark 3.11 of [5]. The only assertion which is not proved there is the parenthetical
assertion in (ii), for which we just note that if A is integrally closed in A[ 1

π
], thenΦ is

automatically injective: indeed, if a p divides π p, then (a/π)p ∈ A and so a/π ∈ A.

We can now define a perfectoid ring11:

Definition 3 A ring A is perfectoid if and only if the following three conditions
hold:

• A is π-adically complete for some element π ∈ A such that π p divides p;
• the Frobenius map ϕ : A/p A → A/p A is surjective (equivalently, θ : W (A�) →

A is surjective);
• the kernel of θ : W (A�) → A is principal.

Remark 2 The first condition of the definition could be replaced by the seemingly
stronger, but actually equivalent and perhaps more natural, condition that “A is p-
adically complete and there exists a unit u ∈ A× such that pu is a pth-power.” Indeed,
this follows from the final assertion of Lemma 7.

We return to the maps θr , describing their kernels in the case of a perfectoid ring:

Lemma 9 Suppose that A is a perfectoid ring, and let ξ ∈ W (A) be any element
generating Ker θ (this exists by Lemma 7). Then Ker θr is generated by the non-
zero-divisor

10In all our cases of interest the ring A will be an integral domain, in which case it may be psycho-
logically comforting to note that A� and W (A�) are also integral domains. Proof. The ring W (A�) is
p-adically separated, satisfies W (A�)/p = A�, and p is a non-zero-divisor in it (these properties all
follow simply from A� being perfect). So, once we show that A� is an integral domain, it will easily
follow that W (A�) is also an integral domain. But the fact that A� is an integral domain follows

at once from the same property of A using the isomorphism of monoids lim←−x �→x p A
�→ A� which

already appeared in Lemma 4.
11Perhaps “integral perfectoid ring” would be better terminology to avoid conflict with the more
common notion of perfectoid algebras in which p is invertible.
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ξr := ξϕ−1(ξ) . . . ϕ−(r−1)(ξ)

for any r ≥ 1, and so Ker ˜θr is generated by the non-zero-divisor

˜ξr := ϕr (ξr ) = ϕ(ξ) . . . ϕr (ξ).

Proof It is enough to prove the claim about ξr , since the claim about˜ξr then follows
by applying ϕr . The proof is by induction on r ≥ 1, using the diagrams of Lemma
6 for the inductive step; we refer to [5, Lemma 3.12] for the details.

We finish this introduction to perfectoid rings with some examples:

Example 1 (Perfect rings of characteristic p) Suppose that A is a ring of character-
istic p. Then A is perfectoid if and only if it is perfect. Indeed, if A is perfect, then it
is 0-adically complete, the Frobenius is surjective, and the kernel of θ : W (A) → A
is generated by p. Conversely, if A is perfectoid, then Lemma 8(i)(c) implies that
the distinguished element p ∈ Ker(θ : W (A�) → A) must be a generator, whence
W (A�)/p ∼= A; but W (A�)/p = A� is perfect.

In particular, in this case A� = A and the maps θr : W (A�) → Wr (A) are the
canonical Witt vector restriction maps.

Example 2 If C is a complete, non-archimedean algebraic closed field of residue
characteristic p > 0, then its ring of integersO is a perfectoid ring. Indeed, if C has
equal characteristic p then O is perfect and we may appeal to the previous lemma.
If C has mixed characteristic (our main case of interest), then O is p1/p-adically
complete, integrally closed in O[ 1

p1/p ] = C, and every element of O/pO is a pth-
power since C is algebraically closed, so we may appeal to Lemma 8(ii); in this
situation the ring W (O�) will always be denoted by Ainf .

Example 3 Let A be a perfectoid ring which is π-adically complete with respect to
some non-zero-divisor π ∈ A such that π p divides p. Here we offer some construc-
tions of new perfectoid rings from A:

(i) The rings A〈T 1/p∞
1 , . . . , T 1/p∞

d 〉 and A〈T ±1/p∞
1 , . . . , T ±1/p∞

d 〉, which are by def-
inition the π-adic completions of A[T 1/p∞

1 , . . . , T 1/p∞
d ] and A[T ±1/p∞

1 , . . . ,

T ±1/p∞
d ] respectively, are also perfectoid.

(ii) Any π-adically complete, formally étale A-algebra is also perfectoid.

Proof Since the π-adic completeness of the given ring is tautological in each case,
we only need to check thatΦ : B/πB → B/π p B, b �→ bp is an isomorphism in each
case. This is clear for B = A〈T ±1/p∞〉 and A〈T 1/p∞〉, and it hold for and A-algebra
B as in (ii) since the square

B/π
ϕ �� B/π

A/π

��

ϕ
�� A/π

��
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is a pushout diagram (the base change of the Frobenius along an étale morphism in
characteristic p is again the Frobenius).

3.3 Main Example: Perfectoid Rings Containing Enough
Roots of Unity

Here in Sect. 3.3 we fix a perfectoid ring A which has no p-torsion and which
contains a compatible system ζp, ζp2 , . . . of primitive p-power roots of unity (to
be precise, since A is not necessarily an integral domain, this means that ζpr is a
root of the pr th cyclotomic polynomial), which we fix. The simplest example is
O itself, but we also need the theory for perfectoid algebras containing O such as
O〈T ±1/p∞

1 , . . . , T ±1/p∞
d 〉.

In particular we define particular elements ε, ξ,μ, . . ., which will be used repeat-
edly in our main constructions, and so we highlight (or rather box) the primary
definitions and relations. Firstly, set

ε := (1, ζp, ζp2 , . . .) ∈ A�, μ := [ε] − 1 ∈ W (A�),

and
ξ := 1 + [ε1/p] + [ε1/p]2 + · · · + [ε1/p]p−1 ∈ W (A�).

Lemma 10 ξ is a generator of Ker θ satisfying θr (ξ) = V (1) for all r ≥ 1.

Proof By Lemma 8(i)(d) it is sufficient to show that θr (ξ) = V (1) for all r ≥ 1.
The ghost map gh : Wr (A) → Ar is injective since A is p-torsion-free, and so it is
sufficient to prove that gh(θr (ξ)) = gh(V (1)). But it follows easily from Lemma 5
that the composition gh ◦θr : W (A�) → Ar is given by (θ, θϕ, . . . , θϕr−1), and so
in particular that

gh(θr (ξ)) = (θ(ξ), θϕ(ξ), . . . , θϕr−1(ξ)).

Since θ(ξ) = 0 and gh(V (1)) = (0, p, p, p, . . .), it remains only to check that
θϕi (ξ) = p for all i ≥ 1, which is straightforward:

θϕi (ξ) = θ(1 + [εpi−1 ] + [εpi−1 ]2 + · · · + [εpi−1 ]p−1) = 1 + 1 + · · · + 1 = p.

It now follows from Lemma 9 that Ker θr is generated by

ξr := ξϕ−1(ξ) . . . ϕ−(r−1)(ξ) =
pr −1
∑

i=0

[ε1/pr ]i ,

and that Ker ˜θr is generated by
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˜ξr := ϕr (ξr ) = ϕ(ξ) . . . ϕr (ξ) .

Proposition 2 μ is a non-zero divisor of W (A�) which satisfies

μ = ξrϕ
−r (μ), ϕr (μ) = ˜ξrμ, ˜θr (μ) = [ζpr ] − 1 ∈ Wr (A)

for all r ≥ 1.

Proof The final identity is immediate from Lemma 5. It is clear that μ = ξϕ−1(μ),
whence the identity μ = ξrϕ

−r (μ) follows by a trivial induction on r , and the central
identity then follows by applying ϕr . To prove that μ is a non-zero-divisor, it suffices
to show that ˜θr (μ) = [ζpr ] − 1 is a non-zero-divisor of Wr (A) for all r ≥ 1 (since
W (A�) = lim←−r wrt F

Wr (A)). Since A is p-torsion-free the ghost map is injective and
so we may check this by proving that

gh([ζpr ] − 1) = (ζpr − 1, ζpr−1 − 1, . . . , ζp − 1)

is a non-zero-divisor of Ar ; i.e., we must show that ζpr − 1 is a non-zero-divisor in
A for all r ≥ 1. But ζpr − 1 divides p, and A is assumed to be p-torsion-free.

Remark 3 The reader may wish to note that the Teichmüller lifts [ζp], [ζp2 ], . . .
are not primitive p-power roots unity in Wr (A) in any reasonable sense. Indeed, it
follows from its ghost components gh([ζp]) = (ζp, 1, 1, . . . , 1) that [ζp] is not a root
of X p−1 + · · · + X + 1 when r > 1.

However, the element [ζpr ] − 1 ∈ Wr (A) will play a distinguished role in our
constructions and so we point out that it is a non-zero-divisor whose powers define
the p-adic topology. Indeed, it follows from the ghost component calculation of the
previous proposition that [ζpr ] − 1 is a root of the polynomial

((X + 1)pr − 1)/X = X pr −1 + pX (· · · ) + pr ,

whence p divides ([ζpr ] − 1)pr −1, and [ζpr ] − 1 divides pr . A particularly important
consequence of this is that Lη[ζpr ]−1 commutes with derived p-adic completion, by
[5, Lemma 6.20].

4 The Pro-étale Site and Its Sheaves

In this section we review aspects of pro-étale cohomology following [25, Sects. 3–4],
working under the following set-up:

• C is a complete, non-archimedean, algebraically closed field of mixed character-
istic; ring of integers O with maximal ideal m; residue field k.

• X is a quasi-separated rigid analytic variety over C.
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In particular, we will introduce various pro-étale sheaves on X which will play an
essential role in our constructions, and explain how to calculate their cohomology
via affinoid perfectoids and almost purity theorems.

4.1 The Pro-étale Site Xproét

We will take for granted that the reader is either familiar with, or can reasonably
imagine, étale morphisms and coverings of rigid analytic varieties, and we let X ét

denote the associated étale site of X . To define coverings in X ét (and soon in Xproét) it
is useful to view X as an adic space,12 and we therefore denote by |X | the underlying
topological space of its associated adic space X ad: for example, if T is an affinoid
C-algebra, then |Sp T | denotes the topological space of (equivalences classes of)
all continuous valuations on T , not merely those factoring through a maximal ideal
(which correspond to the closed points of the adic space).

We now define (a countable version of) Scholze’s pro-étale site Xproét in several
steps:

• An object of Xproét is simply a formal inverse system U = “ lim←− ”
i
Ui in X ét of the

form
...

��
U3

fin. ét. surj.��
U2

fin. ét. surj.��
U1

ét.��
X

In other words, U is the data of a tower of finite étale covers of U1, which is étale
over X . The underlying topological space of U is by definition |U | := lim←−i

|Ui |.

12There is an equivalence of categories between quasi-separated rigid analytic varieties over C and
those adic spaces over Spa(C,O) whose structure map is quasi-separated and locally of finite-type
[16, Proposition 4.5]. A collection of étale maps { fλ : Uλ → U } in X ét is a cover if and only if it
is jointly “strongly surjective”, which is equivalent to being jointly surjective at the level of adic
points [17, Sect. 2.1].


